
mathematics

Article

Nuclear Space Facts, Strange and Plain

Jeremy Becnel 1,*,† and Ambar Sengupta 2,†

1 Department of Mathematics, Stephen F. Austin State University, PO Box 13040 SFA Station,
Nacogdoches, TX 75962, USA

2 Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs,
CN 06269-1009, USA; sengupta@math.lsu.edu

* Correspondence: becneljj@sfasu.edu; Tel.: +1-936-468-1582; Fax: +1-936-468-1669
† These authors contributed equally to this work.

Academic Editor: Palle E.T. Jorgensen
Received: 31 May 2016; Accepted: 27 September 2016; Published: 9 October 2016

Abstract: We present a scenic but practical guide through nuclear spaces and their dual spaces,
examining useful, unexpected, and often unfamiliar results both for nuclear spaces and their strong
and weak duals.

Keywords: nuclear spaces; topological vector spaces; dual spaces

1. Introduction

The purpose of this paper is to present an exploration of features of the type of nuclear
space structures that arise in applications. Nuclear spaces provide a convenient setting for infinite
dimensional analysis and have been used in mathematical quantum field theory (Glimm and Jaffe [1]
and Rivasseau [2], for instance) and in stochastic analysis (see, for instance, Itô [3] or Chiang et al. [4]).
These applications involve probability measures defined on duals of nuclear spaces.

The theory of nuclear spaces was developed by Grothendieck [5] and since then most traditional
works [6–10] on nuclear spaces have stressed the interplay of the algebraic structure and the topological
structure, such as, for example, in defining and studying tensor products. Our focus is quite different,
the motivation coming from topological questions that are relevant to the study of measures on duals
of nuclear spaces. Firmly avoiding the study of nuclear spaces in generality or explore results in the
greatest generality, we get down to concrete results and questions very quickly. Indeed, our focus is not
on “bare” nuclear spaces in themselves but such spaces with additional structure, specifically a chain
of Hilbert spaces that are present in the context of applications in which we are interested.

We take an unorthodox approach to the presentation of results, stating, and justifying as needed,
facts, some of which are negative answers to questions that arise naturally when working with nuclear
spaces. Most facts are stated in terms of the nuclear space or its dual. However, on occasion, results
are easily developed in a broader setting and are thus presented in more generality. We also present
some unknown results and examples (some of the negative variety) to illustrate important properties
of nuclear spaces and their duals.

2. Topological Vector Spaces

We begin with a summary of some essential notions and facts about topological vector spaces.
We refer to [11] for proofs.

By a topological vector space we mean a real or complex vector space X, equipped with a Hausdorff
topology for which the operations of addition and multiplication are continuous.

A set C in a vector space (topological vector space) is said to be convex if given any x, y ∈ C,
the linear combination tx + (1 − t)y ∈ C for all t ∈ [0, 1]. A locally convex space is a topological
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vector space in which every neighborhood of 0 contains a convex neighborhood of 0. A convex
neighborhood V of 0 is balanced if it closed under multiplication by scalars of magnitude ≤ 1.
Every convex neighborhood of 0 contains a balanced convex neighborhood of 0, and it is the latter
type of neighborhood that is most useful.

2.1. Seminorms from Neighborhoods

Let V is a balanced convex neighborhood of 0 and define ρV by way of

ρV(x) = inf{t > 0 : x ∈ tV}. (1)

Since V is a neighborhood of 0 there is a small enough positive scaling of x that makes it fall
within V, and so there is a large enough scaling of V that includes x; thus ρV(x) < ∞. Since V is
balanced and convex it follows that ρV is a semi-norm:

ρV(x + y) ≤ ρV(x) + ρV(y)

ρV(λx) = |λ|ρV(x)
(2)

for all x, y ∈ X and scalar λ.
A set D ⊂ X is said to be bounded if D lies inside a suitably scaled up version of any given

neighborhood of 0; thus, D is bounded if for any neighborhood V of 0 there is a t > 0 such that D ⊂ tV.
If X is locally convex then D ⊂ X is bounded if and only if ρU(D) is a bounded subset of [0, ∞) for
every convex balanced neighborhood U of 0.

As usual, a set K in the topological vector space X is said to compact if every open cover of K has
a finite subcover. A sequence (xn) in X is said to be Cauchy if the differences xn − xm eventually lie
in any given neighborhood of 0, and X is said to be complete if every Cauchy sequence converges.
Also, X is said to be separable if there exists a countable set Q ⊂ X such that every nonempty open
subset of X contains at least one element of D.

If the topology on X is metrizable then there is a metric that induces the topology, is
translation-invariant, and for which open balls are convex. If, moreover, X is also complete then
such a metric can be chosen for which every metric-Cauchy sequence is convergent.

2.2. Dual Spaces

The dual space X′ of a topological vector space X is the vector space of all continuous linear
functionals on X (these functionals take values in the field of scalars, R or C).

If X is locally convex then the Hahn-Banach theorem guarantees that X′ 6= {0} if X itself is
not zero.

There are several topologies of interest on X′. For now let us note the two extreme ones:

• Using F to denote the field of scalars, the weak topology on X′ is the smallest topology on X′ for
which the evaluation map

X′ → F : x′ 7→ 〈x′, x〉

is continuous for all x ∈ X. This topology consists of all unions of translates of sets of the form

B(D; ε) = {x′ ∈ X′ : sup
x∈D
|〈x′, x〉| < ε}

with D running over finite subsets of X, and ε over (0, ∞).
• The strong topology on X′ consists of all unions of translates of sets of the form

B(D; ε) = {x′ ∈ X′ : sup
x∈D
|〈x′, x〉| < ε}

with D running over all bounded subsets of X and ε over (0, ∞).
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The remainder of this section provides context for the rest of the paper but is not actually used later.

2.3. An Associated Chain of Banach Spaces

It is clear that the set ρ−1
V (0) of vectors of semi-norm zero form a vector subspace of X.

The quotient space
X/ρ−1

V (0)

is a normed linear space, with norm || · ||V induced from ρV :

||a||V = ρV(ã), (3)

where ã denotes any element in X that projects down to a; the value ||a||V is independent of the specific
choice of ã. We denote by XV the Banach space obtained by completion of this space:

XV = X/ρ−1
V (0), (4)

and let pV denote the quotient projection, viewed as a map of X into XV :

pV : X → XV : x 7→ x + ρ−1
V (0). (5)

In some cases of interest ρV itself is a norm, in which case pV is actually an injection into the
completion of X relative to this norm.

Thus for any locally convex topological vector space X there is associated a system of Banach
spaces XU , these arising from convex balanced neighborhoods U of 0 in X.

If U and V are convex, balanced neighborhoods of 0 in X, and U ⊂ V, then

||pV(x)||V = ρV(x) ≤ ρU(x) = ||pU(x)||U ,

and so there is a well-defined contractive linear mapping

pVU : XU → XV (6)

specified uniquely by requiring that it maps pU(x) to pV(x) for all x ∈ X.
A complete, metrizable, locally convex space X is obtainable as a ‘projective limit’ of the Banach

spaces XU and the system of maps pVU . We will not need a general understanding of a projective limit;
for our purposes let us note that if for each convex balanced neighborhood U of 0 in X an element
xU ∈ X is given, such that pVU(xU) = xV whenever U ⊂ V, then there is an element x ∈ X such that
xU = pU(x) for all x ∈ X.

