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Abstract: We address the recently posed question as to whether the nonlocality of a single member
of an entangled pair of spin 1/2 particles can be shared among multiple observers on the other wing
who act sequentially and independently of each other. We first show that the optimality condition
for the trade-off between information gain and disturbance in the context of weak or non-ideal
measurements emerges naturally when one employs a one-parameter class of positive operator
valued measures (POVMs). Using this formalism we then prove analytically that it is impossible
to obtain violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by more than two Bobs
in one of the two wings using unbiased input settings with an Alice in the other wing.
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1. Introduction

The quantum theory of measurement is counter-classical in a sense that in order to obtain
any statistical information about the state, some disturbance of the state becomes unavoidable.
Measurement does not change the state only if the system is in an eigenstate of the observable
to be measured. A von Neumann type measurement [1] dubbed as strong measurement induces
strong collapse transforming the initial state of the system into one of the eigenstates of the measured
observable. This type of measurement yields maximum information about the measured system.
On the other hand, there exist measurement schemes such as weak measurement [2–4] which provide
less information about the system while affecting it minimally, thus indicating a trade-off. A pertinent
question in this context is to what extent one may control the state change due to measurement while
obtaining some information about it. Recently, it has been shown that such a trade-off between the
degree of disturbance and the amount of information gain about the system may be optimized using
suitably chosen pointer states by employing weak measurements without post-selection [5].

Another counter-classical feature of quantum theory is the presence of nonlocal correlations
in the measurement outcomes of two or more parties sharing certain types of quantum states.
This property of quantum systems manifested by the violation of local realist, e.g., Bell-CHSH [6–8]
type inequalities has been well studied in in the literature in the context of multipartite or multilevel
states [9–13]. However, a new fundamental question on the sharing of non-locality by multiple
observers was posed recently [5]: Can the nonlocality pertaining to a single member of an
entangled pair of particles be shared among more than two independent observers who sequentially
perform measurements on the other member of the entangled pair? Note that the monogamy
constraints [14–16] on entanglement and nonlocality do not apply in this scenario since the condition
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of no-signalling is violated. Though the observers who perform consecutive measurements are
independent of one another, the observer(s) who perform the prior measurement(s) implicitly signal
to the latter one(s) through the choice of their measurement(s).

The motivation of the present work is to investigate the above question of sharing of nonlocality
of an entangled pair of two particles by multiple observers. The experimental scenario considered
here [5] is as follows. One of the particles of an entangled pair is measured by a single observer
Alice who performs projective measurements on one side. There exist multiple observers (Bobs) on
the other side who act sequentially and independently. Using weak measurements with optimized
pointer settings it was shown [5] that Bell-CHSH inequalities between Alice and an arbitrary number
of sequential Bobs can be consecutively violated in case of biased observation settings used by the
various Bobs. In other words, the protocol works when one of the inputs to the various independent
observers occurs a lot more often than the other input. Though, in the unbiased input scenario
numerical evidence indicated that violation of the CHSH inequality is impossible by more than
two Bobs, it was left as an open problem to show this analytically [5].

In this paper we study this problem analytically using the framework of unsharp
measurements [17] or POVMs with a single parameter, based upon the notion of generalised
observables beyond the usual framework projective valued measures (PVM) or sharp measurements.
In the measurement process after interaction of the physical system with the apparatus the latter
indicates a particular value corresponding to the former. This indication is modelled by means of
pointer observable assuming an actual value corresponding to a value of the physical quantity of
interest. Actual measurements in which the apparatus are represented by broad meter states, are
seldom compatible with PVMs. On the other hand, the generalised notion of POVMs turns out to
be very helpful not only in explaining some of the conceptual problems of quantum theory, such
as joint measurability of non-commutative observables [18,19], but in also performing tasks such as
probing non-locality in the case of mixed states. There are non-separable mixed states for which
the Bell-CHSH inequalities are violated not for the usual pair of sharp spins but only for suitable
families of POVMs. For two outcome measurements only projective measurements are sufficient
for Bell violation [20] whereas advantages of POVMs are discernible for measurements with more
outcomes [21]. This is an illustration of the fact that optimisation of information gain in measurements
can under certain conditions only be achieved with POVMs but not with PVMs. A comprehensive
introduction to the topic of POVMs and their application in quantum foundations and experiments
can be found in the monographs [17,22] and references therein.

