

 Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

Mathematics 2016, 4(3), 46; doi:10.3390/math4030046

Article

Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

Jean-Paul Chehab 1,* and Marcos Raydan 2

1

LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France

2

Departamento de Cómputo Científico y Estadística, Universidad Simón Bolívar, Ap. 89000, Caracas 1080-A, Venezuela

*

Correspondence: Tel.: +33-3-2282-7591; Fax: +33-3-2282-7838

Academic Editor: Khalide Jbilou

Received: 11 May 2016 / Accepted: 1 July 2016 / Published: 9 July 2016

Abstract:

We focus on inverse preconditioners based on minimizing [image: there is no content], where [image: there is no content] is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize [image: there is no content] on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of [image: there is no content] on the feasible set. Preliminary and encouraging numerical results are also presented in which dense and sparse approximations are included.

Keywords:

preconditioning; cones of matrices; gradient method; minimal residual method

1. Introduction

The development of algebraic inverse preconditioning continues to be an active research area since they play a key role in a wide variety of applications that involve the solution of large and sparse linear systems of equations; see e.g., [1,2,3,4,5,6,7,8,9,10,11].

A standard and well-known approach to build preconditioning strategies is based on incomplete factorizations of the coefficient matrix: incomplete LU (ILU), incomplete Choleksy (IC), among others. However, preconditioners built with this approach, while popular and fairly easy to implement, are not suitable for parallel platforms, especially Graphics Processing Units (GPUs) [12], and moreover are not always reliable since the incomplete factorization process may yield a very ill-conditioned factorization (see, e.g., [13]). Even for symmetric positive definite matrices, existence of the standard IC factorization is guaranteed only for some special classes of matrices (see, e.g., [14]). In the symmetric positive definite case, variants of IC have been developed to avoid ill-conditioning and breakdown (see, e.g., [15,16]). Nevertheless, usually these modifications are expensive and introduce additional parameters to be chosen in the algorithm.

For a given square matrix A, there exist several proposals for constructing robust sparse inverse approximations which are based on optimization techniques, mainly based on minimizing the Frobenius norm of the residual [image: there is no content] over a set P of matrices with a certain sparsity pattern; see e.g., [5,6,15,17,18,19,20,21,22]. An advantage of these approximate inverse preconditioners is that the process of building them, as well as applying them, is well suited for parallel platforms. However, we must remark that when A is symmetric and positive definite, minimizing the Frobenius norm of the residual without imposing additional constraints can produce an inverse preconditioner which is neither symmetric nor positive definite; see, e.g., (p. 312 [15]).

There is currently a growing interest, and understanding, in the rich geometrical structure of the non-polyhedral cone of symmetric and positive semidefinite matrices ([image: there is no content]); see e.g., [19,22,23,24,25,26,27]. In this work, we focus on inverse preconditioners based on minimizing the positive-scaling-invariant function [image: there is no content], instead of minimizing the Frobenius norm of the residual. Our approach takes advantage of the geometrical properties of the [image: there is no content] cone, and also of the special properties of [image: there is no content] on a suitable compact set, to introduce specialized constrained gradient-type methods for which we analyze their convergence properties.

The rest of the document is organized as follows. In Section 2, we develop and analyze two different gradient-type iterative schemes for finding inverse approximations based on minimizing [image: there is no content], including sparse versions. In Section 3, we present numerical results on some well-known test matrices to illustrate the behavior and properties of the introduced gradient-type methods. Finally, in Section 4 we present some concluding remarks.

2. Gradient-Type Iterative Methods

Let us recall that the cosine between two [image: there is no content] real matrices A and B is defined as

[image: there is no content]

(1)

where [image: there is no content] is the Frobenius inner product in the space of matrices and ∥.∥F is the associated Frobenius norm. By the Cauchy–Schwarz inequality, it follows that

[image: there is no content]

and the equality is attained if and only if [image: there is no content] for some nonzero real number γ.

To compute the inverse of a given symmetric and positive definite matrix A, we consider the function

[image: there is no content]

(2)

for which the minimum value zero is reached at [image: there is no content], for any positive real number ξ. Let us recall that any positive semidefinite matrix B has nonnegative diagonal entries and so [image: there is no content]. Hence, if [image: there is no content] is symmetric, we need to impose that [image: there is no content] as a necessary condition for [image: there is no content] to be in the [image: there is no content] cone (see [24,26,27]). Therefore, in order to impose uniqueness in the [image: there is no content] cone, we consider the constrained minimization problem

[image: there is no content]

(3)

where S={X∈Rn×n|∥XA∥F=n} and T={X∈Rn×n|trace(XA)≥0}. Notice that [image: there is no content] is a closed and bounded set, and so problem (3) is well-posed. Notice also that T is convex while S is not.

Remark 2.1.

For any [image: there is no content], [image: there is no content], and so the function F is invariant under positive scaling.

The derivative of [image: there is no content], denoted by [image: there is no content], plays an important role in our work.

Lemma 2.1.

[image: there is no content]

Proof.

For fixed matrices X and Y, we consider the function [image: there is no content]. It is well-known that [image: there is no content]. We have

[image: there is no content]

and we obtain after differentiating [image: there is no content] and some algebraic manipulations

[image: there is no content]

and the result is established. ☐

Theorem 2.1.

Problem (3) possesses the unique solution [image: there is no content].

Proof.