With X as above, let us choose a sequence of neighborhoods Un of 0, with each Un balanced and
convex, such that every neighborhood of 0 contains some Uk and

U1 ⊃ U2 ⊃ · · ·

By (6) we have the chain of spaces

. . . XU3 → XU2 → XU1 , (7)

where the mappings are of the form pUnUn+1 . Thus we can view X as obtained from this sequence
of spaces.

Complete metrizable nuclear spaces arise in the case where the spaces XUn are Hilbert spaces
and the mappings XUn+1 → XUn are all Hilbert-Schmidt, mapping the closed unit ball in XUn+1 into
an ellipsoid in XUn whose semiaxes lengths form a square-summable sequence.
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3. The Nuclear Space Structure

We work with a real or complex infinite dimensional topological vector spaceH equipped with
additional structure as we now describe. We assume that there is a sequence of inner-products 〈·, ·〉p for
p ∈ {0, 1, 2, 3, ...}, onH such that

|| · ||0 ≤ || · ||1 ≤ · · · (8)

The completion ofH in the norm || · ||0 is denoted H0, and inside this Hilbert space the completion
ofH with respect to || · ||p is a dense subspace of H0 denoted by Hp. We assume that H0 is separable,
and thatH is the intersection of all the spaces Hp. Thus,

H =
∞⋂

p=0
Hp ⊂ · · · ⊂ H2 ⊂ H1 ⊂ H0. (9)

(This is a special form of the chain of spaces seen in (7).) Furthermore, we assume that each
inclusion Hp+1 → Hp is a Hilbert-Schmidt operator (such operators are discussed below in Section 3.1).
Then there is an orthonormal basis v1, v2, ... in Hp+1 for which

∞

∑
n=1
||vn||2p < ∞. (10)

We denote by τp is the topology onH given by || · ||p. By (8), the identity map

(H, τp+1)→ (H, τp)

is continuous, for p ∈ {0, 1, 2, ...}, and so

τ0 ⊂ τ1 ⊂ · · · . (11)

The inclusions here are strict because of the Hilbert-Schmidt assumption made above (bearing in
mind thatH is infinite-dimensional).

Because of the relations (11), the union τ of all the topologies τp is also a topology. Thus a subset of
H is open if and only if it is the union of open || · ||p-balls with p running over some subset of {0, 1, 2, . . .}.
This topology makes H a topological vector space. Moreover, H, with this topological vector space
structure, is the projective limit from the inclusions H → Hp. We shall not use any general facts or
theories of projective limits.

We take H as the nuclear space we work with; thus in our discussions the nuclear space comes
equipped with the additional structure of the Hilbert norms || · ||p.

An infinite-dimensional topological vector space is never locally compact. That is, points do have
necessarily have compact neighborhoods. However, a nuclear space is an excellent substitute in the
infinite-dimensional case because it satisfies the Heine-Borel property as we shall see in Fact 14.

3.1. Hilbert-Schmidt Operators

We will use Hilbert-Schmidt operators, and recall here some standard facts about them. For a linear
operator T : H → K between Hilbert spaces, define the Hilbert-Schmidt norm to be

||T||HS
def
=
{

∑
v∈B
||Tv||2

}1/2
< ∞. (12)

where B is some orthonormal basis of H; if H = 0 the Hilbert-Schmidt norm of T is, by definition, 0.
If ||T||HS < ∞ then T is said to be a Hilbert-Schmidt operator. The following facts are well known
(see, for instance, [12–15]):
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Fact 1. For a linear operator T : H → K between Hilbert spaces, the Hilbert-Schmidt norm given in (12) is
independent of the choice of the orthonormal basis B. If T is Hilbert-Schmidt, then:

(i) T is bounded and ||T|| ≤ ||T||HS;
(ii) the adjoint T∗ : K → H is also Hilbert-Schmidt and ||T∗||HS = ||T||HS;

(iii) the image of any closed ball in H under T is a compact subset of K;
(iv) if T is injective then H is separable;
(v) if H 6= 0 then there is an orthonormal basis of H consisting of eigenvectors of T∗T (see [15] (p. 28)).

In the context of (v) consider an orthonormal sequences e1, e2, . . . in H consisting of eigenvectors
of T ∗ T:

T∗Ten = λnen

for all n ≥ 1, where λn are eigenvalues of T ∗ T; then

〈Ten, Ten〉H = 〈en, T∗Ten〉H = λn〈en, en〉H = λn (13)

and, similarly,
〈Ten, Tem〉H = 0 if n 6= m (14)

where 〈·, ·〉H is the inner-product on H.
Some unexpected facts about nuclear spaces are connected with the following simple observation:

Fact 2. Let j : H → K be Hilbert-Schmidt map between Hilbert spaces. Then there is a sequence of points in H
which does not converge in H but whose image by j in K is convergent.

Proof. An orthonormal sequence e1, e2, ... in H is not Cauchy and hence not convergent, but the
sequence

(
j(en)

)
n≥1 converges to 0 in K because ∑∞

n=1 ||j(en)||2K is convergent.

3.2. Dual of a Nuclear Space

A linear functional onH is continuous with respect to || · ||p if and only if it extends to a (unique)
continuous linear functional on Hp. Thus we may and will make the identification

H′p ' H−p
def
= H′p, (15)

where the left side is the vector space of all linear functionals onH that are continuous with respect
to the norm || · ||p. To stress that we treat the dual space H′p as a Hilbert space, i.e., having the strong
topology, we denote it by H−p; the norm on this space can also be obtained as

||x′||−p = sup
x∈Hp ;||x||p≤1

|〈x′, x〉|. (16)

The topological dual ofH is

H′ =
∞⋃

p=0
H′p ⊃ · · · ⊃ H′2 ⊃ H′1 ⊃ H′0 ' H0, (17)

where we are viewing each H′p asH′p.
It is readily checked that the inclusion H′p → H′p+1 is the adjoint of the inclusion map Hp+1 → Hp

and is thus also Hilbert Schmidt.
In addition to the weak and strong topologies, there is also the inductive limit topology on H′,

which is the largest locally convex topology for which the inclusions H′p → H′ are all continuous.

Fact 3. The strong topology and the inductive limit topology onH′ are the same.
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For a proof see [16].

4. Balls and Cubes

In this section, p denotes an element of {0, 1, 2, 3, ...}. We work, as before, with the space H,
equipped with inner-products 〈·, ·〉p, with the Hilbert-Schmidt condition explained after (9).

4.1. Open and Closed Balls

Letting R denote any positive real number, we examine properties of the ‘open’ balls

Bp(R) = {y ∈ Hp : ||y||p < R} (18)

and the “closed” balls
Dp(R) = {y ∈ Hp : ||y||p ≤ R} (19)

for every p ∈ {0, 1, 2, ...}. Any open or closed ball in a normed linear space is clearly bounded.

Fact 4. For all p ∈ {0, 1, 2, ...}, Bp(R) ∩H is open inH.

Proof. The set Bp(R) ∩H is in fact just the open R-ball in the norm || · ||p onH and hence is in τp, and
therefore also in the topology τ onH.

Fact 5. The set Bp(R) ∩H is not bounded in || · ||p+1-norm. It is not bounded inH.