Using the formalism of POVMs we show here that unsharp observables characterized by a
single unsharpness parameter saturate the optimal pointer condition with respect to the trade-off
between disturbance and information gain, a condition that was earlier obtained using numerical
optimization [5]. We then apply this formalism to the case of the problem of sharing nonlocality
by multiple observers, as mentioned above. We prove analytically that more than two consecutive
violations of the CHSH inequality are impossible in the unbiased scenario. The plan of the paper
is as follows. In Section 2 we provide a brief discussion on the quantum theory of measurement
and POVMs. In Section 3 we show how the optimality condition for the information gain versus
disturbance trade-off emerges naturally within the unsharp measurement formalism. In Section 4
we prove analytically that nonlocality of an entangled pair of spin 1/2 particles cannot be shared
between Alice and more than two Bobs. We conclude with a brief summary in Section 5.

2. Quantum Measurements

The minimal content of the notion of measurement in quantum mechanics [23] is given
by the probability reproducibility requirement, according to which a particular measurement
scheme qualifies as a measurement of a given observable E if for all initial states of the system
the associated probability distributions of E are reproduced in the resulting statistics of pointer
readings. The information available by a given measurement depends on the statistical dependencies
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established by the interaction between the system and the apparatus. Let S be the system with
associated Hilbert space HS , and A be the measuring apparatus with Hilbert space HA. The initial
joint state of system and the apparatus is transformed unitarily during pre-measurement, and is
given by

U (ρS ⊗ ρA) 7→ UρS ⊗ ρAU ∗ (1)

An explicit construction of pre-measurement for discrete sharp observables has been known
since the work of von Neumann [1]. Any pre-measurement of an observable determines a state
transformer on a measurable space (Ω,F ), I : F 7→ L(T(Hs)) through the relation

IM(X)(ρ) := tr[I⊗ Z(Uρ⊗ ρAU ∗)I⊗ Z] (2)

where, X ∈ F , and L(T(Hs)) is the set of operators acting on a set of density states. The state
transformer summarizes all the features of the pre-measurement. It recovers the observable via
the relation

tr[E(X)ρ] = tr[IM(X)ρ]∀X ∈ F , ρ ∈ T(HS) (3)

The state transformer for projective measurement of a discrete observable A with eigenvalues
ais is given by

IM(ρ) = ∑
ai∈X

PiρPi (4)

For an observable A = ∑ aiPi with eigenvalue ai and eigenprojectors Pi, pre-measurement is
given by

U (ϕ⊗ φ) = ∑ Pi ϕ⊗ φi, ϕ ∈ HS , φ ∈ HA (5)

Let Z = ∑ ziZ be an observable of apparatus A, known as pointer observable. The reduced
state of the apparatus is given by W(ϕ) = ∑ai

pA
ϕ (ai)P[φi] (all the P[φi] are not necessarily mutually

orthogonal) with the probability reproducibility condition given by

pA
ϕ (ai) = pZ

W(ϕ)(zi) (6)

where pA
ϕ (ai) is the probability distribution of outcomes of the observable A and pZ

W(ϕ)(zi) is that
of the pointer observable. Equation (6) implies that the outcome probabilities for observable A
are recovered as the distribution of the pointer values in the final apparatus state. The emerging
observable out of this measurement scheme is given by

Ei = ∑ pZ
W(ϕ)(zi)Pj (7)

Now, following [22] let us see how POVM emerges quite naturally in an actual measurement on
a two level system. Let us take the system-apparatus coupling as

