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Abstract: In this paper we find the Noether symmetries of the Lagrangian of cylindrically symmetric
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1. Introduction

Symmetries play an important role in different areas of research, including differential equations
and general relativity. The Einstein field equations (EFE),

1
Ryy — ERgW =Ty (€))

are the building blocks of the theory of general relativity. These are non-linear partial differential
equations and it is not easy to obtain exact solutions of these equations. Symmetries help a lot in finding
solutions of these equations. These solutions (spacetimes) have been classified by using different
spacetime symmetries [1-7]. Among different spacetime symmetries isometries, the Killing vectors
(KVs) are important becuase they help in understanding the geometric properties of spaces, and, there
is some conserved quantity corresponding to each isometry. It is well known fact that isometries or
KVs are a subset of the Noether symmetries (NS) i.e.,

KVs C NS

This relation shows that the KVs do not lead to all the conserved quantities or the first integrals.
Therefore, it reasonable to look for Noether symmetries of the Lagrangians of spacetimes. Instead of
taking the Lagrangian from—the most general form of the spacetime—and solving a set of partial
differential equations involving unknown metric coefficients, one may adopt an easy approach and
directly look for the NS of Lagrangian of all known spacetimes obtained through classification by KVs
and homotheties given in [7,8]. However, we have adopted here the longer route, so that we also have a
counter check on the spacetimes obtained through the classification by the KVs. Using the Lagrangians
of plane and spherical symmetric static spacetimes, complete lists of Noether symmetries and first
integrals have been obtained [9,10]. Some new solutions have also been found in the cases of plane and
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spherical symmetry. Here, we classify cylindrically symmetric static spacetimes. These spacetimes are
axisymmetric (symmetric about an infinite axis) and translationally symmetric about the given infinite
axis (in our case z axis) and time. The most general form of cylindrically symmetric static space-time
is [11-13].

ds? = e — dr? — et p2de? — M1 g2 )
where b is a constant used to make the dimension of the metric homogeneous. The spacetime metric
is obtained from the metric given in Equation (22.1) of reference [11] by taking A = 0and p — r to
make the coefficient of dr? equal to 1. Also, we take the static case that is all the functions v, y and A
are function of radial coordinate r only, this type of spacetime is given in Equation (22.20) in the same
reference. The ranges of the coordinates are —co <t < 00,0 < ¥ < 00,0 <8 <27rand —oo < z < o0.
By definition, these spacetimes admit the following set of three isometries (minimum number).

0 0 d
Xo—g, X1 == X = =— 3)

2. The Noether Symmetry Governing Equation

A symmetry
ad

0 ; )
ngg—f'ﬂl@, (121,2,71) (4)

is Noether symmetry if it leaves the action
w:/L@f@J%»@ ®)
invariant up to some gauge function A, i.e., under the transformation

§— s +ef(s,x)
= x feyi(s,xh)

2 pen(s, %)
the action (5) takes the form
W:/L@f@jw»m ©)
The variation in the action up to the gauge function is
W—-W= /DA (s,xi (s)) ds )

where L is the Lagrangian, s the independent variable, x' are the dependent variables and %' their
derivatives with respect to s and D is the standard total derivative operator given by

D=_ +xi— ®)

After simplification Equation (7) takes the form
XYL+ D)L =DA )

where
0

X0 =X 0

(10)
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is the first order prolonged generator. The coefficients of Noether symmetry, namely, & and 7’
are functions of (s,x'). The coefficients of prolonged operator X(), namely, n’;, are functions of
(s,x'(s), %(s)) and are defined as

7 = D(y') —¥'D(Q) a1

where x refers to the space of dependent variables. The importance of these symmetries is that
corresponding to each Noether symmetry there is a conservation law /first integrals. For example,
the time translation d/9t and rotation d/d6 respectively give conservation of energy and angular
momentum, respectively [14,15]. From differential geometry we know that for the general cylindrically
symmetric static space-times given by Equation (2), the usual Lagrangian is

L=e" 02 2 _p2et(r)§2 — A1) 32 (12)

Using Equation (12) in Equation (9) we get the following system of 19 partial differential
equations (PDEs)