Proof. Let v1, v2, ... be an orthonormal basis of Hp+1 lying insideH (a maximal 〈·, ·〉p+1-orthonormal
set inH, which is dense inside Hp+1, is necessarily also maximal in Hp+1 and is hence an orthonormal
basis of Hp+1). Then, since the inclusion Hp+1 → Hp is Hilbert-Schmidt, the sum ∑∞

n=1 ||vn||2p is finite,
and so the lengths ||vn||p tend to 0. Thus the vectors

R
2
||vn||−1

p vn, (20)

which are all in Bp(R), have 〈·, ·〉p+1-norm going to ∞. In particular, Bp(R) ∩H is not bounded in
Hp+1. Consequently Bp(R) ∩H is also not bounded inH.

The next observation provides some compact sets inH.

Fact 6. The set
⋂

p≥0 Dp(rp) is compact inH, for any r1, r2, ... ∈ (0, ∞).

Proof. A closed ball Dp(r) ∩ H is closed in the topology τp ⊂ τ, and so it is a closed subset of H.
If W is a neighborhood of 0 inH, then there is a q ∈ {0, 1, 2, ..} and an r ∈ (0, ∞) such that Bq(r) ⊂W;
hence,

⋂
p≥0 Dp(rp) ⊂ tBq(r) ⊂ tW if t > rq/r. Thus,

⋂
p≥0 Dp(rp) is both closed and bounded and

hence, by the Heine-Borel property proved below in Fact 14, it is compact inH

We turn to balls in the dual spaces H′p and H′. Unless stated otherwise, we equip each Hilbert
space dual H−p ' H′p with the strong topology, which is the same as the Hilbert-space topology.

Fact 7. The setH′, with any topology making it a topological vector space, contains no non-empty open subset
lying entirely insideH′p, for p ∈ {0, 1, 2, ...}. More generally, in a topological vector space a proper subspace
has empty interior.

Proof. If a proper subspace Y of a topological vector space X contains an open set U with a point y
lying in U, then −y + U is a neighborhood of 0 in X lying entirely inside Y. Then the union of all
multiples of U − y would be all of X, and hence Y would be all of X.
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Fact 8. The set B−1(R) ∩ H0 is open in H0. More generally, B−q(R) ∩ H−p is open in H−p for p < q, with
p, q ∈ {0, 1, 2, ...}.

Proof. The inclusion j : Hq → Hp induces the adjoint j∗ : H−p → H−q which is also continuous.
So (j∗)−1 (B−q(R)

)
is open in H−p. Identifying the dual spaces H−p and H′p ⊂ H′, the map j∗ :

H′p → H′q is just the inclusion map. Thus (j∗)−1 (B−q(R)
)

is the part of the ball B−1(R) that lies inside
H−p; that is, (j∗)−1 (B−q(R)

)
= B−q(R) ∩ H−p, which is thus open in H−p.

Fact 9. The set B0(R) is not open in H−1 in the strong (Hilbert) topology. More generally, B−p(R) is not
strongly open in H−q for p, q ∈ {0, 1, 2, ...} with p < q.

Proof. Note that H−p is a proper subspace of H−q for any p < q by (17). By Fact 7, H−p must have
an empty interior in H−q. Since B−p(R) ⊂ H−p, B−p(R) must also have an empty interior in H−q.
Thus B−p(R) is not open in H−q.

Fact 10. The set D−p(R) is weakly, and hence also strongly, closed in H′. If p, q ∈ {0, 1, 2, ...}, with q > p,
and R ∈ (0, ∞), then D−p(R) is compact in the Hilbert-space H′q. Moreover, D−p(R) is strongly, and hence
weakly, compact as well as sequentially compact inH′.

Proof. First, since ‖ f ‖−p = supx∈Hp ,‖x‖p≤1 |〈 f , x〉| we have

D−p(R) =
⋂

x∈Hp ,‖x‖p≤1

{ f ∈ H′ ; |〈 f , x〉| ≤ R}.

Thus D−p(R) is the the intersection of weakly closed sets and is thus weakly closed. It follows
that D−p(R) is also strongly closed inH′.

The inclusion map Hp+1 → Hp being Hilbert-Schmidt, so is the adjoint inclusion H−p → H−(p+1),
and thus D−p(R) is compact inside H′p+1 with the strong (Hilbert-space) topology. By continuity of the
inclusion map H′q → H′ it follows that D−p(R) is compact in H′q with respect to the strong topology.

Continuity of the inclusion map H′p+1 → H′ also implies that D−p(R) is compact in H′ with
respect to the strong topology.

Since D−p(R) is compact in the metric space H′q it is sequentially compact in H′q, i.e., any sequence
on D−p(R) has a subsequence which is convergent in H′q. From continuity of the inclusion H′q → H′
it follows that such a subsequence also converges in H′. Thus, D−p(R) is strongly, and hence also
weakly, sequentially compact inH′.

4.2. Cubes

We use the the term “cube” for what might more properly be called a “box” in a linear space,
bounded by “walls”. For the following observation about small closed cubes with nonempty interior
we focus on a nuclear space H for which there is an orthonormal basis (en)n≥1 of H0, the vectors of
which all lie inH and are orthogonal within each Hn, with 1 ≤ ||en||p = ||en||p1 for all n ≥ 1 and p ≥ 0.
This is the structure in many applications, including the Schwartz space (see Section 8).

Fact 11. Suppose e1, e2, ... is an orthonormal basis of H0 which lies inH, and assume that the vectors λ
−p
n en

form an orthonormal basis of Hp, where λn = ||en||1. Assume also that

1 ≤ λ1 < λ2 < · · · and
∞

∑
n=1

λ−2
n < ∞.
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Let C be the closed cube inH′ given by

C = {x′ ∈ H′ : |〈x′, en〉| ≤ λn
n for all n ∈ {1, 2, 3, ...}}.

Then C contains a strong neighborhood of 0 and hence is not compact. However, C ∩ F is compact for every
finite-dimensional subspace of H0.

Proof. Let x′ ∈ B−p(εp), for some p ∈ {0, 1, 2, 3, ...}, and εp > 0. Then, for every n,

|〈x′, en〉| ≤ εp||en||p.

To make this ≤ λn
n, we should take

εp ≤ ||en||−1
p λn

n = λ
n−p
n ,

and this should hold for all n ∈ {1, 2, 3, ...}. Thus, we could take ε0 = 1, and, for p ∈ {1, 2, 3, ...}:

εp = min{λ1−p
1 , λ

2−p
2 , ..., λ

p−p
p︸ ︷︷ ︸
1

},

wherein we have dropped all the later terms λ
n−p
n with n > p, as these are all ≥ 1. Thus, with this

choice of εp, the cube

C = {x′ ∈ H′ : |〈x′, en〉| ≤ λn
n for all n ∈ {1, 2, 3, ...}}

contains each open ball B−p(εp) and hence also the convex hull of their union, which is a neighborhood
of 0 in the inductive limit topology (see [6], Chapter V, Section 2).

Now consider a finite-dimensional subspace F of H0 ' H′0 ⊂ H′, and v′ a point in F ∩ C. Then

|ên(v′)| ≤ λn
n

for all n ∈ {1, 2, 3, ...}. Let us assume, for the moment, that there is an orthonormal basis f1, ..., fd of F ⊂ H0

and a fixed r ∈ {1, 2, 3, ...} such that each 〈 f j, ·〉0 on F is a linear combination of the functionals ê1, ..., êr, say

〈 f j, ·〉0 =
r

∑
n=1

ajn ên.