U = expiλσ.n̂⊗P (8)

where P is the momentum operator and the pre-measurement is given by

|Ψ〉 = U (ϕ⊗ φ) = ∑ Pi ϕ⊗ expiλaiP φ

= C+ϕ+ ⊗ φ+ + C−ϕ− ⊗ φ− (9)
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Vectors expiλaiP φ or φ± need not be mutually orthogonal. Next, to describe registration of
spots on the screen, the pointer observable is modelled by P±, projectors onto the upper and lower
half of the screen. For unsharp observables the state transformer is given by the generalised Luder
transformer as

IM(ρ) = ∑
ai∈X

√
Eiρ

√
Ei (10)

This measurement scheme yields

< Ψ|I⊗ P±Ψ >= |C+|2〈φ+|P+φ+〉+ |C−|2〈φ−|P+φ−〉
:= 〈ϕ|E±ϕ〉 (11)

where the effects E± constitute the unsharp spin observables actually measured in this experiment,
given by

E± = 〈φ+|P+φ+〉P[ϕ+] + 〈φ−|P−φ−〉P[ϕ−] (12)

with E+ + E− = I, and E2
± 6= E±, i.e., 〈ϕ+|E+ϕ+〉, 〈ϕ−|E−ϕ−〉 6= 0 or 1. If the center of

mass of the wave-packets φ± were well separated and localized in the appropriate half planes,
i.e., if 〈φ±|P±φ±〉 = 1, then 〈φ±|P∓φ±〉 = 0, in which case E± coincides with P[ϕ±]. However,
due to spreading of this wave-packet this coincidence is achieved only approximately. This provides
a possible source of inaccuracy due to quantum indeterminism inherent in the center of mass
wave-function. Even if spin is prepared sharply a priori, its value can only be ascribed with
some uncertainty.

3. Optimality Condition for Information Gain Versus Disturbance Trade-off Using
Unsharp Measurements

Following the work of [5], let us consider a spin 1/2 particle whose initial state is described by
the state |ψ〉(= α|0〉+ β|1〉). Considering von Neumann type measurements, after interaction with
a meter with the state φ(q), the joint state of system and apparatus goes to α|0〉 ⊗ φ(q− 1) + β|1〉 ⊗
φ(q + 1). On tracing out the pointer state the reduced state of the system is given by

ρ′ = Fρ + (1− F)(π+ρπ+ + π−ρπ−) (13)

where ρ = |ψ〉〈ψ|, and π± are projectors onto states |0〉, |1〉, and F(φ) =
∫ ∞
−∞〈φ(q + 1)|φ(q− 1)〉dq,

is called the quality factor of the measurement. The probability of getting outcomes ‘±’ is given by

p(±) = G〈ψ|π±|ψ〉+ (1− G)
1
2

(14)

Here, G =
∫ 1
−1 φ2(q)dq, which quantifies the precision of the measurement. It is independent of

the state of the spin and depends on the width of the pointer compared to the distance between the
eigenvalues. These two parameters F and G characterize a weak measurement (the case with F = 0
and G = 1 corresponds to a strong measurement). It was found in [5] that a square pointer yields
the relation G = 1− F. However, such a pointer is not optimal. An optimal pointer is defined as the
one which gives the best trade-off, i.e., for a given quality factor F, it provides the largest precision G.
It was shown that the optimal information-disturbance trade-off condition given by

F2 + G2 = 1 (15)

emerges using an optimal pointer that is not a Gaussian wave-packet.
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For two outcome measurements the notion of unsharp measurement discussed in section-II
is captured by the effect operator, Eλ = (I + λniσi)/2, i = 1, 2, 3., with λ ∈ (0, 1]. Thus,
the set of effects can be written as a linear combination of sharp projectors with white noise,
Eλ ≡ {Eλ

+, Eλ
−|Eλ

+ + Eλ
− = I}, given by

Eλ
± = λP± +

1− λ

2
I (16)

In the unsharp formalism the non-selective un-normalised state of the system after

pre-measurement according to the Luder transformation rule (10) is given by ρ′ =
√