Notice that [image: there is no content] for [image: there is no content], if and only if [image: there is no content] for [image: there is no content]. Now, [image: there is no content] and so [image: there is no content] is the global maximizer of the function F on S, but [image: there is no content]; however, [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content] is the unique feasible solution of (3). ☐

Before discussing different numerical schemes for solving problem (3), we need a couple of technical lemmas.

Lemma 2.2.

If [image: there is no content]and [image: there is no content], then

[image: there is no content]

Proof.

Since [image: there is no content] then [image: there is no content], and we have

[image: there is no content]

hence

[image: there is no content]

However, [image: there is no content], so

[image: there is no content]

since [image: there is no content]. ☐

Lemma 2.3.

If [image: there is no content], then

[image: there is no content]

Proof.

For every X, we have [image: there is no content], and so

[image: there is no content]

On the other hand, since [image: there is no content], [image: there is no content], and hence

[image: there is no content]

and the result is established. ☐

2.1. The Negative Gradient Direction

For the numerical solution of (3), we start by considering the classical gradient iterations that, from an initial guess [image: there is no content], are given by

[image: there is no content]

where [image: there is no content] is a suitable step length. A standard approach is to use the optimal choice i.e., the positive step length that (exactly) minimizes the function [image: there is no content] along the negative gradient direction. We present a closed formula for the optimal choice of step length in a more general setting, assuming that the iterative method is given by:

[image: there is no content]

where [image: there is no content] is a search direction in the space of matrices.

Lemma 2.4.

The optimal step length [image: there is no content], that optimizes [image: there is no content], is given by

αk=⟨X(k)A,I⟩⟨X(k)A,DkA⟩−n⟨DkA,I⟩⟨DkA,I⟩⟨X(k)A,DkA⟩−⟨X(k)A,I⟩⟨DkA,DkA⟩

Proof.

Consider the auxiliary function in one variable

[image: there is no content]

Differentiating [image: there is no content], using that [image: there is no content], and also that

[image: there is no content]

and then forcing [image: there is no content] the result is obtained, after some algebraic manipulations. ☐

Remark 2.2.

For our first approach, [image: there is no content], and so for the optimal gradient method (also known as Cauchy method or steepest descent method) the step length is given by

αk=n⟨∇F(X(k))A,I⟩−⟨X(k)A,I⟩⟨X(k)A,∇F(X(k))A⟩⟨∇F(X(k))A,I⟩⟨X(k)A,∇F(X(k))A⟩−⟨X(k)A,I⟩∥∇F(X(k))A∥F2

(4)

Notice that if instead of using the descent direction [image: there is no content], we use the ascent direction [image: there is no content], in Lemma 2.4, the obtained [image: there is no content]that also forces [image: there is no content], is given by (4) but with a negative sign in front. Hence, to guarantee that the step length [image: there is no content]is positive to minimize F along the negative gradient direction to approximate [image: there is no content], instead of maximizing F along the gradient direction to approximate [image: there is no content], we will choose the step length [image: there is no content]as the absolute value of the expression in (4).

Since [image: there is no content], the gradient iterations can be written as

X(k+1)=X(k)−αkn∥X(k)A∥F⟨X(k)A,I⟩∥X(k)A∥F2X(k)A−IA

which can be further simplified by imposing the condition for uniqueness [image: there is no content]. In that case, we set

[image: there is no content]

(5)

and then we multiply the matrix [image: there is no content] by the factor [image: there is no content] to guarantee that [image: there is no content], i.e., such that [image: there is no content].

Concerning the condition that the sequence [image: there is no content] remains in T, in our next result, we establish that if the step length [image: there is no content] remains uniformly bounded from above, then [image: there is no content] for all k.

Lemma 2.5.

Assume that [image: there is no content]and that [image: there is no content]. Then,

trace(X(k)A)=⟨X(k)A,I⟩>0for all k

Proof.

We proceed by induction. Let us assume that

[image: there is no content]

It follows that

[image: there is no content]

and so

[image: there is no content]

Now, since [image: there is no content] and

[image: there is no content]

we obtain that

[image: there is no content]

Since [image: there is no content], then [image: there is no content], and we conclude that

[image: there is no content]

Since [image: there is no content] is obtained as a positive scaling factor of [image: there is no content], then [image: there is no content], and the result is established. ☐

Now, for some given matrices A, we cannot guarantee that the step length computed as the absolute value of (4) will satisfy [image: there is no content] for all k. Therefore, if [image: there is no content], then we will set in our algorithm [image: there is no content] to guarantee that [image: there is no content], and hence that the cosine between [image: there is no content] and I is nonnegative, which is a necessary condition to guarantee that [image: there is no content] remains in the [image: there is no content] cone (see, e.g., [24,26,27].

We now present our steepest descent gradient algorithm that will be referred as the CauchyCos Algorithm.

	Algorithm 1 : CauchyCos (Steepest descent approach on CauchyCos (Steepest descent approach on [image: there is no content])

	
	1:

	
Given [image: there is no content]

	2:

	
for [image: there is no content] until a stopping criterion is satisfied, do

	3:

	
 Set [image: there is no content]

	4:

	
 Set [image: there is no content]

	5:

	
 Set αk=n⟨∇F(X(k))A,I⟩−wk⟨X(k)A,∇F(X(k))A⟩⟨∇F(X(k))A,I⟩⟨X(k)A,∇F(X(k))A⟩−wk∥∇F(X(k))A∥F2

	6:

	
 Set [image: there is no content]

	7:

	
 Set [image: there is no content], where [image: there is no content] if [image: there is no content], [image: there is no content] else

	8:

	
end for

We note that if we start from [image: there is no content] such that [image: there is no content] then by construction [image: there is no content], for all [image: there is no content]; for example, [image: there is no content] is a convenient choice. For that initial guess, [image: there is no content] and again by construction all the iterates will remain in the [image: there is no content] cone. Notice also that, at each iteration, we need to compute the three matrix–matrix products: [image: there is no content], [image: there is no content], and [image: there is no content], which, for dense matrices, require [image: there is no content] floating point operations (flops) each. Every one of the remaining calculations (inner products and Frobenius norms) are obtained with n column-oriented inner products that require n flops each. Summing up, in the dense case, the computational cost of each iteration of the CauchyCos Algorithm is [image: there is no content] flops. In Section 2.5, we will discuss a sparse version of the CauchyCos Algorithm and its computational cost.