=0, & =0 ¢=0 =0 A;=0
2e“<f>172 = A, 27l =4,

—21Pet 2 = Ay, —22M0)3 = A,

(r)yt 205 = 8 =0, ez — Mg =0
g + 02y =0, pp ety =0

/Oyt —yl =0, 0y —p2)y? =0
e =Mt =0, vyt +25) — g =0
Mt +202 =8 =0, 27— =0

(13)

This system consists of nine unknowns, ¢, iyi(i =0,1,2,3),A, u, v, and A. Solutions of this system
give the Lagrangian along with the Noether symmetries. Corresponding to these Lagrangians, one
may easily write spacetimes, which are the exact solutions of EFE. In the following sections, a list of
metric coefficients, Noether symmetries and corresponding first integrals are given.

3. Five Symmetries

The minimal set of Noether symmetries for cylindrically symmetric static spacetimes consists of
three isometries given in Equation (3) and Yy = a%, this makes a set of four Noether symmetries

) 0 0 0

= X1 == X2==—, Yo=— 14

1 2 oz’ 0 Js ( )
This is the minimal set of Noether symmetries for cylindrically symmetric static spacetime and is

a solution of system (13) for arbitrary values of y(r), v(r) and A(r). Corresponding to each Noether

symmetry a first integral can be obtained using the relation

OL i i

= —— (1" —¢x LE—A 15

¢ = 5 1~ )+ L (15)

where x' denotes the dependent variables. First integrals (conservation laws) corresponding to the
minimal set of Noether symmetries are given in Table 1.
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Table 1. First integrals for the minimal set of Noether symmetries.

Gen First Integrals

Xo ¢o = —2¢"(1}
X1 ¢1 = 2eH1b20
X ¢ = 20M1)z

Yo g3 =e0i2—i2 et (Np242 — M) 22

Except for the first class in Table 2, all the classes with five Noether symmetries admit only the
minimal set of isometries (only three isometries), and we see from the same table that in some cases the
values of the functions u(r), v(r) or A(r) are arbitrary; therefore, there may be infinitely many classes
for five Noether symmetries. However, some examples of metrics with five Noether symmetries are

given in Table 2.
Table 2. Metric coefficients for five symmetries.
No. v(r) u(r) A(r)
1. kln - > const
2. kln £ const # p(r) # kin ¢ const
3. z 2In % const
4. const #v(r) #kInZL kln £ const
5. kln - const z
6. kin Z const const # u(r) #kln -
7. H const klnZ
8. const #v(r) #kIn L const kin %
9. const kin % const # pu(r) #klnZ
10. const kln £ z
11. const z kln -
r T T
12. E T B T ; T
13. 2In 7 klnB lln;
14. klnZ ZIn% lln%
15. knZ lln% 2InL
16. kin % lln% hinZ

For the values of functions (), v(r) or A(r) given in Table 2 the system (13) give us five Noether
symmetries, four Noether symmetries are given in Equation (14) and fifth Noether symmetry along
with conservation law and gauge function are given in Table 3 correspondingly.

Table 3. Fifth symmetry with gauge term and respective first integral.

No. Fifth Symmetry Gauge Functions  First Integral

1. Y1 :s% A=-2z ¢y = 2[s2 — 2]
2. Y :s% A=-2z ¢y = 2[5z — 2]
3. Y1 =53 A=-2z ¢y = 2[5z — Z]
4. Y1 :saé A=-2z ¢y = 2[5z — 2]
5. Y =53 A= —2b%0 ¢y = 2b%[s6 — 6]
6. Y1 =59 A= —2b% ¢4 = 2b2[s60 — 6]
7. Y1 =59 A= —2b%0 ¢4 = 2b2[s0 — 0
8. Y =53 A= —2b%0 ¢4 = 20%[s6 — 6]
9. Y =55 A =2t ¢y = 2[—st + 1]
10. Yy = s% A =2t ¢y = 2[—st + ]
11. Y1 =55 A =2t g = 2[—st + ]
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Table 3. Cont.
No. Fifth Symmetry Gauge Functions First Integral
_ 9 _td_ 00 2 _ _ tieh | 1200eP gzt