Eλ
+ρ

√
Eλ
+ +√

Eλ
−ρ

√
Eλ
−. From this we get

ρ′ =
√

1− λ2ρ + (1−
√

1− λ2)(P+ρP+ + P−ρP−) (17)

The probabilities of getting the outcomes ± are given by

p(±) = tr[Eλ
±ρ] = λtr[P±ρ] +

1− λ

2
(18)

Comparing the two formalisms, i.e., comparing Equation (13) with Equation (17) and
Equation (14) with Equation (18), one sees that G = λ and F =

√
1− λ2. Hence, λ characterises

the precision of the measurement. For G = λ = 1, F becomes zero, this being the limit of
sharp measurement. We thus find that the optimal pointer state condition, F2 + G2 = 1 given by
Equation (15) and derived through an optimization in [5] emerges explicitly within the formalism
of unsharp measurements. In other words, unsharp measurement yields the maximum information
about the system while disturbing the original state minimally.

4. Sharing of Non-Locality

We now show that an application of the formalism of unsharp measurements in the context of
sharing of non-locality enables us to resolve an open issue stated in [5]. We show here analytically
that using a pair of entangled spin 1/2 particles Alice cannot share non-locality with more than two
Bobs. To address this question let us consider the following Bell-CHSH scenario. All the observers
have two measurement choices which they perform one at a time. Tsirelson’s bound is achieved when

Alice measures in the direction X̂ and Ẑ and Bob measures in directions −(Ẑ+X̂)√
2

, −Ẑ+X̂√
2

. As we want
to see how many Bobs can have measurement statistics violating the CHSH inequality with a single
Alice, the 1st Bob cannot measure sharply. This would destroy the entanglement between the particles
shared by Alice and Bob and there would be no possibility of violation of the CHSH inequality for
the 2nd Bob. Hence, in order to share nonlocality among n Bobs, n − 1 of them have to measure
weakly. Here, it is important to note that each Bob measures independently of the previous Bobs on
the particle of his possession. Hence, any Bob has to consider the average effect of possible choices
of measurements done by previous Bobs [5]. Here, we do not consider multiple Alices, and thus it
is not required to consider unsharp measurement for Alice as it reduces the violation of the CHSH
inequality thereby reducing the possibility of sharing nonlocality for multiple Bobs. However, there
may be a possibility of getting an advantage if Alice performs sharp nonorthogonal measurements.
We comment on this issue later.

The joint probability of getting the outcome ‘a’ and ‘bn’ by Alice and Bobn (the n-th Bob)
respectively, is given by

p(a, bn) = p(a)p(bn|a) =
1
2

Tr[
I+ λnbnŷn.~σ

2
ρn|y1...yn−1

] (19)
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where ρn|y1...yn−1
is the state of the pair of spin- 1

2 particles before the measurements of Alice and Bobn,
and yi is the measurement done by the i-th Bob. For two Bob measuring in succession, the joint
probability is given by

p(a, b2) =

√
1−λ2

1
2

1−ab2λ2 ŷ2.x̂
2 +

1−
√

1−λ2
1

2
1−ab2λ2 x̂.ŷ1 ŷ1.ŷ2

2

(20)

The measurement directions chosen for Alice are X̂, Ẑ, and those for Bob are −(Ẑ+X̂)√
2

, −Ẑ+X̂√
2

.
For the first Bob measuring weakly and the second Bob measuring sharply, the CHSH values are

given by CHSHAB1 = 2
√

2λ1, and CHSHAB2 =
√

2(1 +
√

1− λ2
1) respectively. This result coincides

with that obtained in [5]. In this case both Bobs obtain violation of the Bell-CHSH inequality when

the precision of the 1st Bob remains within the range 1/
√

2 and
√

2(
√

2− 1).
Now consider the case of three Bobs with a single Alice. In this case the 1st and 2nd Bobs both

measure weakly, while the last Bob measures sharply. We get

p(a, b3) =
1
2 [
√

1− λ2
1

√
1− λ2

2
1−ab3λ3 ŷ3.x̂

2 +

(1−
√

1− λ2
1)
√

1− λ2
2

1−ab3λ3 x̂.ŷ1 ŷ1.ŷ3
2 +

√
1− λ2

1(1−
√

1− λ2
2)