2.2. Convergence Properties of the CauchyCos Algorithm

In spite of the resemblance with the classical Cauchy method for convex constrained optimization, the CauchyCos algorithm involves certain key ingredients in its formulation that splits it apart from the Cauchy method. Therefore, a specialized convergence analysis is required. In particular, we note that the constraint set S on which the iterates are computed, thanks to the scaling step 7, is not a convex set.

We start by establishing the commutativity of all iterates with the matrix A.

Lemma 2.6.

If [image: there is no content], then [image: there is no content], for all [image: there is no content]in the CauchyCos Algorithm. Furthermore, if [image: there is no content]is symmetric, then [image: there is no content]and [image: there is no content]are symmetric for all [image: there is no content].

Proof.

We proceed by induction. Assume that [image: there is no content]. It follows that:

AZ(k+1)=AX(k)−αkn⟨X(k)A,I⟩nAX(k)A−AA=X(k)A−αkn⟨X(k)A,I⟩nAX(k)−IAA=X(k)−αkn⟨X(k)A,I⟩nX(k)A−IAA=Z(k+1)A

and since [image: there is no content] and [image: there is no content] differ only by a scaling factor, then [image: there is no content]. Hence, since [image: there is no content], the result holds for all k. The second property is proven similarly by induction. ☐

It is worth noticing that, using Lemma 2.6 and (5), it follows by simple calculations that [image: there is no content] as well as [image: there is no content] are symmetric matrices for all k. In turn, if [image: there is no content], this clearly implies using Lemma 2.6 that [image: there is no content] is also a symmetric matrix for all k.

Our next result establishes that the sequences generated by the CauchyCos Algorithm are uniformly bounded away from zero, and hence the algorithm is well-defined.

Lemma 2.7.

If [image: there is no content], then the sequences [image: there is no content], [image: there is no content], and [image: there is no content]generated by the CauchyCos Algorithm are uniformly bounded away from zero.

Proof.

Using Lemmas 2.2 and 2.6 we have that

[image: there is no content]

which combined with the Cauchy–Schwarz inequality and Lemma 2.3 implies that

[image: there is no content]

for all k. Moreover, since A is nonsingular then

∥Z(k+1)A∥F≥∥Z(k+1)∥F∥A−1∥F≥n∥A∥F∥A−1∥F>0

is bounded away from zero for all k. ☐

Theorem 2.2.

The sequence [image: there is no content]generated by the CauchyCos Algorithm converges to [image: there is no content].

Proof.

The sequence [image: there is no content], which is a closed and bounded set; therefore, there exist limit points in [image: there is no content]. Let [image: there is no content] be a limit point of [image: there is no content], and let [image: there is no content] be a subsequence that converges to [image: there is no content]. Let us suppose, by way of contradiction, that [image: there is no content].

In that case, the negative gradient, [image: there is no content], is a descent direction for the function F at [image: there is no content]. Hence, there exists [image: there is no content] such that

[image: there is no content]

Consider now an auxiliary function [image: there is no content] given by

[image: there is no content]

Clearly, θ is a continuous function, and then [image: there is no content] converges to [image: there is no content]. Therefore, for all [image: there is no content] sufficiently large,

[image: there is no content]

Now, since [image: there is no content] was obtained using Lemma 2.4 as the exact optimal step length along the negative gradient direction, then using Remark 2.1, it follows that

F(X(kj+1))=F(Z(kj+1))=F(X(kj)−αkj∇F(X(kj)))<F(X(kj)−α^∇F(X(kj)))≤F(X(kj))−δ2

and thus,

[image: there is no content]

(6)

for all [image: there is no content] sufficiently large.

On the other hand, since F is continuous, [image: there is no content] converges to [image: there is no content]. However, the whole sequence [image: there is no content] generated by the CauchyCos Algorithm is decreasing, and so [image: there is no content] converges to [image: there is no content], and since F is bounded below then for [image: there is no content] large enough

[image: there is no content]

which contradicts (6). Consequently, [image: there is no content].

Now, using Lemma 2.1, it follows that [image: there is no content] implies [image: there is no content]. Hence, the subsequence [image: there is no content] converges to [image: there is no content]. Nevertheless, as we argued before, the whole sequence [image: there is no content] converges to [image: there is no content], and by continuity the whole sequence [image: there is no content] converges to [image: there is no content]. ☐

Notice that Theorem 2.2 states that the sequence [image: there is no content] converges to [image: there is no content] which is in the [image: there is no content] cone. Hence, if [image: there is no content] is symmetric and [image: there is no content], then [image: there is no content] is symmetric (Lemma 2.6), and after a k iterations (k large enough), the eigenvalues of [image: there is no content] are strictly positive: as a consequence, [image: there is no content] is in the [image: there is no content] cone.

Remark 2.3.

