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Abstract: In the paper, the authors recall some known determinantal expressions in terms of the
Hessenberg determinants for the Bernoulli numbers and polynomials, find alternative determinantal
expressions in terms of the Hessenberg determinants for the Bernoulli numbers and polynomials,
and present several new recurrence relations for the Bernoulli numbers and polynomials.
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1. Introduction and Main Results

It is general knowledge that the Bernoulli numbers and polynomials By and By (t) can be generated by

) k [eS) 2k
z z z z
=Y B =1--+Y By (1)
and , .
zet? ad z
1 :kgoBk(t)H

for |z| < 27 respectively. It is clear that B(0) = By. Because the function z*5 —1+ 5 iseveninx € R,
all the Bernoulli numbers By 1 for k € N equal 0. In addition to By = 1 and By = —%, the first few
Bernoulli numbers B, are

1 1 1 1 5 691

Be= 15, Bs=—35 Buo=g Bu=-77a

The first five Bernoulli polynomials By (t) for 0 < k < 4 are

1 1 1
t3—§t2+ft, 23 12— —

1, t—=, 2—t+- )
’ ¢ T 2 2 30

It is well known that a matrix H = (h;j)nxn is called a lower (respectively upper) Hessenberg

matrix if h;; = 0 for all pairs (i, j) such thati+1 < j (respectively j + 1 < i). Correspondingly, we can
define a Hessenberg determinant.
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In [1] (p. 40), it was mentioned that
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for k € N. The determinant in (2) is a sub-determinant of the determinant in (3). It was pointed out
in [1] (p. 40) that these two determinantal expressions were recorded in [2] and can be traced back to
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the book [3].
The Bernoulli polynomials By (f) were represented in [1] in terms of the Hessenberg determinants as
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In [4] (Section 21.5) and [5] (p. 1), the determinantal expression

1 0
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for the Bernoulli numbers By for k > 0 was listed. This expression can also be deduced from taking the

limit t — 0in (4).

Let {a }o<m<oo be a sequence of complex numbers and let { Dy (a,:) }o<k<oo be a sequence of the

Hessenberg determinants such that Dy(a,) = 1 and

a ap 0 0
an a ap 0
Di(am) = | : : © .. 1|, keN
-1 Gk—2 -3 - 4o
g k-1 Og—2 -+ M
In [6], the determinantal expressions
26)! [ & (—1)¢ 1 1
By — (—1)kL D Di| ——
%= (1) {;0 20)! ”((2m+1)!>+ k<(2m+1)!)

and

2k)! 1
By = (_1)k+12(22(k1)_ 1) Di ( (2m + 1)!)

for k € N were established.
In [7] (Theorem 1.1), it was shown that, if

A(z) =Y a,2" and B(z) =) buz"
m=0 m=0

(6)

@)

are the ordinary generating functions of {a }o<m<co and {bm }o<m<eo such that A(x)B(x) = 1, then

ag # 0 and
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Dy (a
be = (-1 ),
ay

As applications of [7] (Theorem 1.1), among other things, some properties of D (a;;) were discovered and
applied to give an elegant proof of (6) and (7). In particular, the Hessenberg determinantal expressions

B = (—1)*k!Dy (@) ,

which recovers [8] (Equation (4)), and

5, E10)

m+1)!
were derived.
In [9] (Theorem 1.2), the Bernoulli polynomials By (t) for k € N were expressed as a Hessenberg
determinant by

Bi(t) = (—1)F ®)

g_:il_il (6 ;; 1) [(1 _ t)ﬁ—m-&-l _ (_t)é—m-i-l]

A/ U

under the conventions that (8) =1land (Z) = 0for g > p > 0. Consequently, the Bernoulli numbers By
for k € N were be represented as
1 [l+1
C4+1\ m

The first aim of this paper is to find alternative determinantal expressions in terms of the

B = (—1)f €)

1<4<k,0<m<k—1

Hessenberg determinants for the Bernoulli polynomials B(t) and the Bernoulli numbers By.
The second aim is to derive several recurrence relations for the Bernoulli polynomials Bi(t) and
the Bernoulli numbers By.