1−ab3λ3 x̂.ŷ2 ŷ2.ŷ3
2 +

(1−
√

1− λ2
1)(1−

√
1− λ2

2)
1−ab3λ3 x̂.ŷ1 ŷ1.ŷ2 ŷ2.ŷ3

2 ]

(21)

Here λ2 is precision of measurement by the 2nd Bob. The correlation between Alice and Bob3 is
given by

C3 = λ3[
√

1− λ2
1

√
1− λ2

2ŷ3.x̂+

(1−
√

1− λ2
1)
√

1− λ2
2 x̂.ŷ1ŷ1.ŷ3+√

1− λ2
1(1−

√
1− λ2

2)x̂.ŷ2ŷ2.ŷ3+

(1−
√

1− λ2
1)(1−

√
1− λ2

2)x̂.ŷ1ŷ1.ŷ2ŷ2.ŷ3]

(22)

As any Bob is ignorant about inputs of previous Bobs, this correlation has to be averaged over
all possible earlier inputs. Hence, one has

C̄3 = ∑
y1y2

C3P(y1)P(y2) (23)

With this average correlation we find the CHSH sum between Alice and Bob3 given by

I3 =
(1 +

√
1− λ2

1)(1 +
√

1− λ2
2)√

2
(24)

For the 1st and 2nd Bobs the corresponding CHSH values are given by CHSHAB1 = 2
√

2λ1 and
CHSHAB2 = λ2

√
2(1 +

√
1− λ2), respectively. In order for the 1st Bob to obtain violation of the

Bell-CHSH inequality, his measurement precision λ1 has to be greater than 1/
√

2. For the 2nd Bob to
get the violation, it is required that λ2 > 2√

2+1
. Thus, it follows from Equation (24) that if the first two
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Bobs obtain violation, the subsequent CHSH value corresponding to Bob3 cannot be greater than 2.
In the worst case scenario of violation of CHSH by Bob1 and Bob2, i.e., when both of them obtain
minimal violation, I3 can not becomes greater than 1.88.

The above arguments were based on the assumption of orthogonality for the measurements
performed by the Bobs. Let us now consider the scenario when the orthogonality condition for the
Bobs’ measurements is relaxed. In this case the meausurements performed by the n-th Bob may be
denoted as

y0
n = cos θn0Ẑ + sin θn0X̂, y1

n = cos θn1Ẑ + sin θn1X̂ (25)

Alice’s measurements are the same as before, i.e., X̂, Ẑ. In the case of non-orthogonal
measurements done by all the Bobs CHSH violation is not possible by more than two of them. With
the non-orthogonal measurements defined above, we have

I1(xy1) = λ1Ĩ1(xy1) (26)

where Ĩ1(xy1) = (cos[θ10] − cos[θ11] + sin[θ10] + sin[θ11]). After the 1st and 2nd Bob measuring
weakly the CHSH expression between Alice and 2nd Bob is given by

I2(x(y1)y2) = λ2[(1− F1)Ĩ2(x(y1)y2) + F1Ĩ1(xy2)] (27)

In the above expression Ĩ2(x(y1)y2) = 1
2 ∑1

i,j=0((−1)j cos θ1i + sin θ1i) cos(θ1i − θ2j), and in the

argument of Ĩ2, (y1) implies averaging over the inputs of Bob1. Now denoting Fi =
√