Then

|〈 f j, v′〉| ≤ Rj
def
=

r

∑
n=1
|ajn|λn

n < ∞.

Hence,
||v′||20 ≤ R2

1 + · · ·+ R2
d < ∞.

This shows that C ∩ F is a bounded subset of F. Since C is weakly closed and so is any
finite-dimensional subspace, C ∩ F is weakly closed in H′ and hence weakly closed in the induced
topology on F; but on the finite-dimensional subspace F there is only one topological vector space
structure, and so C ∩ F is closed. Being closed and bounded in F, it is compact.

It remains to prove the algebraic statement assumed earlier. Suppose that the algebraic linear
span of the functionals ên on F is not the entire dual F∗ of F; then they span a proper subspace of F∗

and hence there is a non-zero vector f ∈ F on which they all vanish, but this would then be a vector in
H0 whose inner-product with every en is 0 and hence f would have to be 0. Thus the algebraic linear
span of the functionals ên on F is the entire dual F∗, and so, in particular, any element of F∗ is a finite
linear combination of the functionals ên. This establishes the assumption made earlier.
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5. Facts about the Nuclear Space Topology

We work with an infinite-dimensional nuclear space H with structure as detailed in Section 3.
While there are some treacherous features, such as the one in Fact 12, a nuclear space has some very
convenient properties that make them almost as good as finite-dimensional spaces.

Fact 12. There is no non-empty bounded open set inH.

Proof. Suppose U is a bounded open set inH containing some point y. Then U− y is a bounded open
neighborhood of 0 in H and so contains some ball Bp(R) ∩ H, with p ∈ {0, 1, 2, ...}. By Fact 5 this
is impossible.

Fact 13. The topology onH is metrizable but not normable.

Proof. If there were a norm then the unit ball in the norm would be a bounded neighborhood of 0,
contradicting Fact 12. The translation-invariant metric onH given by

d(x, y) =
∞

∑
p=0

2−p min{1, ||x− y||p} (21)

induces the topology onH.

One immediate consequence of the preceding observations is that an infinite dimensional Banach
space is not a nuclear space.

If f : X → Y is a continuous linear map between topological vector spaces and B is a bounded
subset of X then f (B) is a bounded subset of Y, for if V is a neighborhood of 0 in Y then B ⊂ t f−1(V) =

f−1(tV) for some scalar t and hence f (B) ⊂ tV. This observation is used to prove the following useful
fact about nuclear spaces.

Fact 14. The nuclear spaceH has the Heine-Borel property: every closed and bounded set is compact.

Proof. Let B be a closed and bounded subset of H. Take any p ∈ {0, 1, 2, ..}. Since the inclusion
H → Hp+1 is continuous, B is bounded in Hp+1. Since the inclusion Hp+1 → Hp is Hilbert-Schmidt it
follows that B, as a subset of Hp, is contained in a compact set. Let (xn)n≥1 be a sequence of points
in B. Then there is a subsequence (x(p))n≥1 that converges in Hp. Applying the Cantor process of
extracting repeated subsequences, there is a subsequence (x′n)n≥1 that is convergent in Hp for every
p ∈ {0, 1, 2, ...}. By continuity of the inclusions Hp+1 → Hp it follows that the limit is the same for
every p, i.e., there is a point y ∈ ⋂p≥0 Hp = H, such that the subsequence (x′n) converges to y in
all the Hp. If V is a neighborhood of 0 in H then there is a p ∈ {0, 1, 2, ...} and an ε > 0 such that
BHp (ε) = {x ∈ H : ||x||p < ε} ⊂ V. Since x′n → y in Hp we have x′n − y ∈ BHp (ε) ⊂ V for large n,
and so x′n → y in H. Thus, a closed and bounded subset of H is sequentially compact; since H is
metrizable, sequential compactness is equivalent to compactness for any subset ofH.

6. Facts about the Dual Topologies

We turn now to the dual of an infinite-dimensional nuclear space H, and continue with the
notation explained earlier in the context of Section 3.

Let us recall [11] the Banach-Steinhaus theorem (uniform boundedness principle): If S is a non-empty
set of continuous linear functionals on a complete, metrizable, topological vector space X, and if, for
each x ∈ X the set { f (x) : f ∈ S} is bounded, then for every neighborhood W of 0 in the scalars, there
is a neighborhood U of 0 in X such that f (U) ⊂W for all f ∈ S. As consequence, if f1, f2, ... ∈ X′ are
such that f (x) = limn→∞ fn(x) exists for all x ∈ X then f is in X′.
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The following facts in this section are standard and can be found in any of [5–8,10], among
other places.

Fact 15. If X is a complete, metrizable topological vector space, then the dual space X′ is complete with respect
to both strong and weak topologies. In particular, the dualH′ of a nuclear spaceH is complete with respect to
both the strong and weak topologies.

Proof. Let A be a non-empty collection of subsets of X, closed under finite unions and whose union is
all of X. Let τA be the topology on X whose open sets are unions of translates of sets of the form

B(A; ε) = {x′ ∈ X′ : sup
x∈A
|〈x′, x〉| < ε}

with A running over A and ε over (0, ∞). If A is the set of all finite subsets of X then τA is the weak
topology; if A is the set of all bounded subsets of X then τA is the strong topology.

Suppose ( fn)n≥1 is Cauchy sequence in X′ for the topology τA. This means that, for any A ∈ A,
the sequence of functions fn|A is uniformly Cauchy, and hence uniformly convergent, for every A ∈ A.
Let f (x) = limn→∞ fn(x). By Banach-Steinhaus, f is continuous. A τA-neighborhood U of f contains
a set of the form f + B(A; ε), and the uniform convergence fn → f on A implies that fn − f ∈ B(A; ε)

for large n, and so fn − f ∈ U for large n. Thus, fn → f in τA.

Fact 16. Any weakly open neighborhood of 0 in the dual of an infinite dimensional locally convex topological
vector space contains an infinite-dimensional subspace.

Proof. If Y is a vector space over a field F, and x̂1, ..., x̂N : Y → F are linear functionals, then
the mapping

Y → FN : y 7→
(
x̂1(y), ..., x̂N(y)

)
has kernel infinite-dimensional if Y is infinite-dimensional. We apply this to Y = X′. A weakly open
neighborhood of 0 in X′ contains contains a set of the form

B = { f ∈ X′ : x̂1( f ) ∈W1, ..., x̂N( f ) ∈WN},

for some x1, ..., xN ∈ X, and open neighborhoods W1, ..., WN of 0 in the scalars, and so B contains the
ker(x̂1, ..., x̂N).

The weak dual of an infinite-dimensional Banach space is not metrizable. In a similar vein there is
the following negative result:

Fact 17. The weak topology and the strong topology onH′ are not metrizable.

Proof. Consider the nuclear space H with topology generated by norms || · ||p for p ∈ {0, 1, 2, ...}
as in Section 3. Let Dp(R) be the subset of H given by the closed ball of radius R, center 0, for the
|| · ||p-norm, and let D′p(R) be the set of all linear functionals f in H′ which map Dp(1) into scalars
of magnitude ≤ R. Each set D′p(R), being the intersection of weakly closed sets, is a weakly closed
set, and hence also strongly closed, in H′. The union of the sets D′p(n) with p ∈ {0, 1, 2, ...} and
n ∈ {1, 2, ...} is all ofH′. Now D′p(n) lies in the proper subspace H−p ofH′, and so has empty interior
in any topology on H′ which makes H′ a topological vector space by Fact 7. Thus, H′, which is
a complete topological vector space with respect to both weak and strong topologies, is the countable
union of nowhere dense sets, and hence the weak and strong topologies onH′ are not metrizable.