13. Y, —sas—|—2 k9 5+ lzaaz A=0 4)4:sL+(27k2>99b ;§+(2 21)er1
2—k)tib? ik 2—1] !

14. Yl:s?s+2Tﬁ+2TZ% A=0 ¢4_5L,( z)t Lk+( Z)Zzﬁ
it D2

15. Y1:s%+2—*kt%+2;19i A=0 ¢4:SL_(22k)tt;T‘;+(2 lz)b%;*/z

_i _1oop? A
16. Y, = Sas + 2 2-ky at + 2— 79 + hzaaz A=0 sL (2 Zk)tt ;”‘( + (2 12)99[] ;II + (2 zlz)zzl;;i’h

4. Six Symmetries

In Table 4, a list of the metric coefficients, additional symmetries and gauge functions are given.
There are 24 different classes given in Table 4 which are the only candidates for six Noether symmetries.
The four Noether symmetries are given in Equation (14) and the corresponding two additional Noether

symmetries along with metric coefficients u(r),

v(r) and A(r) and gauge function are given in Table 4.

There are 24 different solutions of the system given in Equation (13). We see from Table 4 that the
24 classes of six Noether symmetries split in four different classes according to different types of

Noehter symmetries as

(i)

second Noether symmetry is a galilean transformation,

(ii)
(iii)
(iv)

in classes 1-3 the first symmetry is a mixed Noether symmetry of translation and scaling, and the

in classes 4-6 the first symmetry is the mixed one and the second is either boast or rotation,
in classes 7-15 the first symmetry is scaling while the second is galilean transformation and,
in classes 16-24 the first symmetry is scaling and the second symmetry is either boast or rotation.

Table 4. Metric coefficients, additional symmetries and gauge functions.

No. Metrics Symmetries, Gauge Functions
1. v(r) = L, u(r) = const, A()z% X3:%*ﬁ%*EE/Y1*5391A1 —2b%6
2. v(r)=L,u(r) = ﬁ,/\(r):const X3:m—i%—ﬁw,Y1 saZ,Al -2z
3. v(r) = const, u(r) = L, A(r) = B Xs=2 - 20 29y, =53 A =2t
b V)= L) = §A = Xo= 3= k- H%-EE X —2h+id
— — _ _a_ta_ 60 p) _ 299

5 v(r) = gu(r) =g Mr) =5 X3 =3 — oo —opap — 2paz Xa = Zgg — D05
s = hu= A=} X< dh- - = hh+od
7. v(r) =kIn L, u(r) =2In L, A(r) = const Yl—s§5+%kt%+%%+§§, Y2 =55,A= -2z
8. v(r) =21 E,y(r):kl L, A(r) = const lesas—k—zf%kQ%—O—%;-i—%E,Yg:s%, Ay = -2z
9. v(r) =kIn L, u(r) = 1In L, A(r) = const Y175%+%t§+%%+%19%+§%,\(2:sE,A27722
10.  v(r) = const,u(r) =2In L, A(r) =kIn L Yy =52 +58 402 4 22k0 y, =59 A, =0t
11.  v(r) = const,u(r) =kInZ,A(r) =2In L Y1—s%—&-%%—i—%%—i—z%‘@%,\{z:sg,Az:2t
12. v(r) = const,ju(r) =kInL A(r) =IInL Y1:s%+%%+%g+%9%+ le%,YZ:sa%,Azfﬂ
13.  v(r) =2In%,u(r) = const,A(r) =kIn L Y, = saa + %% + g% + %z%,Yz = s%,Az = —2b%0
14.  v(r) =kInZL, u(r) = const,A(r) =2InL Y1a: s k+ ;T’kt%; %%;r %@,lea: ST,,AZ(_’: —2b%0