The optimal choice of step length [image: there is no content], as it usually happens when combined with the negative gradient direction (see e.g., [28,29]), produces an orthogonality between consecutive gradient directions, that in our setting becomes [image: there is no content]. Indeed, [image: there is no content]minimizes [image: there is no content], which means that

[image: there is no content]

This orthogonality is responsible for the well-known zig-zagging behavior of the optimal gradient method, which in some cases induces a very slow convergence.

2.3. A Simplified Search Direction

To avoid the zig-zagging trajectory of the optimal gradient iterates, we now consider a different search direction:

[image: there is no content]

(7)

to move from [image: there is no content] to the next iterate. Notice that [image: there is no content] and so [image: there is no content] can be viewed as a simplified version of the search direction used in the classical steepest descent method. Moreover, the direction [image: there is no content] in (7) is obtained from the direction [image: there is no content] used by CauchyCos by multiplying on the right by the matrix [image: there is no content], so it can be viewed as a right-preconditioning of the method CauchyCos. Notice also that [image: there is no content] resembles the residual direction [image: there is no content] used in the minimal residual iterative method (MinRes) for minimizing [image: there is no content] in the least-squares sense (see e.g., [6,10]). Nevertheless, the scaling factors in (7) differ from the scaling factors in the classical residual direction at [image: there is no content]. Note that MinRes here should not be confused with the Krylov method MINRES [10].

For solving (3), we now present a variation of the CauchyCos Algorithm, that will be referred as the MinCos Algorithm, which from a given initial guess [image: there is no content] produces a sequence of iterates using the search direction [image: there is no content], while remaining in the compact set [image: there is no content]. This new algorithm consists of simply replacing [image: there is no content] in the CauchyCos Algorithm by [image: there is no content].

	Algorithm 2 : MinCos (simplified gradient approach on [image: there is no content])

	
	1:

	
Given [image: there is no content]

	2:

	
for [image: there is no content] until a stopping criterion is satisfied, do

	3:

	
 Set [image: there is no content]

	4:

	
 Set [image: there is no content]

	5:

	
 Set αk=n⟨D^kA,I⟩−wk⟨X(k)A,D^kA⟩⟨D^kA,I⟩⟨X(k)A,D^kA⟩−wk∥D^kA∥F2

	6:

	
 Set [image: there is no content]

	7:

	
 Set [image: there is no content], where [image: there is no content] if [image: there is no content], [image: there is no content] else

	8:

	
end for

As before, we note that if we start from [image: there is no content] then by construction [image: there is no content], for all [image: there is no content]. For that initial guess, [image: there is no content] and again by construction all the iterates remain in the [image: there is no content] cone. Notice also that, at each iteration, we now need to compute the two matrix–matrix products: [image: there is no content], and [image: there is no content], which for dense matrices require [image: there is no content] flops each. Every one of the remaining calculations (inner products and Frobenius norms) are obtained with n column-oriented inner products that require n flops each. Summing up, in the dense case, the computational cost of each iteration of the MinCos Algorithm is [image: there is no content] flops. In Section 2.5, we will discuss a sparse version of the MinCos Algorithm and its computational cost.

2.4. Convergence Properties of the MinCos Algorithm

We start by noticing that, unless we are at the solution, the search direction [image: there is no content] is a descent direction.

Lemma 2.8.

If [image: there is no content]and [image: there is no content], the search direction [image: there is no content]is a descent direction for the function F at X.

Proof.

We need to establish that, for a given [image: there is no content], [image: there is no content]. Since [image: there is no content] is symmetric and positive definite, then it has a unique square root which is also symmetric and positive definite. This particular square root will be denoted as [image: there is no content]. Therefore, since [image: there is no content], and using that [image: there is no content], for given square matrices [image: there is no content] and [image: there is no content], it follows that

⟨D^(X),∇F(X)⟩=⟨D^(X)AA−1,∇F(X)⟩=−⟨∇F(X)A−1,∇F(X)⟩=−⟨∇F(X)A−1/2,∇F(X)A−1/2⟩=−∥∇F(X)A−1/2∥F2<0

☐

Remark 2.4.

The step length in the MinCos Algorithm is obtained using the search direction [image: there is no content]in Lemma (2.4). Notice that if we use [image: there is no content]instead of [image: there is no content], the obtained [image: there is no content]which also forces [image: there is no content]is the one given by Lemma (2.4) but with a negative sign. Therefore, as in the CauchyCos Algorithm, to guarantee that [image: there is no content]minimizes F along the descent direction [image: there is no content]to approximate [image: there is no content], instead of maximizing F along the ascent direction [image: there is no content]to approximate [image: there is no content], we choose the step length [image: there is no content]as the absolute value of the expression in Lemma (2.4).

We now establish the commutativity of all iterates with the matrix A.

Lemma 2.9.

If [image: there is no content], then [image: there is no content], for all [image: there is no content]in the MinCos Algorithm.

Proof.

We proceed by induction. Assume that [image: there is no content]. We have that

AZ(k+1)=AX(k)−αkn⟨X(k)A,I⟩nAX(k)A−A=X(k)A−αkn⟨X(k)A,I⟩nAX(k)−IA=X(k)−αkn⟨X(k)A,I⟩nX(k)A−IA=Z(k+1)A

and since [image: there is no content] and [image: there is no content] differ only by a scaling factor, then [image: there is no content]. Hence, since [image: there is no content], the result holds for all k. ☐

It is worth noticing that using Lemma 2.9 and (5), it follows by simple calculations that [image: there is no content], [image: there is no content], and [image: there is no content] in the MinCos Algorithm are symmetric matrices for all k. These three sequences generated by the MinCos Algorithm are also uniformly bounded away from zero, and so the algorithm is well-defined.