In a sense, sequences do not detect the difference between the weak and strong topologies on the
dual space:
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Fact 18. A sequence inH′ is weakly convergent if and only if it is strongly convergent.

Proof. Since the weak topology is contained in the strong topology, strong convergence implies weak
convergence. For the converse, let (x′n)n≥1 be a sequence in the dual H′ of the nuclear space H,
converging weakly to x′ ∈ H′. By Banach-Steinhaus, {x′1, x′2, x′3, ...} is a uniformly continuous set of
functions onH and hence, as may be checked, the convergence x′n → x′ is uniform on compact subsets
ofH. The closure D of the bounded set D is bounded (see Rudin [11] (Theorem 1.13(f))) and hence also
compact by the Heine-Borel property for nuclear spaces Fact 14. So the sequence (x′n)≥1 is uniformly
convergent on D, and hence also on D, and therefore it is strongly convergent as a sequence inH′.

6.1. Bounded and Compact Sets in the Dual of Nuclear Space

We now examine bounded and compact sets in H′. In particular, we will see that weakly and
strongly bounded sets are one in the same. The same goes for weakly and strongly compact sets.

Fact 19. A set B ∈ H′ is strongly bounded if and only if B is bounded on each bounded set inH.

Proof. Let B ⊂ H′ be strongly bounded and let D be a bounded set ofH. Consider the local base set
ofH′ (for the strong topology) given by

B(D; 1) = { f ∈ H′ ; sup
x∈D
|〈 f , x〉| < 1}.

Since B is bounded there exists an α > 0 such that B ⊂ αB(D; 1) or, equivalently, 1
α B ⊂ B(D; 1) .

Then for any f ∈ B we have that f
α ∈ B(D; 1). Thus |〈 f , x〉| ≤ α for any x ∈ D. Therefore B is bounded

on the set D.
Suppose B is bounded on each bounded set D ⊂ H. Consider the open set B(D; ε) containing

0 in H′. By hypothesis, sup f∈B,x∈D |〈 f , x〉| = M < ∞. So, for any f ∈ B we have that |〈 ε f
M+1 , x〉| < ε

when x ∈ D. Therefore ε
M+1 B ⊂ B(D; 1) or, equivalently, B ⊂ M+1

ε B(D; ε). Hence B is bounded.

Fact 20. A set B in H′ is strongly bounded if and only if there exists p such that B is bounded on
BHp ( 1

p ) = {x ∈ H : ‖x‖p < 1
p}.

Proof. Consider the local base forH given by

BH1 (1) ⊃ BH2 ( 1
2 ) ⊃ BH3 ( 1

3 ) ⊃ · · · .

By contradiction suppose that B is not bounded on BHp ( 1
p ) for any integer p > 0. Then for every

p there exists xp ∈ BHp ( 1
p ) and a fp ∈ B such that |〈 fp, xp〉| > p. By construction, the sequence

(xp)∞
p=1 goes to 0 in H and thus must be bounded. So there must exists a positive number M such

that |〈 f , xp〉| ≤ M for all f ∈ B and all p ∈ {1, 2, 3, · · · }. This contradicts the way by which fp and xp

were chosen.
Conversely, let B ⊂ H′ be bounded on some BHp ( 1

p ) ⊂ H. Take a bounded set D inH. Then D ⊂
αBHp ( 1

p ) for some α > 0. Thus B is bounded on D and is therefore bounded onH′.

The following result provides us with a way of studying bounded sets inH′ in terms of the norms
‖ · ‖−p on H−p.

Fact 21. A set B ⊂ H′ is strongly bounded if and only if there exists an integer p ≥ 0 such that B ⊂ H−p and
B is bounded in the norm ‖ · ‖−p on H−p.
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Proof. The converse direction is the easier of the two. If B ⊂ H−p and ‖ f ‖−p < M for all f ∈ B, then
B is bounded on Bp(1) and consequently bounded on BHp (1/p). Thus Fact 20 applies to tell us that
B is strongly bounded.

Now for the forward direction: suppose B is a strongly bounded set inH′. Then by Fact 20 there
exists an integer p ≥ 0 such that B is bounded on the set BHp ( 1

p ) = {x ∈ H ; ‖x‖p < 1
p}. That is, there

is an M < ∞ such that |〈 f , x〉| ≤ M for all f ∈ B and all x ∈ BHp ( 1
p ).

Consider the set in Hp given by Bp(
1
p ) = {x ∈ Hp ; ‖x‖p < 1

p}. Since H is dense in Hp we
have that

sup
f∈B,x∈Bp(1/p)

|〈 f , x〉| ≤ M.

From the above we see that for any f ∈ B and any nonzero vector x ∈ Hp we have∣∣∣∣〈 f ,
x

‖x‖p(p + 1)

〉∣∣∣∣ ≤ M.

Therefore ‖ f ‖−p ≤ (p + 1)M for any f ∈ B. Thus for any f ∈ B we have that f ∈ H−p and
‖ f ‖−p ≤ (p + 1)M.

Fact 22. A set B ⊂ H′ is weakly bounded if and only if B is strongly bounded.

Proof. The converse direction is straightforward: Assuming a set B is strongly bounded, then it must
also be weakly bounded since the strong topology onH′ is finer than the weak topology onH′.

For the forward direction, we let B ⊂ H′ be a weakly bounded set. Define the set C ⊂ H
as follows:

C = {x ∈ H ; |〈 f , x〉| ≤ 1 for all f ∈ B} =
⋂
f∈B

{x ∈ H ; |〈 f , x〉| ≤ 1}.

Note that C is the intersection of convex, closed, and balanced sets. Therefore C is also a convex,
closed, and balanced set.

Also note that C is absorbent: Take x ∈ H. Since B is weakly bounded there must exist M > 0
such that B ⊂ MN1(x) where N1(x) = { f ∈ H′ ; |〈 f , x〉| < 1}. For any α satisfying |α| ≥ M we have
that |〈 f , x〉| ≤ M ≤ |α| for all f ∈ B. Hence x

α ∈ C or equivalently x ∈ αC. This gives us that C
is absorbing.

Since C is absorbing we have that H =
⋃∞

n=1 nC. Knowing that H is a complete metric space
(Facts 13 and 15) we can apply the Baire category theorem to see that C is not nowhere dense. Thus the
interior of C, C◦, is not empty. Take x0 ∈ C◦ and a set BHp (ε) = {x ∈ H : ‖x‖p < ε} such that
x0 + BHp (ε) ⊂ C◦. Because C is balanced we have

−x0 − BHp (ε) ⊂ C

and since −BHp (ε) = BHp (ε) we have
−x0 + BHp (ε) ⊂ C.

Now C is convex with −x0 + BHp (ε) ⊂ C and x0 + BHp (ε) ⊂ C. So we must have that the
convex hull of (−x0 + BHp (ε)) ∪ (x0 + BHp (ε)) is contained in C. But this convex hull contains BHp (ε):
Observe, for any x ∈ BHp (ε) we have that

x = 1
2 (x0 + x) + 1

2 (−x0 + x).