_ — _ — 2- 0 2- _ _ 2
15.  v(r) =kInL,u(r) = const,A(r) =IIn L Yl—s;—k?t%—:%a};—&-za@ -i-2 %(ngz,Yz—s@éAz 78—2b 0
16. v(r)=kInL,u(r)=2InLA(r) =2In% Ylfsfs—i-;tg-i-%%-i-%z%, X3:z§+ta%
17 v(r)=2InL,u(r) =kInL,A(r) =kInZ lesaf+%§+ﬂ;k9@+%kza—,X3=z%fb20—z
18.  v(r)=kInl,u(r)=kInI,A(r)=1IIn’ Yl:sg+%kt%+§g+ﬂie%x3:97+ﬁ—g
19.  v(r :2lné,y(7‘):klné,A(r):Zlné Yl*%a% +y%aa% +223<kgaa%/X3:Zaa%+f%
20.  wv(r)=2In%,u(r)=2InLA(r) =kInZ Yi=s§+55+725X3=05+ 125
2. v(r)=kInL, u(r)=2InL A(r)=2InL Y1:S%+%%+24;kta@,X3:z%—bz %
22, v(r)=kInL,pu(r)=klni A(r)=1IInL Yl:S%)+%;%+%%+¥IQT?)+%;%/X3:ga%aer%aa%
23, v(r)=klnL,u(r)=1InL,A(r) =kln’ Yl_%§+221%§§+%§+2%9ﬁt2k%za&,x3:zamw&a
24 v(r)=IIni,u(r)=kinZ A(r)=kinl Yy=sg +2td 458 422500 4 25,0 X3 =29 —6p°2

Table 5 contains the first integrals (Conservation laws) corresponding to the Noether symmetries
given in Table 4.
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Table 5. Symmetry generators and first integrals for Table 4.

No. Generators First Integrals

L X3 Yq by = 27 4 <At _ efBZZ', 5 = 2b2[s — 6]

2. X3, Yq by = 27 4 A8 65’;9, 5 = 2b2[sz — 2]

3. X3, Y1 Py =27 — ”99 %, ¢5 = 2b%[—st + 1]

4 X X @:2#%—”#—%, 5 = 2k [tz — zi]

5. Xs, Xg o =2+ Bl —f _ef2 g 2b2eF [z6 — 02]

6. Xs, X by = 2F + % - % —TE, s = 2ek[t0— 0]

7. Y1, Y2 ¢4:sL7—gtt+rr+zz ¢5 = 2[5z — z]

8. Y1, Y2 ¢4:5L+22k;k99+rr+zz ¢5 = 2[sz — z]

9. Y1, Y2 454:5L———i.‘t‘+2 lr99+rr+zz ¢5 = 2[5z — z]

10 Y, Yz ¢475L—tt+rr+2 k’kzz ¢s5 = 2[t — si]

11 Y, Y2 ¢475L—tt+rr+2kr6’9 ¢5 = 2[t — si]

2. Yy, Yo ps=sL—ti+ 511 99+rr+2—’”—kzz 5 = 2[—sf + 1]
13 Y, Y2 ¢y =sL+ri + b299 + 2—kr—zz ¢5 = 2b%[s6 — 6]

14 Y, Y» ¢y =sL— tt +ri+ b299 ¢5 = 2b%[s6 — 6]

15 Y, Y» ¢y =sL— ——tt + ri + b260 + 22 D2z, ¢5 = 20%[s0 — 6]
16 Y, Xs Py = sL — ——tt +ri, @5 =2[tz — zf]

17 Y, X3 ¢4:sL+rr'+b299+2 ir 99+22 D;zz' ¢5 = 2b%[z6 — 0z]
18 Y1, Xs ¢4=sL—2—kLtt+rr+b22 krt 99+22 D2z, 5 = 262[t0 — i
19 Y:, X; ¢g = sL+ri+ b2 25k ’” 00, 5 =2tz — zi]

20 Y1, Xz ¢y = sL+ri + b”—k%zz ¢5 = 2[t0 — 6i]

21 Y1, X3 ¢s = sL+ri+ 2K, g5 = 207[260 — 02]

22 Y:, X3 ¢4—sL+rr—2—’” tt—i—b222 ak99+2—l%zz P5 = 2[t0 — 0i]
23 Y1, Xs ¢4—5L+rr—2—kr th+ 2251 a199+7ﬁzz 95 = 2[tz — =]
24 Y, X3 ¢4—sL+rr—2—”tt+b22 krGG—I—M’—zz ¢5 = 20%[z0 — 0z)

5. Seven Symmetries

The classes for seven Noether symmetries are given in this section. There are only three classes of
cylindrically symmetric static spacetime that admit seven Noether symmetries.