Lemma 2.10.

If [image: there is no content], then the sequences [image: there is no content], [image: there is no content], and [image: there is no content]generated by the MinCos Algorithm are uniformly bounded away from zero.

Proof.

From Lemma 2.3, the sequence [image: there is no content] is uniformly bounded. For the sequence [image: there is no content], using Lemmas 2.2 and 2.9, we have that

⟨Z(k+1)A1/2,X(k)A1/2⟩=⟨Z(k+1)A,X(k)⟩=⟨X(k)A,X(k)⟩+αk⟨DkA,X(k)⟩=⟨X(k)A,X(k)⟩−αk⟨∇F(X(k)),X(k)⟩=⟨X(k)A,X(k)⟩=⟨X(k)A1/2,X(k)A1/2⟩=∥X(k)A1/2∥F2

where [image: there is no content] is the unique square root of A, which is also symmetric and positive definite. Combining the previous equality with the Cauchy–Schwarz inequality, and using the consistency of the Frobenius norm, we obtain

[image: there is no content]

(8)

Since [image: there is no content], then [image: there is no content], which combined with (8) implies that

[image: there is no content]

is bounded away from zero for all k. Moreover, since A is nonsingular then

∥Z(k+1)A∥F≥∥Z(k+1)∥F∥A−1∥F≥n∥A1/2∥F2∥A−1∥F>0

is also bounded away from zero for all k. ☐

Theorem 2.3.

The sequence [image: there is no content]generated by the MinCos Algorithm converges to [image: there is no content].

Proof.

From Lemma 2.8, the search direction [image: there is no content] is a descent direction for F at X, unless ∇F(X)=0. Therefore, since [image: there is no content] in the MinCos Algorithm is obtained as the exact minimizer of F along the direction [image: there is no content] for all k, the proof is obtained repeating the same arguments shown in the proof of Theorem 2.2, simply replacing [image: there is no content] by [image: there is no content] for all possible instances Y. ☐

2.5. Connections between the Considered Methods and Sparse Versions

For a given matrix A, the merit function [image: there is no content] has been widely used for computing approximate inverse preconditioners (see, e.g., [5,6,15,17,18,19,20,22]). In that case, the properties of the Frobenius norm permit in a natural way the use of parallel computing. Moreover, the minimization of [image: there is no content] can also be accomplished imposing a column-wise numerical dropping strategy leading to a sparse approximation of [image: there is no content]. Therefore, when possible, it is natural to compare the CauchyCos and the MinCos Algorithms applied to the angle-related merit function [image: there is no content] with the optimal Cauchy method applied to [image: there is no content] (referred from now on as the CauchyFro method), and also to the Minimal Residual (MinRes) method applied to [image: there is no content] (see, e.g., [6,15]). Notice that, as we mentioned before in Section 2.3, with respect to CauchyCos and MinCos, MinRes can be seen as a right-preconditioning version of the method CauchyFro.

The gradient of [image: there is no content] is given by [image: there is no content], and so the iterations of the CauchyFro method, from the same initial guess [image: there is no content] used by MinCos and CauchyCos, can be written as

[image: there is no content]

(9)

where [image: there is no content] and the step length [image: there is no content] is obtained as the global minimizer of [image: there is no content] along the direction [image: there is no content], as follows

[image: there is no content]

(10)

where [image: there is no content] is the residual matrix at [image: there is no content]. The iterations of the MinRes method can be obtained replacing [image: there is no content] by the residual matrix [image: there is no content] in (9) and (10) (see [6] for details). We need to remark that in the dense case, the CauchyFro method needs to compute two matrix-matrix products per iteration, whereas the MinRes method by using the recursion [image: there is no content] needs one matrix-matrix product per iteration.

We now discuss how to dynamically impose sparsity in the sequence of iterates [image: there is no content] generated by either the CauchyCos Algorithm or the MinCos Algorithm, to reduce their required storage and computational cost.

A possible way of accomplishing this task is to prescribe a sparsity pattern beforehand, which is usually related to the sparsity pattern of the original matrix A, and then impose it at every iteration (see e.g., [4,20,21,22]). At this point, we would like to mention that although there exist some special applications for which the involved matrices are large and dense [30,31], frequently in real applications the involved matrices are large and sparse. However, in general, the inverse of a sparse matrix is dense anyway. Moreover, with very few exceptions, it is not possible to know a priori the location of the large or the small entries of the inverse. Consequently, it is very difficult in general to prescribe a priori a nonzero sparsity pattern for the approximate inverse.

As a consequence, to force sparsity in our gradient related algorithms, we use instead a numerical dropping strategy to each column (or row) independently, using a threshold tolerance, combined with a fixed bound on the maximum number of nonzero elements to be kept at each column (or row) to limit the fill-in. This combined strategy will be fully described in our numerical results section.

In the CauchyCos and MinCos Algorithms, the dropping strategy must be applied to the matrix [image: there is no content] right after it is obtained at Step 6, and before computing [image: there is no content] at Step 7. That way, [image: there is no content] will remain sparse at all iterations, and we guarantee that [image: there is no content]. The new Steps 7 and 8, in the sparse versions of both algorithms, are given by

	7:

	
Apply numerical dropping to [image: there is no content] with a maximum number of nonzero entries;

	8:

	
Set [image: there is no content], where [image: there is no content] if [image: there is no content], [image: there is no content] else.