Therefore BHp (ε) ⊂ C.
Since B is bounded on C and BHp (ε) ⊂ C we have that B is bounded on BHp (ε) and is thus

strongly bounded.
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Fact 23. A set K ⊂ H′ is weakly compact if and only if K is strongly compact.

Proof. Since the strong topology is finer than the weak topology, this immediately gives us that if K is
strongly compact, then K is weakly compact.

For the other direction suppose K is weakly compact. Then K is weakly bounded. Thus we can
apply Fact 22 to obtain that K is strongly bounded. By Fact 21 there exists an integer p ≥ 0 and a real
number R such that K ⊂ H−p and ‖x‖−p ≤ R for all x in K.

Since K is weakly compact inH′, K is also weakly closed inH′ Therefore, because the inclusion
map is continuous we have i

′−1
p (K) = K is closed in H−p. Also, using that K ⊂ H−p ⊂ H−p−1 we have

i
′−1
p+1(K) = K is closed in H−p−1, where again we use the continuity of the inclusion map.

Because K is bounded in H−p, we get I′p,p+1(K) = K has compact closure in H−p−1. (Here we have
used that the inclusion map from H−p to H−p−1 is Hilbert-Schmidt and is thus a compact operator).
However, we have seen K is closed in H−p−1. Hence K is compact in H−p−1. The continuity of the
inclusion map i′p+1 from H−p−1 toH′ gives us the continuous image i′p+1(K) = K is compact inH′.

6.2. The Dual Space is Sequential

Now we examine the viability of using sequences to study the dual space H′. It turns out that
the topology on the dual spaceH′ does allow us to study topological properties such as closure and
continuity in terms of sequences. We have the following result:

Fact 24. The dual spaceH′, equipped with the strong/inductive limit topology, is a sequential space: if a subset
C ofH′ is such that every convergent sequence in C has limit lying in C then C is closed.

To prove this result we make use of the following Lemma about Hilbert spaces that is fairly
straightforward to prove.

Lemma 1. Let H be a Hilbert space. Suppose K is a compact set and C is a closed set in H. There exists ε > 0
and corresponding closed (or open) ball D(ε) = {x ∈ H ; ‖x‖ ≤ ε} such that

(K + D(ε)) ∩ C = ∅.

Proof. (of Fact 24) Suppose C is sequentially closed in H′. We show C is closed by selecting a point
outside of C and showing that this point is also not in the closure of C. Let f /∈ C. Because f ∈ H′,
f ∈ H−p for some integer p ≥ 0. Since C is sequentially closed, then using the inclusion map
i′p : H−p → H′ we have i

′−1
p (C) is sequentially closed in H−p. Thus i

′−1
p (C) is closed in the Hilbert

space H−p. Since f /∈ i
′−1
p (C) there exists εp > 0 such that

i
′−1
p (C) ∩ ( f + D−p(εp)) = ∅

where D−p(εp) = { f ∈ H−p ; ‖ f ‖−p ≤ εp}.
Now consider the inclusion map I′p,p+1 : H−p → H−p−1. Then I′p,p+1(D−p(εp)) is closed and

compact in H−p−1 (see Fact 8 ).
By Lemma 1 there exists D−p−1(εp+1) = { f ∈ H−p−1 ; ‖ f ‖−p−1 ≤ εp+1} such that

( f + I′p,p+1(D−p(εp)) + D−p−1(εp+1)) ∩ i
′−1
−p−1(C) = ∅.

Repeating this process we obtain {εp+k}∞
k=1 such that(

f + I′p,p+k(D−p(εp)) + I′p,p+k(D−p−1(εp+1)) + · · ·+ D−p−k(εp+k)
)
∩ i
′−1
−p−1(C) = ∅.
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Consider the set N given by

N =
∞⋃

k=0

I′p,p+k(D−p(εp)) + I′p,p+k(D−p−1(εp+1)) + · · ·+ D−p−k(εp+k).

We now show

1. N is convex:

Take f , g ∈ N. Recalling that H−p ⊂ H−q when q ≥ p we have the union of sets making up N is
an increasing union. Thus there exists a k such that

f , g ∈ I′p,p+k(D−p(εp)) + I′p,p+k(D−p−1(εp+1)) + · · ·+ D−p−k(εp+k).

Note that the above is a sum of convex sets and is consequently convex. Hence, for any α ∈ [0, 1],
we have α f + (1− α)g is also in I′p,p+k(D−p(εp)) + I′p,p+k(D−p−1(εp+1)) + · · · + D−p−k(εp+k)

and therefore also in N. So N is convex.
2. N contains

⋃∞
q=0 B−q(εq) where εq = εp for q ≤ p:

For f ∈ B−q(εq) we have f ∈ H′ and ‖ f ‖−q ≤ εq. When q > p we have q = p + k for some
positive integer k and thus Bq(εq) ⊂ D−p−k(εp+k) ⊂ N. For q ≤ p we have B−q(εq) ⊂ D−q(εq) ⊂
D−p(εp) ⊂ N using that εq = εp and ‖ · ‖−p ≤ ‖ · ‖−q.

Therefore N contains the convex hull of
⋃∞

q=0 Bq(εq) (where εq = εp for q ≤ p), which is a
neighborhood of 0 in the inductive limit topology.

By construction we must have ( f + N) ∩ C = ∅. Thus f is not a member of the closure of C.
Hence C is closed.

An argument very similar to the above can be used to demonstrate that H′ is a k-space. That is,
C ⊂ H′ is closed if and only if K ∩ C is compact for any compact set K ⊂ H′.

6.3. Separability

We now examine the separability of the dual spaceH′.

Fact 25. The spaceH′ is separable whenH′ is endowed with the strong, inductive limit, or weak topology.

Proof. We first need a candidate for a countable dense set. Since H′ = ⋃∞
p=0 H−p and each H−p is

a separable Hilbert space we let Qp be a countable dense subset of H−p and form the countable set

Q =
∞⋃

p=0
Qp.

We will show Q is dense inH′.
Take f ∈ H′. Then f ∈ H−p for some p. Let U be an open set containing f in H′ (H′ can be

endowed with the weak, strong, or inductive limit topology). Then − f + U is an open set about 0.
We know the inclusion maps from i′p : H−p → H′ are continuous when H′ has the weak, strong,

or inductive limit topology. Therefore i
′−1
p (− f + U) is an open set about 0 in H−p and as such there

exists an ε > 0 such that
B−p(ε) ⊂ i

′−1
p (− f + U) = − f + i

′−1
p (U)

or equivalently
f + B−p(ε) ⊂ i

′−1
p (U).

Since Qp is dense in H−p there exists fp ∈ Qp such that

‖ fp − f ‖−p < ε.



Mathematics 2016, 4, 61 15 of 19

That is, fp ∈ f + B−p(ε) ⊂ i
′−1
p (U). Thus fp ∈ U showing that Q is dense in H′ and H′

is separable.

6.4. First Countability (Lack Thereof)

A topological space is said to be first countable if each point has countable local base. It is said to
be second countable if the topology has a countable base. In this section we seek to determine if the dual
spaceH′ is first countable. From previous results we knowH′ is separable (Fact 25). Also, we saw that
H′ can be constructed as the inductive limit of separable Hilbert spaces, which are first (and second)
countable. Unfortunately though,H′ does not retain the property of first countability.