Class 1 of seven Noether Symmetries:
ds? = di? — dr? b2( )de? — (g)kdzz (16)

The Lagrangian corresponding to the metric (16) admits seven Noether symmetries, four of which
are given in Equation (14) and the remaining are listed below.

8 to ro  2-— k98 2—k 0

R e ¥ T ¥ T I )
0 z 0 0
YZ—S&, Az—zt, X3__b72£+95

The first integrals corresponding to the Noether symmetries are given in Equation (17) are given
in Table 6.
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Table 6. First Integrals corresponding to symmetries given in (17).

Gen First Integrals
X3 s =25, [62 — z6)
Y1 ¢5:sL—ti+rr'+b2;—i%99+;—i%kzz
Y> P = Z[t — St]

Class 2 of seven Noether Symmetries:
ds? = (i)kdﬂ —dr? - bz(i)kde2 — d2? (18)

We have seven Noether symmetries for the Lagrangian corresponding to the spacetime given
in Equation (18), four Noether syymmetries are given in Equation (14) and the additional three

symmetries are,

Y —Si_l’_zi_kti_i_fi_i_zi_k i_i_gi

17 %% 4 ot ' 2or 4 90 20z
(19)

Y, =2 Ay = —2 —ea t 9

2 =55 27 T MR

The corresponding first integrals are given in Table 7.

Table 7. First Integrals corresponding to symmetries given in (19).

Gen First Integrals

X3 9s = 272 [t6 — i)

Y, ¢5—sL———tt+rr+b2r 2k + 2z
Y> (P6 = sz[ z+ SZ]

Class 3 of seven Noether Symmetries:
ds? = (g)kdtz —dr? — pRde? — (g)kdzz (20)

The following three are the additional Noether symmetries corresponding to the Lagrangian for

spacetime (20).

v _s0 27k ro 60 2-k 3

7% T4 o T2 T200 0 4 oz 1)
d 9 .0

YZ_SHG A2:—2b9, X3—Za —Ftaf

The first integrals conservation laws corresponding to the Noether symmetries given in

Equation (21) are given in Table 8.

Table 8. First Integrals corresponding to symmetries given in (21).

Gen First Integrals
X3 ¢4 = 275 [t2 — 2]
Y1 ¢5:sL———tt+rr+b299+——zz

Yz P6 = 2b*[—0 + 50
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6. Eight Symmetries

In this section we list all those classes of cylindrically symmetric static spacetimes which admit
eight Noether symmetries. There are seven different classes of cylindrically symmetric static spacetime
that admit eight Noether symmetries, the detail of which are given below.

Class 1 of eight Noether Symmetries:
ds® = (g)"dﬂ —d? — 1P — d2? 22)

The Lagrangian of the spacetime (22) admits eight Noether symmetries, four of which are given
in Equation (14) and the remaining four are listed here in Equation (23)

0 2—-k o ro 69 z0 d
Yi=s—+"——t—F -ttt Yo=5-—-, A= 200
V% T T T T aar T20e Taar 2T e 72 23
0 0 2,0
Y3—S§, A3——22, X3—Z£_b 9&
The corresponding conservation laws are given in Table 9.
Table 9. First Integrals corresponding to symmetries given in (23).
Gen First Integrals
X3 ¢y = 2b? [29 — 92]
Y1 s =sL— 5280 4 ri 4 1266 + 2z
Y, P = sz[—e + 59}
Y3 ¢p7 = 2[sz — z]
Class 2 of eight Noether Symmetries:
7k
ds* = dt* — dr® — b*—.d6* — dz* (24)
«

We obtain eight Noether symmetries for the Lagrangian corresponding to the spacetime (24).
The additional four Noether symmetries are given below,

0 t o ro 2—k_ o z 0 d
Yi=sgtomtaart 4 Yptaay YTy M2 5)
Y —si Az =-2z, X —zi—i-ti

LR T A A TR

The corresponding first integrals are given below in Table 10.

Table 10. First Integrals corresponding to symmetries given in (25).