Our main results can be formulated as a theorem and a corollary below.

Theorem 1. For k > 0, the Bernoulli polynomials By (t) can be expressed in terms of a Hessenberg determinant as

1 1 0 0 0 0 0
t 6] 1 0 0 0 0
230 1 1 0 0 0
S () o) 13 0 0 0
Bi(t) = (1) | : : : : : : : (10)
#2500 SO A O
A < (R = IR = (S IEEIE (S T B
) &= &Y o Gy 1
Fome D &0 165 365 365
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and, consequently, the Bernoulli numbers By can be expressed as

1 1 0 0 0 0 0
(ET6) 1 0 0 0 0
U TR 16) 1 0 0 0
0 () W0 10 0 0 0
By = (—DF|: : : : RO : L. (11)
0 ﬁ(kBB) ﬁ(k;% klj(kEB) 1 0 0
0 F) &) &G e 26 1o
U R = (RIS = {CORETI (1 v I
0 HE ) HO 165 365 265

Corollary 1. For k > 1, the Bernoulli polynomials By (t) satisfy the recurrence relations

1 K k+1
B =t - e () B 12)
(=0
" Bt =t K -y L VB, 13
() = £ = 2B —Ew(e_l) () 13)

Consequently, the Bernoulli numbers By, satisfy the recurrence relations

1 = /k+1
and .
k -1 9 k
Be= =3B~ L2 (4 - 1>B“- (19

2. Lemmas

In order to obtain our aims and to prove our main results, we need the following lemmas.

Lemma 1 ([10] (p. 40, Exercise 5)). Let u(t) and v(t) # 0 be two differentiable functions, let U, 11)x1(t)
be an (n+1) x 1 matrix whose elements are uy1(t) = u® =V (t) for 1 < k < n+1, let Ving1)xn(t) e
an (n + 1) x n matrix whose elements are

i—1 o ..
0ii(8) = (o1 imizo
l,] -
0, i—j<o

for 1. < i < n+land 1 < j < n, and let [Wy, 1)x(ns1)(t)| denote the determinant of the
(n+1) x (n+ 1) matrix

W(n+1)><(n+1)(t) = (U(n+1)><1(t) V(n+1)><n(t)> :
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Then the nth derivative of the ratio % can be computed by

n t W, t
d & _ (_1)71‘ (n+1)><(n+1)( )’ (16)
dt | o(t) v tL(t)
Lemma 2 ([11] (p. 222, Theorem) and [12] (Remark 3)). Let My = 1 and
miq mip 0 ce 0 0
my1 my o my3 ce 0 0
msq msp mss e 0 0
M, =
Mpy—21 My—22 My_23 ... My_2,1 0
Mp—11 Mup—12 My—13 ... Muy_1p-1 Mp—1n
my 1 My My3 cee My n—1 Mpyn
for n € N. Then the sequence My, for n > 0 satisfies My = my 1 and
n—1 n—1
My = mpnMy—1 + Z(_l)n_rmn,r H M i1 M, 1, n>2. (17)
r=1 j=r

3. Proofs of Theorem 1 and Corollary 1

We are now in a position to prove our main results.
Proof of Theorem 1. We can write the generating function of the Bernoulli polynomials By (t) as

Zetz B etz B etz
=1 (e#-1)/z  [‘s=1ds’

Therefore, with the help of Equation (16) applied to u(t) = e? and v(t) = [{ s* ! ds, we obtain the
kth derivative

el? (k) (_1)k
(flesz%ls) :—M‘Akﬂ,l(zft) Ck+1,k(zft)’

(Ji ss7tds)

(k+1)x (k+1)

where
A1z t) = (a1 (z ) h<ickpr and Cepix(zt) = (6ij(z 1) 1<icks11<j<k

are matrices whose elements are a;1(z,t) = t~le!? — #~! and

0, i<j 0, i<j
C,‘,]’(Z, t) = { . — { 1 il

(;:%) f1e(h15)i7j5271 ds, i> ] i—j+1 (]'—1)/ i ]

as z — 0, respectively. This implies by definition of the generating function that

) Zetz (k) ) etz (k)
Bi(t) —l‘i%(ez_l) —?L%(ffsz—lds)
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The determinantal Equation (10) is thus proved.