Fact 26. The dual spaceH′ is not first countable.

Proof. Assume, by contradiction, thatH′ is first countable. By Fact 25H′ is separable. The following
Lemma tells us that under these assumptionsH′ must be second countable. This lemma, along with
its proof, is a standard result that can be found in many treatments of topological vector spaces,
including [5–8,10].

Lemma 2. If X is a separable first countable topological vector space, then X is second countable.

Proof. Let {xn}∞
n=1 be a countable dense subset of X and let {Bk}∞

k=1 be a balanced countable local
base. We assert that the collection {xn + Bk}∞

n,k=1 is a countable base for the topology on X. To see this
let U be an nonempty open set in X with x ∈ U. Since {Bk}∞

k=1 is a base, there exists an integer k > 0
such that x + Bk ∈ U. Using continuity of addition there exists an integer k′ > 0 such that

Bk′ + Bk′ ⊂ Bk. (22)

Consider the open set about x given by x + Bk′ . Because {xn}∞
n=1 is a dense set there exists an

integer n > 0 such that xn ∈ x + Bk′ .
We first show that x ∈ xn + Bk′ . Since xn ∈ x + Bk′ we have xn − x ∈ Bk′ . Since Bk′ is balanced we

must also have x− xn ∈ Bk′ . Thus x ∈ xn + Bk′ .
Now we demonstrate that xn + Bk′ ⊂ x + Bk ⊂ U. Take z = xn + v where v ∈ Bk′ . Then write z as

z = xn + (x− xn) + v.

Noting that x− xn ∈ Bk′ and v ∈ Bk′ gives us that z ∈ xn + Bk′ + Bk′ ⊂ xn + Bk using (22).

Under the assumption thatH′ is first countable, we have established thatH′ is second countable.
Also, we recall thatH′ is a Hausdorff topological vector space and thus regular in the strong or weak
topology. Therefore Urysohn’s Metrization theorem [17] tells us H′ is metrizable. This contradicts
Fact 17.

Recall that in Fact 24 we saw the dual space is a sequential space. Thus,H′ is a (somewhat rare)
example of a topological space that is sequential but not first countable.

7. Continuous Functions

Linear functionals automatically stand a better chance of having continuity properties in locally
convex spaces because they map convex sets to convex sets. In this section we look at some examples
of nonlinear functions.

Fact 27. If X is an infinite-dimensional topological vector space (such asH′) then the only continuous function
on X having compact support is 0.
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Proof. This is because any compact set in X has empty interior, since X, being infinite-dimensional, is
not locally compact.

Fact 28. There is a weakly continuous function S on H′ which satisfies 0 < S ≤ 1, and S equals 1 exactly
on D−1(R).

Proof. Let
sN = ê2

1 + · · ·+ ê2
N ,

which is clearly weakly continuous. Then

min{1, eR2−sN}

is also weakly continuous, lies in (0, 1], and is equal to 1 if and only if sN ≥ R2. Then each finite sum

m

∑
N=1

min{1, eR2−sN}
2N

is weakly continuous, has values in (0, 1], and has maximum possible value 1− 2−m exactly when sm

is ≤ R2. Hence the uniform limit

S =
∞

∑
N=1

min{1, eR2−sN}
2N

is a weakly continuous function, with values in (0, 1], and is equal to 1 if and only if all sN are ≤ R2,
i.e., on D−1(R).

For the following recall Fact 11. We assume that there are vectors e1, e2, ... ∈ H which
form an orthonormal basis of H0 and, moreover, λ

−p
n en form an orthonormal basis of Hp, for all

p ∈ {0, 1, 2, ...}, where
λn = ||en||1.

We require monotonicity and a Hilbert-Schmidt condition

1 ≤ λ1 < λ2 < · · · and
∞

∑
n=1

λ−2
n < ∞.

Fact 29. For the cube C in Fact 11, with assumptions as stated in Fact 11, the function f given onH′ by

f (x) =

{
infn≥1{λn

n − |〈x, en〉|} for x ∈ C

0 for x /∈ C
(23)

is continuous but not weakly continuous.

Proof. Suppose {x(n)} ⊂ H′ and x(n) → x where x is on the ‘boundary’ of the cube, i.e., |〈x, ek0〉| = λk0
k0

for some k0. Since x(n) → x inH′ we have x(n) → x in H−p for some p ∈ {0, 1, 2, ...}. Hence |〈x(n), ek〉| →
|〈x, ek〉| = λk

k.
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Now

| f (x(n))− f (x)| = | f (x(n))− 0|

= inf
k

λk
k − |〈x

(n), ek〉|

≤ λk0
k0
− |〈x(n), ek0〉|, for the k0 mentioned above,

= λk0
k0
− |〈x(n), ek0〉|

and the last term goes to 0 as n→ ∞.
Now consider x(n) → x /∈ C in H′. Then for some N we have for all n > N, x(n) is outside the

cube. Thus f (x(n)) = 0 for all n > N and hence f (x(n))→ f (x) = 0 as n→ ∞.
Finally, consider x(n) → x ∈ C inH′. Then x(n) → x in H−p for some p. In particular,

M = sup
n
|x(n)|2−p < ∞. (24)

Lemma 3. There exists an N > 0 such that for any y ∈ H−p with |y|2−p ≤ M we have

inf
k≥1
{λk

k − 〈y, ek〉} = min{λ1 − |〈y, e1〉|, λ2
2 − |〈y, e2〉|, . . . , λN

N − |〈y, eN〉|}. (25)

Proof. Since |y|2−p ≤ M we have,

|y|2−p = ∑
k

λ
−2p
k |〈y, ek〉|2 ≤ M

and consequently
|〈y, ek〉| ≤ λ

p
k M for all k ∈ {1, 2, 3, ...}.

Therefore
λk

k − |〈y, ek〉| ≥ λk
k − λ

p
k M.

Since p and M are fixed, there must be an integer N such that for all k ≥ N

λk
k − |〈y, ek〉| ≥ λk

k − λ
p
k M ≥ λ1,

because
λk

k − λ
p
k M = λ

p
k (λ

k−p
k −M)→ ∞ as k→ ∞.

Hence, the infimum is realized in the first N terms:

inf
k≥1
{λk

k − |〈y, ek〉|} = min{λ1 − |〈y, e1〉|, λ2
2 − |〈y, e2〉|, . . . , λN

N − |〈y, eN〉|}.

Returning to the proof for Fact 28, by Lemma 3 to x(n) → x we have

lim
n→∞

f (x(n)) = lim
n→∞

min{λ1 − |〈x(n), e1〉|, λ2
2 − |〈x(n), e2〉|, . . . , λN

N − |〈x(n), eN〉|}

= min{λ1 − |〈x, e1〉|, λ2
2 − |〈x, e2〉|, . . . , λN

N − |〈x, eN〉|}
= f (x) (by the Lemma).

Thus, f is sequentially continuous and hence continuous.
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8. Schwartz Space

The paper [18] examines the Schwartz space of test functions and the dual space of distributions.
There are, of course, many other references for the Schwartz space, including, but not limited
to [15,19–21]. The Schwartz space is perhaps the best example of a nuclear space to which all the results
of this article apply. In particular, the Schwartz space satisfies the structure introduced in Fact 11.
In this section we briefly provide an overview of the Schwartz space from [18].