Gen First Integrals

X3 ¢y = 2[tz — zf]

Y1 s =sL—t+ri+ P20 200 4 22
Y, ¢ = 2[t — sf]

Y3 ¢7 = 2[sz — z]

Class 3 of eight Noether Symmetries:

ds® = di? — dr® — bPd6® — (g)kdﬁ (26)
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The additional Noether symmetries of the Lagrangian of spacetime (26) are given here,

Y _Si_,_fi_,_fi_i_gi_i_z_kzi Y —Si
17 %9 " 20t " 20r 200 4 ‘0oz %
9 B 5 0,0 d

Ay, =2t
(27)

The first integral for these symmetries are given in Table 11.

Table 11. First Integrals corresponding to symmetries given in (27).

Gen First Integrals
X3 ¢s = sz[fé — 91’]
Y1 s =sL—th+ri+ 0200 + Rzt
Y; P = Z[f — St]
Y3 ¢7 = 2b%[s0 — 0]

Class 4 of eight Noether Symmetries:
ds? = dt2 — dr? — b2(£)2d92 - (%)20122 (28)
This spacetime admit the following additional Noether symmetries

9 td . rd . ,0 8 d L,
Yl—Sg—i—Eg—i—Eg, Y2—5£+St$+sr§, A2—t r

(29)
z 0 0 5}

0
Y3 =s—, Az=2t, X3——b7£+ e

ot
The corresponding first integrals are given in Table 12.

Table 12. First Integrals corresponding to symmetries given in (29).

Gen First Integrals

X3 (P4 = 2:72[92 - ZG]

Yq ¢5 = sL +ri —tt

Yy ¢ = S?L + 2sri — 2stt + 2 — 12
Y3 ¢p7 = 2[—st + 1]

Class 5 of eight Noether Symmetries:
ds? = (g)zdt2 —dr? — pPde? — (i)%lz2 (30)

Following four are the additional Noether symmetries obtain for the Lagrangian corresponding
to spacetime (30).

9 ra 00 L0 8 0 s

Yl —S$+§§+§£, YZ =S5 a‘i‘sr& +SG£, A2 = —r b0 (31)
. B 5 . d

Y3 = 57891 A3 = —2b 9, X3 = Z*at + tiaz

Table 13 contains the first integrals for Noether symmetries given in Equation (31).
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Table 13. First Integrals corresponding to symmetries given in (31).

Gen First Integrals
Xs s =275 [tz — zi]
Y, ¢5 = sL +ri + 1?00
Yy g = s?L+ 2sri + 25&299 — 72 — b2
Y3 ¢7 = 2b%[s6 — 0]

Class 6 of eight Noether Symmetries:

ds? = (%)2dt2 —dr? — p?(L)2d8% — dz? (32)

r
44

Additional symmetries are are

d r o z d 2 d 0 0 2 2
Yi=s—4+-—+==—, Y2=5"— = —, Ap=-—-r"-—
Vs Ty T2ar TV T TRy T 33
0 0 t o
Ys=s5—, Azs=-2z, Xz=0=+ 5.
3 =5 M= X=05 4 a5
The first integrals are given in Table 14.
Table 14. First Integrals corresponding to symmetries given in (33).
Gen First Integrals
X3 ¢y = 2{%[159. — 91’]
Y ¢s = sL +ri +z2
Yy ¢ = s?L + 2sr# + 2522 — 1> — 22
Y; ¢p7 = 2[sz — z]
Class 7 of eight Noether Symmetries:
ds? = (%)kdﬂ —dr? - bz(é)kdez - (%)%2 (34)

The Lagrangian of the spacetime (34) admits eight Noether symmetries, list of four symmetries are
given in Equation (14) and the remaining four additional Noether symmetries are given in Equation (35)

Yy=s 2ok 19 27k, 0 27k 0
1770 4 ot "20r ' 4 00 4 "oz

9 .9 9 t 0 3 ., 0
X3—Z$+t&, X4_9$+ﬁ£/ XS—Z%_})G&

(35)

The first integrals corresponding to the symmetries given in Equation (35) are given in Table 15.

Table 15. First Integrals corresponding to symmetries given in (35).

Gen First Integrals
ko, . ,
X3 ¢y = ZZT[tZ — Zt]
k . .
X4 5 = 20 [t0 — 0]
Xs P = ZbZ% [29 —0z2]

Y1 ¢y =sL+ 5N b4 1200 4 z2] + 1
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7. Nine Symmetries

In this section, all the cases are given where the Lagrangian admits nine Noether symmetries.
There are four classes of cylindrically symmetric static spacetime which admit nine Noether symmetries.
We discuss them in detail in this section.