1− λ2
i , and

with the 3rd Bob measuring sharply, we have

I3(x(y1y2)y3) =
F1+F2

2 Ĩ1(xy3)+

(1−F1)F2
2 (Ĩ2(x(y1)y3)− Ĩ2(x(y1 +

π
2 )y3))+

(1−F2)F1
2 (Ĩ2(x(y2)y3)− Ĩ2(x(y2 +

π
2 )y3))+

(1−F1)(1−F2)
16 Ĩ3(x(y1y2)y3)

(28)

Here (yi +
π
2 ) means averaging over the measurement directions of Bobi after rotation by π/2

and Ĩ3(x(y1y2)y3) = ∑1
k=0[∑i=1,2,j=0,1 2 sin(2θij − θ3k) + 4 sin θ3k + ∑i,j=0,1 sin(2θ1i − 2θ2j + θ3k)] +

∑1
k=0(−1)k[∑i=1,2,j=0,1 2 cos(2θij − θ3k) + 4 cos θ3k + ∑i,j=0,1 cos(2θ1i − 2θ2j + θ3k)].

With the above expressions for most general settings we find that when I1 = 2, and I2 = 2,
then one obtains I3 = 2. When both the 1st and 2nd Bobs get 5 percent violation, i.e., having CHSH
expression equalling 2.1, then I3 → 1.89 at most, with the settings y0

1 ≈ 0.19Ẑ+ 0.98X̂, y1
1 ≈ −0.19Ẑ+

0.98X̂, y0
2 ≈ 0.19Ẑ + 0.98X̂, y1

2 ≈ −0.19Ẑ + 0.98X̂ and y0
3 ≈ 0.04Ẑ + 0.99X̂, y1

3 ≈ −0.04Ẑ + 0.99X̂.
It should be noted here that even if we consider nonorthogonal measurements by Alice along with all
the Bobs we get similar results with expressions involving more variables. There exists settings for
which I3 becomes at most 2 when I1 = 2, and I2 = 2. Again, when the 1st and 2nd Bobs get 5 percent
violation, I3 → 1.89 at most, and for these settings we find that Alice’s measurements are orthogonal.
It is thus clear that more than two Bobs can never share the nonlocality of a pair of spin 1/2 particles
with a single Alice, a result that was numerically conjectured in [5]. One may note that the sequence
of the particular Bobs is not important in this scenario. For example, Bob3 may obtain violation if the
sharpness of the 2nd Bob’s measurement is sufficiently weak for the latter not to get a violation. There
exists a range of unsharpness parameters for each Bob so that any one pair of Bobs in the combinations
(Bob1, Bob2), (Bob1, Bob3), or (Bob2, Bob3) can simultaneously demonstrate non-locality.
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5. Discussions

In this work we have considered the question of sharing the nonlocality of a single member of
an entangled pair of spin 1/2 particles by multiple observers on the other side acting sequentially
and independently of each other. This fundamental issue has been recently studied by Silva et al. [5]
within the context of the trade-off between information gain and disturbance in weak measurements.
It was found that multiple Bobs having sequential access to one particle from the entangled pair
can indeed violate Bell-CHSH inequalities with a single Alice on the other side, provided biased
measurement settings were used. It was also observed therein using numerical evidence that in the
case of unbiased input settings, it was not possible for more than two Bobs to obtain CHSH violations,
and it was left as an open problem to prove this analytically [5]. In the present work we address this
issue by considering usharp measurements within the framework of POVMs [17]. We first show
that the optimality condition for the information gain versus disturbance trade-off derived in [5]
emerges naturally using one-parameter POVMs. Applying this framework to the problem of sharing
of nonlocality then enables us to show analytically that more than two Bobs cannot violate the CHSH
inequality with a single Alice.

6. Conclusions

Generalised notion of quantum measurements modelled by POVM has various kind of
advantages over notion of sharp von Neumann type measurements in explaining many quantum
features. In the context of sharing nonlocality of a single member of an entangled pair of qubits by
multiple observers on the other wing it is shown analytically that more than tow observers can not
share nonlocality by considering unsharp measurements which is one parameter POVM.
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