Notice that, since all the involved matrices are symmetric, the matrix-matrix products required in both algorithms can be performed using sparse-sparse mode column-oriented inner products (see, e.g., [6]). The remaining calculations (inner products and Frobenius norms), required to obtain the step length, must be also computed using sparse-sparse mode. Using this approach, which takes advantage of the imposed sparsity, the computational cost and the required storage of both algorithms are drastically reduced. Moreover, using the column oriented approach both algorithms have a potential for parallelization.

3. Numerical Results

We present some numerical results to illustrate the properties of our gradient-type algorithms for obtaining inverse approximations. All computations are performed in MATLAB using double precision. To test the robustness of our methods, we present hereafter a variety of problems with large scale matrices and very badly conditioned ones (non necessarily of big size) but for which the building of an approximate inverse is difficult. Most of the matrices are taken from the Matrix Market collection [32], which contains a large choice of benchmarks that are widely used.

It is worth mentioning that Schulz method [33] is another well-known iterative method for computing the inverse of a given matrix A. From a given [image: there is no content], it produces the following iterates [image: there is no content], and so it needs two matrix–matrix products per iteration. Schulz method can be obtained applying Newton’s method to the related map [image: there is no content], and hence it possesses local q-quadratic convergence; for recent variations and applications see [34,35,36]. However, the q-quadratic rate of convergence requires that the scheme is performed without dropping (see e.g., [34]). As a consequence, Schulz method is not competitive with CauchyCos, CauchyFro, MinRes, and MinCos for large and sparse matrices (see Section 2.5).

For our experiments, we consider the following test matrices in the [image: there is no content] cone:

	
from the Matlab gallery: Poisson, Lehmer, Wathen, Moler, and miij. Notice that the Poisson matrix, referred in Matlab as (Poisson, N) is the [image: there is no content] finite differences 2D discretization matrix of the negative Laplacian on [image: there is no content] with homogeneous Dirichlet boundary conditions.

	
Poisson 3D (that depends on the parameter N) is the [image: there is no content] finite differences 3D discretization matrix of the negative Laplacian on the unit cube with homogeneous Dirichlet boundary conditions.

	
from the Matrix Market [32]: nos1, nos2, nos5, and nos6.

In Table 1, we report the considered test matrices with their size, sparsity properties, and two-norm condition number [image: there is no content]. Notice that the Wathen matrices have random entries so we cannot report their spectral properties. Moreover, Wathen (N) is a sparse [image: there is no content] matrix with [image: there is no content]. In general, the inverse of all the considered matrices are dense, except the inverse of the Lehmer matrix which is tridiagonal.

Table 1. Considered test matrices and their characteristics.

	
Matrix A

	
Size (n × n)

	
κ (A)

	
A

	
Poisson (50)

	
n = 2500

	
1.05 × 10+3

	
sparse

	
Poisson (100)

	
n = 1000

	
6.01 × 10+3

	
sparse

	
Poisson (150)

	
n = 22500

	
1.34 × 10+4

	
sparse

	
Poisson (200)

	
n = 400000

	
2.38 × 10+4

	
sparse

	
Poisson 3D (10)

	
n = 1000

	
79.13

	
sparse

	
Poisson 3D (15)

	
n = 3375

	
171.66

	
sparse

	
Poisson 3D (30)

	
n = 27,000

	
388.81

	
sparse

	
Poisson 3D (50)

	
n = 125,000

	
1.05 × 10+3

	
sparse

	
Lehmer (100)

	
n = 100

	
1.03 × 10+4

	
dense

	
Lehmer (200)

	
n = 200

	
4.2 × 10+4

	
dense

	
Lehmer (300)

	
n = 300

	
9.5 × 10+4

	
dense

	
Lehmer (400)

	
n = 400

	
1.7 × 10+5

	
dense

	
Lehmer (500)

	
n = 500

	
2.6 × 10+5

	
dense

	
minij (20)

	
n = 20

	
677.62

	
dense

	
minij (30)

	
n = 30

	
1.5 × 10+3

	
dense

	
minij (50)

	
n = 50

	
4.13 × 10+3

	
dense

	
minij (100)

	
n = 100

	
1.63 × 10+4

	
dense

	
minij (200)

	
n = 200

	
6.51 × 10+4

	
dense

	
moler (100)

	
n = 100

	
3.84 × 10+16

	
dense

	
moler (200)

	
n = 200

	
3.55 × 10+16

	
dense

	
moler (300)

	
n = 300

	
3.55 × 10+16

	
dense

	
moler (500)

	
n = 500

	
3.55 × 10+16

	
dense

	
moler (1000)

	
n = 1000

	
3.55 × 10+16

	
dense

	
nos1

	
n = 237

	
2.53 × 10+7

	
sparse

	
nos2

	
n = 957

	
6.34 × 10+9

	
sparse

	
nos5

	
n = 468

	
2.91 × 10+4

	
sparse

	
nos6

	
n = 675

	
8.0 × 10+7

	
sparse

3.1. Approximation to the Inverse with No Dropping Strategy

To add understanding to the properties of the new CauchyCos and MinCos Algorithms, we start by testing their behavior, as well as the behavior of CauchyFro and MinRes, without imposing sparsity. Since the goal is to compute an approximation to [image: there is no content], it is not necessary to carry on the iterations up to a very small tolerance parameter ϵ, and we choose [image: there is no content] for our experiments. For all methods, we stop the iterations when [image: there is no content].