Class 1 of nine Noether Symmetries:
ds® = df? — dr® — bPex do? — ew dz? (36)

The Lagrangian corresponding to the metric (36) admits the following five additional Noether
symmetries along with the minimal set which given in Equation (14).

0 6 o z d z 0 0
X =5 T w08 2wz 4T w206 oz
9 200 0?22 44aew 0
X5227_277+[ z° +4uce 12
or  2ndf 4o 0z 37)
0 —b20% + 22 +4a%eT D z0 9
Xe =05+ . o —
or 4ub 00 2x0z
)
Y =s5=, A =2t
1T
The corresponding first integrals are given in Table 16.
Table 16. First Integrals corresponding to symmetries given in (37).
Gen First Integrals
X3 gu = Bk 4 o) 2k
Xy ¢5 = 2ex [0z — z6)]
Xs b6 = [(bzez_zzﬁ +442)0 42— 927;@&
202 2\ ok 44210 s I
XG (P7 - [(b°0 +22LE 4a%10 4 2zi — Qz?xga
Y1 Pg = 2b2[—si + ﬂ
Class 2 of nine Noether Symmetries:
ds® = exdt? — dr? — b2d6? — ew dz? (38)

This Lagrangian for this metric gives the following five additional Noether symmetries along
with the minimal set (14).

=ty e e )
X Zi_iti_[t2+z2—4aze% k)
6= “%r  2aot 4p 0z
d _ 2
Yl—S%, A——2b9

The first integrals or conservation laws are given in Table 17.
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Table 17. First Integrals corresponding to symmetries given in (39).

Gen First Integrals
_ ter o zzed
X3 Pa = "4 F 20—
Xy ¢5 = 2ew [tZ — zi]
2_ .2\, % 21 oL

Xs b6 = [(#*—=z )2€p¢ +4a”)f 40t — tzig

. [(t2+zz)g§—4tx2]9 T L
Xe @y = —LEEZ)ran0 | o talen

2w i
Yq Pg = 2b%[s0 — 0

Class 3 of nine Noether Symmetries:
ds? = exdt? — dr? — bPexd6? — dz? (40)

For spacetime (40) the Lagrangian admits nine Neother symmetries , four of which are given in
Equation (14) and the remaining five additional Noether symmetries are gievn over here,

o ta 69 9 t 9
Xs=or “anat a0 % T irae

9 2—b202+4a%w .0  t0 9
X5 =t——| l=; =525

or 4n ot  2x a0 (41)
X _gd 100 t2—b292—4a2e%’]3
6 Jar 2u ot 4xb? 20

P
Yl—sg, A= -2z

Table 18 contains the conservation laws corresponding to the additional Noether symmetries
given in Equation (41).

Table 18. First Integrals corresponding to symmetries given in (41).

Gen First Integrals
X by = HET 4 9j Bt
Xy ¢s = Qe [t@ — Gt]
21202\ 0k 214 dol
Xs b6 = [(#*=b 92); +dac]t 4ot — teie

Xe ¢y = —LEPO)r AN | oy toiek

Yq Ps = Z[SZ — Z]

Class 4 of nine Noether Symmetries:
ds? = (D22 — ar? — v?(D)2a0? — (1)2az22 (42)
o b o

The following are the additional five Noether symmetries for the Lagrangian of spacetime (42).

Y1:53+12, Yzsti—i-srg, Ay = —1?

Jds 20r ds ot 43)
X3 = 3+ti Xo =22 2l x—93+ii
3TN T ey 47 %5 9z’ STVt T2 oe

The Corresponding first integrals are given in Table 19.
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Table 19. First Integrals corresponding to symmetries given in (43).

Gen First Integrals

Yq ¢Ps = sL+r1'f
271 _ ZSr 3
Y, ¢s =s L =7
X3 <p6:2ﬁ[7;—zt]
X4 ¢7 =25 [z — 0z]

Xs ¢8:27 [t0 — 0]

8. Eleven Symmetries
There is only one case for 11 Noether symmetries.

Class of 11 Noether Symmetries:

ds? = exdt® — dr® — bPewdd? — ew dz?