We denote the Schwartz space by S(R) and define it as the space of real-valued infinitely
differentiable rapidly decreasing functions on R. However, here we outline how to reconstruct the
Schwartz space as a nuclear space arising from L2(R) and the number operator N = − d2

dx2 +
x2

4 −
1
2 .

In [18] we see that orthonormal basis for L2(R) is formed by the functions

φn(x) = (−1)n 1√
n!
(2π)−1/4ex2/4 dne−x2/2

dxn for n = 0, 1, 2, . . . .

which are eigenfunctions of N. In particular,

Nφn = nφn for n = 0, 1, 2, . . . . (26)

Using this orthonormal basis and the operator N, an inner-product can be defined for any p ≥ 0

〈 f , g〉p = 〈(N + 1)p f , (N + 1)pg〉L2 =
∞

∑
n=0

(n + 1)2p〈 f , φn〉L2〈g, φn〉L2 (27)

for f , g ∈ S(R). (Note: N + 1 is a Hilbert-Schmidt operator.) Using ‖ · ‖p to denote the norm
corresponding to the above inner product we complete S(R) with respect to these norms to form the
spaces Sp(R) = { f ∈ L2(R) ; ‖ f ‖p < ∞}. These observations give us

‖ · ‖L2 = || · ||0 ≤ || · ||1 ≤ · · · (28)

and

S(R) =
∞⋂

p=0
Sp(R) ⊂ · · · ⊂ S2(R) ⊂ S1(R) ⊂ L2(R). (29)

just as in (8) and (9).
Also, based on the equation in (27) and (26), {φn}∞

n=0 forms an orthogonal basis for each Sp(R).
In particular the structure introduced in Fact 11 is satisfied with λn = n + 1. Hence all of the results of
this article can be applied to the Schwartz space and its dual space.

9. Closing Remarks

We have presented an overview of the theory of nuclear spaces in a form that is close to the needs
of applications. This included new results along with some previously unknown results and examples.
The interested reader can refer to [16] for more on this subject in the same vein, including a discussion
of σ-algebras formed on these spaces.

In Section 8 we explored one application of nuclear spaces. The interested reader is encouraged to
explore other related areas, including white noise distribution theory [22–24], Brownian motion [25],
Kondratiev’s spaces of stochastic distribution [26], and their use in stochastic processes and stochastic
linear systems [27,28], among others.

Acknowledgments: A first version of this paper was written when Becnel was supported by NSA grant
H98230-10-1-0182. Sengupta’s research is supported by NSA grants H98230-13-1-0210 and H98230-15-1-0254.
Also, the authors are very grateful to the three referees for their remarks and comments.

Author Contributions: This work is a collaboration between the authors Jeremy Becnel and Ambar Sengupta.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2016, 4, 61 19 of 19

References

1. Glimm, J.; Jaffe, A. Quantum Physics: A Functional Integral Point of View; Springer: New York, NY, USA, 1987.
2. Rivasseau, V. From Peturbative to Constructive Renormalization; Princeton University Press: Princeton, NJ,

USA, 1991.
3. Itô, K. Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces; Society for Industrial and

Applied Mathematics: Philadelphia, PA, USA, 1948.
4. Chiang, T.S.; Kallianpur, G.; Sundar, P. Propagation of Chaos and the McKean-Vlasov Equation in Duals of

Nuclear Spaces. Appl. Math. Optim. 1991, 24, 55–83.
5. Grothendieck, A. Topological Vector Spaces (Notes on Mathematics and Its Applicatons); Gordon and Breach:

New York, NY, USA, 1973.
6. Robertson, A.; Robertson, W. Topological Vector Spaces; Cambridge University Press: London, UK, 1964.
7. Schäfer, H.H. Topological Vector Spaces; The Macmillan Company: New York, NY, USA, 1966.
8. Köthe, G. Topological Vector Spaces I; Springer: Berlin, Germany, 1969; Volume 1.
9. Wilansky, A. Modern Methods in Topological Vector Spaces; McGraw-Hill: New York, NY, USA, 1978.
10. Pietsch, A. Nuclear Locally Convex Spaces; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1965.
11. Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991.
12. Driver, B. Analysis Tools with Applications; Springer: Berlin, Germany, 2003.
13. Conway, J.B. A Course in Operator Theory; Springer: Berlin, Germany, 2000.
14. Murphy, G.J. C*-Algebras and Operator Theory; Harcourt Brace Jovanovich: Boston, MA, USA, 1990.
15. Gel’fand, I.M.; Vilenkin, N.Y. Generalized Functions: Application of Harmonic Analysis; Academic Press:

New York, NY, USA, 1964; Volume 4.
16. Becnel, J.J. Equivalence of Topologies and Borel Fields for Countably—Hilbert Spaces. Proc. AMS 2006, 134,

581–590.
17. Munkres, J.R. Topology, 2nd ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2000.
18. Becnel, J.J.; Sengupta, A.N. The Schwartz Space: Tools for Quantum Theory and Infinite Dimensional

Analysis. Mathematics 2015, 3, 527–562.
19. Gel’fand, I.M.; Vilenkin, N.Y. Generalized Functions: Spaces of Fundamental and Generalized Functions;

Academic Press: New York, NY, USA, 1968; Volume 2.
20. Rudin, W. Functional Analysis; McGraw-Hill: New York, NY, USA, 1987.
21. Simon, B. Distributions and Their Hermite Expansions. J. Math. Phys. 1971, 12, 140–148.
22. Kuo, H.H. White Noise Distribution Theory; Probability and Stochastic Series; CRC Press Inc.: New York, NY,

USA, 1996.
23. Obata, N. White Noise Calculus and Fock Space; Lecture Notes in Mathematics; Springer: New York, NY,

USA, 1994.
24. Hida, T.; Kuo, H.H.; Potthoff, J.; Streit, L. White Noise: An Infinite Dimensional Calculus; Kluwer Academic

Publishers: Norwell, MA, USA, 1993.
25. Hida, T. Analysis of Brownian Functional; Carleton Mathematical Lecture Notes; Carleton University: Ottawa,

ON, Canada, 1975.
26. Berezanskiı̆, I.; Kondratiev, I. Spectral Methods in Infinite-Dimensional Analysis; Mathematical Physics and

Applied Mathematics; Kluwer Academic: Boston, MA, USA, 1995.
27. Alpay, D.; Salomon, G. Non-commutative stochastic distributions and applications to linear systems theory.

Stoch. Process. Appl. 2013, 123, 2303–2322.
28. Alpay, D.; Levanony, D. Linear Stochastic Systems: A White Noise Approach. Acta Appl. Math. 2010, 110,

545–572.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Topological Vector Spaces
	Seminorms from Neighborhoods
	Dual Spaces
	An Associated Chain of Banach Spaces

	The Nuclear Space Structure
	Hilbert-Schmidt Operators
	Dual of a Nuclear Space

	Balls and Cubes
	Open and Closed Balls
	Cubes

	Facts about the Nuclear Space Topology 
	Facts about the Dual Topologies 
	Bounded and Compact Sets in the Dual of Nuclear Space
	The Dual Space is Sequential
	Separability
	First Countability (Lack Thereof)

	Continuous Functions
	Schwartz Space
	Closing Remarks