Table 2 shows the number of required iterations by the four considered algorithms when applied to some of the test functions, and for different values of n. No information in some of the entries of the table indicates that the corresponding method requires an excessive amount of iterations as compared with the MinRes and MinCos Algorithms. We can observe that CauchyFro and CauchyCos are not competitive with MinRes and MinCos, except for very few cases and for very small dimensions. Among the Cauchy-type methods, CauchyCos requires less iterations than CauchyFro, and in several cases the difference is significant. The MinCos and MinRes Algorithms were able to accomplish the required tolerance using a reasonable amount of iterations, except for the Lehmer(n) and minij(n) matrices for larger values of n, which are the most difficult ones in our list of test matrices. The MinCos Algorithm clearly outperforms the MinRes Algorithm, except for the Poisson 2D (n) and Poisson 3D (n) for which both methods require the same number of iterations. For the more difficult matrices and especially for larger values of n, MinCos reduces in the average the number of iterations with respect to MinRes by a factor of 4.

Table 2. Number of iterations required for all considered methods when [image: there is no content].

	
Matrix

	
Size (n × n)

	
CauchyCos

	
CauchyFro

	
MinRes

	
MinCos

	
Poisson 2D (50)

	
n = 2500

	
88

	
132

	
7

	
6

	
Poisson 2D (70)

	
n = 4900

	

	

	
7

	
6

	
Poisson 2D (100)

	
n = 1000

	

	

	
7

	
7

	
Poisson 2D (200)

	
n = 40,000

	

	

	
7

	
7

	
Poisson 3D (10)

	
n = 1000

	
9

	
12

	
3

	
2

	
Poisson 3D (15)

	
n = 3375

	
10

	
14

	
3

	
2

	
Poisson 3D (30)

	
n = 27,000

	

	

	
3

	
3

	
Poisson 3D (50)

	
n = 125,000

	

	

	
3

	
3

	
Lehmer (10)

	
n = 10

	
888

	
1141

	
21

	
15

	
Lehmer (20)

	
n = 20

	
9987

	
49,901

	
123

	
51

	
Lehmer (30)

	
n = 30

	

	

	
355

	
109

	
Lehmer (40)

	
n = 40

	

	

	
645

	
190

	
Lehmer (50)

	
n = 50

	

	

	
987

	
293

	
Lehmer (70)

	
n = 70

	

	

	
1399

	
423

	
Lehmer (100)

	
n = 100

	

	

	
3905

	
1178

	
Lehmer (200)

	
n = 200

	

	

	
16,189

	
4684

	
Minij (20)

	
n = 20

	
31,271

	
63,459

	
209

	
45

	
Minij (30)

	
n = 30

	
153,456

	
629,787

	
553

	
102

	
Minij (50)

	
n = 50

	

	

	
1565

	
307

	
Minij (100)

	
n = 100

	

	

	
6771

	
1259

	
Minij (200)

	
n = 200

	

	

	
26,961

	
5057

	
Moler (100)

	
n = 100

	
7

	
83

	
3

	
3

	
Moler (200)

	
n = 200

	
77

	
15243

	
19

	
12

	
Moler (300)

	
n = 300

	

	

	
105

	
22

	
Moler (500)

	
n = 500

	

	

	
381

	
48

	
Moler (1000)

	
n = 1000

	

	

	
1297

	
152

	
Wathen (10)

	
n = 341

	
10,751

	
17,729

	
68

	
57

	
Wathen (20)

	
n = 1281

	
495

	
1112

	
22

	
16

	
Wathen (30)

	
n = 2821

	

	

	
24

	
17

	
Wathen (50)

	
n = 7701

	

	

	
20

	
15

In Figure 1, we show the (semilog) convergence history for the four considered methods and for both merit functions: [image: there is no content] and [image: there is no content], when applied to the Wathen matrix for [image: there is no content] and [image: there is no content]. Once again, we can observe that CauchyFro and CauchyCos are not competitive with MinRes and MinCos, and that MinCos outperforms MinRes. Moreover, we observe in this case that the function [image: there is no content] is a better merit function than [image: there is no content] in the sense that it indicates with fewer iterations that a given iterate is sufficiently close to the inverse matrix. The same good behavior of the merit function [image: there is no content] has been observed in all our experiments.

Figure 1. Convergence history for CauchyFro and CauchyCos (left), and MinRes and MinCos (right) for two merit functions: [image: there is no content] (up) and [image: there is no content] (down), when applied to the Wathen matrix for [image: there is no content] and [image: there is no content].

[image: Mathematics 04 00046 g001]

Based on these preliminary results, we will only report the behavior of MinRes and MinCos for the forthcoming numerical experiments.

3.2. Sparse Approximation to the Inverse

We now build sparse approximations by applying the dropping strategy, described in Section 2.5, which is based on a threshold tolerance with a limited fill-in ([image: there is no content]) on the matrix [image: there is no content], at each iteration, right before the scaling step to guarantee that the iterate [image: there is no content]. We define [image: there is no content] as the percentage of coefficients less than the maximum value of the modulus of all the coefficients in a column. To be precise, for each i-th column, we select at most [image: there is no content] off-diagonal coefficients among the ones that are larger in magnitude than [image: there is no content], where [image: there is no content] represents the i-th column of [image: there is no content]. Once the sparsity has been imposed at each column and a sparse matrix is obtained, say [image: there is no content], we guarantee symmetry by setting [image: there is no content].