13 0f 15

(44)

We obtain 11 Noether symmetries for the Lagrangian of the spacetime (44). Four Noethter
symmetries are given in Equation (14) and the remaining additional seven Noether symmetries are

given below.
9 tad 693 z0 9
Xs = 5 " aar a0 oz M9 T o
9 0 ) x
X5 = Z& + t&, X6 Z@ — Gb az
X _ti_[t2+b292+z +4a2ew }i_ﬁi_tii
T or 4 ot 2w0d0 2a0z
Xe oz 120 029 24002 +deder D
8 or ' 2adt 2a00 4o 0z
o t09 21202 +z2+4a%T .9 60z 0
Xo =05+ oqar T i 36 2adz

The symmetries and first integrals are given in Table 20.

Table 20. First Integrals corresponding to symmetries given in (45).

Gen First Integrals
X3 ¢4:2r+@_M_@
14
Xy ¢5 = 2b2%ex [t0 — 6i]
Xs Pe = 2ex [tz — zi]
X6 ¢7 = 202 [29 — 92'}
Xy b5 = (t2+b29245Z )eT +4a> Y. Gfxéei _ ztz;ﬁ

22022\, L ] ) 2pg L e
X8 4)9 — ( t°+b-6 2OCZ )604 +40? 2+ 2zi — b-0z0ea ngea _ ztixea
2 52020 2\ % s
X9 (P]() _ ( = —b"0°+z )eﬂ +4a2 b26 +267’ Gttenz z0zew

2 o

9. Seventeen Symmetries
Class of 17 Noether Symmetries:

The Minkowski spacetime is the only case having 17 Noether symmetries.

ds? = dt? — dr* — b?do? — dz?

(45)

(46)
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The additional symmetries are

9 a a ) )
o, a a 0
Xg = zi — ri, = 17293 + ti
or 0z ot 00 47)
Y, —2si+t§+r3+93 3 Y —si Ay = —2b%0
os ot Tor Y00 "oz 27 %972
Y; = [si+t3+ I LA 2] Ay =1 -1 —p** - 7*

ds ot ar a0 dz

d d
Yy =5— Ay =2t Y5 =5—
4 Sat/ 4 s 15 Sar/

0

As=—2r, Ye=s—, Ag=-2
5 T 6 SaZ 6 Z

The first integrals corresponding to the Noether symmetries given in Equation (47) are listed in
Table 21.

Table 21. First Integrals corresponding to symmetries given in (47).

Gen First Integrals

X3 (P4 = 2[1" — 7’].

Xy ¢5 = 2[ti — i

X5 P = 2b? [7‘9 — 91"]

X6 ¢7 = 2b%[z0 — 6z]

X7 (Pg = 2[1’2 - Zi’]

Xs ¢Po = 2[27" — FZ]

Xo $10 = sz[tg — Qt]

Y; ¢11 = 2[sL — ti + r# + b200 + zz]
Y, ¢12 = 20%[s6 — 6]

Ys 13 = sPL + 25|t + 1 + 1200 + z2] + 12 — 12 — b?0* — 22
Y4 P14 = 2[t —si]

Ys P15 = 2[s7 — 7]

Y P16 = 2[sz — Z]

10. Conclusions

In this paper we classify the cylindrically symmetric static space-times according to Noether
symmetries from their Lagrangian. To get all possible metrics, the usual Lagrangian for the general
cylindrically symmetric static metric has been considered. It has been observed that

e there maybe5, 6,7, 8,9, 11, and 17 Noether symmetries for the Lagrangian of cylindrically
symmetric static space-times.
There may be infinite metrics whose Lagrangian admits five Noether symmetries.

e There are 24 classes for six Noether symmetries, three classes of seven Noether symmetries,
seven for eight Noether symmetries, four for nine Noether symmetries and one class for
11 Noether symmetries.

e The maximum number of Noether symmetries, i.e., 17, appears for the Minkowski spacetime.

The first integrals in each case are also given correspondingly in tabulated form. It is important to
note that in this classification, all the metrics given in [8] have been recovered.
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