O

Letting t — 0in (10) leads immediately to (11). The proof of Theorem 1 is complete.

)

Proof of Corollary 1. Expanding the determinant in (10) by the last column consecutively and

employing (10) inductively reveal
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Accordingly, it follows that

kg k ot | k
Bi(t) = — L‘;m(kf)BHm —t"} = —E)WQ)BN) + t,

Further considering the identity
1 i—1 1/ i
i—j+1<j—1)_i<j—1>’ (18)
the relation (12) is thus proved.
Taking t = 0 in (12) results in the relation (14).

A straightforward application of the recurrence Equation (17) to the determinantal
Equations (10) and (11) leads to (13) and (15), respectively. The proof of Corollary 1 is complete. O

4. Remarks

Finally, we list several remarks below.

Remark 1. The determinantal Equation (11) can also be derived from differentiating the generating function

z 1
=1 [fs1ds

in (1) by virtue of Formula (16) and taking the limit z — 0.

Remark 2. The recurrence relations (12) and (14) recover the well-known identities

ko k41 ko rk+1
E)( ' )Bg(t)—(k+1)tk and E)( ' )Bg—o.
in [13] (p. 4, Equations (1.10) and (1.11)).

Remark 3. Dividing the jth column in (3) by j—2 for 3 < j < n+ 1 immediately gives (10).
Similarly, the determinantal Equation (11) can be derived from (2). This means that the determinantal
Equations (10) and (11) are equivalent to (3) and (2) respectively. In this sense, Theorem 1 recovers the
determinantal Equations (2) and (3) by an alternative method.

Remark 4. Formulas (2) to (5) are reformulations of corresponding ones in [1]. By this, some typos appearing
in [1] are corrected.

Remark 5. By virtue of (18), the determinantal Equation (11) can be rewritten as (9), while the determinantal
Equation (10) can be reformulated as
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1 1 0 0 0 0 0
O B S 0o 0 0
2% @ 1 0o 0 0
Cof | @ @ @ 0 0o
Bk(t):(k+1)g : : : : : : : (19)
20 (Y 6Y ) & o
TN BN (5 PR AL B ALN B
dr () () G @ @ d

fork > 0.

Remark 6. Applying similar arquments in the proof of Theorem 1 to discuss the determinantal
Equations (2) to (8), one can find or recover more recurrence relations for the Bernoulli numbers By and
the Bernoulli polynomials By(t).

Because the last rows in the determinantal Equations (2)—5), (8), (9), and (19) are different,
when applying (17) to them, we can acquire different recurrence relations for the Bernoulli numbers By, and the
Bernoulli polynomials B, (t).

Remark 7. In [14] (Section 4.1), the determinantal Equation (10) was derived by a different method.

In [14] (Section 4.3), our main results in [15] (Theorems 1 and 2) were obtained by a different method.

We believe that Lemma 1 and Formula (17) can be applied to reformulate the paper [14]. In other words,
this paper provides an alternative method to express some mathematical quantities in terms of the Hessenberg
determinants or tridiagonal determinants.

Remark 8. Formula (16) in Lemma 1 has been applied in the papers [9,12,15-26] to express the
Apostol-Bernoulli polynomials, the Cauchy product of central Delannoy numbers, the Bernoulli polynomials, the
Schroder numbers, the (generalized) Fibonacci polynomials, the Catalan numbers, derangement numbers, and
the Euler numbers and polynomials in terms of the Hessenberg and tridiagonal determinants. This implies that
Formula (16) in Lemma 1 is effectual to express some mathematical quantities in terms of the Hessenberg and
tridiagonal determinants.

5. Conclusions

Conclusively speaking, we recall some known determinantal expressions in terms of the
Hessenberg determinants for the Bernoulli numbers and polynomials, find alternative determinantal
expressions in terms of the Hessenberg determinants for the Bernoulli numbers and polynomials, and
present several new recurrence relations for the Bernoulli numbers and polynomials.
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