We have implemented the relatively simple dropping strategy, described above, for both MinRes and MinCos to make a first validation of the new method. Of course, we could use a more sophisticated dropping procedure for both methods as one can find in [6]. The current numerical comparison is preliminary and indicates the potential of MinCos versus MinRes. We begin by comparing both methods when we apply the numerical described dropping strategy on the Matrix Market matrices.

Table 3 shows the performance of MinRes and MinCos when applied to the matrices nos1, nos2, nos5, and nos6, for [image: there is no content], [image: there is no content], and several values of [image: there is no content]. We report the iteration k (Iter) at which the method was stopped, the interval [image: there is no content] of [image: there is no content], the quotient [image: there is no content]/[image: there is no content], and the percentage of fill-in (% fill-in) at the final matrix [image: there is no content]. We observe that, when imposing the dropping strategy to obtain sparsity, MinRes fails to produce an acceptable preconditioner. Indeed, as it has been already observed (see [6,15]) quite frequently that MinRes produces an indefinite approximation to the inverse of a sparse matrix in the [image: there is no content] cone. We also observe that, in all cases, the MinCos method produces a sparse symmetric and positive definite preconditioner with relatively few iterations and a low level of fill-in. Moreover, with the exception of the matrix nos6, the MinCos method produces a preconditioned matrix [image: there is no content] whose condition number is reduced by a factor of approximately 10 with respect to the condition number of A. In some cases, MinRes was capable of producing a sparse symmetric and positive definite preconditioner, but in those cases, the MinCos produced a better preconditioner in the sense that it exhibits a better reduction of the condition number, and also a better eigenvalues distribution. Based on these results, for the remaining experiments, we only report the behavior of the MinCos Algorithm.

Table 3. Performance of MinRes and MinCos when applied to the Matrix Market matrices nos1, nos2, nos5, and nos6, for [image: there is no content], [image: there is no content], and different values of [image: there is no content].

	
Matrix

	
Method

	
[image: there is no content][image: there is no content]

	
[image: there is no content] of [image: there is no content]

	
Iter

	
% Fill-in

	
nos1 ([image: there is no content])

	
MinCos

	
0.0835

	
[2.44 × 10−6,2.3272]

	
20

	
3.71

	
nos1([image: there is no content])

	
MinRes

	

	
[−98.66,5.40]

	

	

	
nos6 ([image: there is no content])

	
MinCos

	
0.4218

	
[5.07 × 10−6,3.1039]

	
20

	
0.45

	
nos6 ([image: there is no content])

	
MinCos

	
0.2003

	
[8.51 × 10−6,3.0702]

	
20

	
0.82

	
nos6 ([image: there is no content])

	
MinRes

	

	
[−0.7351,2.6001]

	

	

	
nos6 ([image: there is no content])

	
MinRes

	

	
[−0.2256,2.2467]

	

	

	
nos5 ([image: there is no content])

	
MinCos

	
0.068

	
[0.002,1.36]

	
10

	
1.18

	
nos5 ([image: there is no content])

	
MinCos

	
0.0755

	
[00.0024,1.3103]

	
10

	
2.47

	
nos5 ([image: there is no content])

	
MinRes

	

	
[−20.31,2.16]

	

	

	
nos5 ([image: there is no content])

	
MinRes

	
0.1669

	
[0.0021,1.7868]

	
10

	
2.36

	
nos2 ([image: there is no content])

	
MinCos

	
0.1289

	
[5.2 × 10−9,2.73]

	
10

	
0.52

	
nos2 ([image: there is no content])

	
MinCos

	
0.0891

	
[7.95 × 10−9,2.2873]

	
10

	
0.80

	
nos2 ([image: there is no content])

	
MinCos

	
0.0700

	
[9.7 × 10−9,1.9718]

	
10

	
1.14

	
nos2 ([image: there is no content])

	
MinRes

	

	
[−0.3326,2.4869]

	

	

	
nos2 ([image: there is no content])

	
MinRes

	
0.0970

	
[4.21 × 10−9,1.5414]

	
10

	
0.93

	
nos2 ([image: there is no content])

	
MinRes

	
0.0861

	
[4.21 × 10−9,1.1638]

	
10

	
1.14

Table 4 shows the performance of the MinCos Algorithm when applied to the Wathen matrix for different values of n and a maximum of 20 iterations. For this numerical experiment, we fix [image: there is no content], [image: there is no content], and [image: there is no content]. For the particular case of the Wathen matrix when [image: there is no content], we show in Figure 2 that the (semilog) convergence history of the norm of the residual when solving a linear system with a random right-hand side vector, using the Conjugate Gradient (CG) method without preconditioning, and also using the preconditioner generated by the MinCos Algorithm after 20 iterations, fixing [image: there is no content], [image: there is no content], and [image: there is no content]. We also report in Figure 3 the eigenvalues distribution of A and of [image: there is no content], at [image: there is no content], for the same experiment with the Wathen matrix and [image: there is no content]. Notice that the eigenvalues of A are distributed in the interval [image: there is no content], whereas the eigenvalues of [image: there is no content] are located in the interval [image: there is no content] (see Table 4). Even better, we can observe that most of the eigenvalues are in the interval [image: there is no content], and very few of them are in the interval [image: there is no content], which clearly accounts for the good behavior of the preconditioned CG method (see Figure 2).

Figure 2. Convergence history of the CG method applied to a linear system with the Wathen matrix, for [image: there is no content], 20 iterations, [image: there is no content], [image: there is no content], and [image: there is no content], using the preconditioned generated by the MinCos Algorithm and without preconditioning.

[image: Mathematics 04 00046 g002]

Figure 3. Eigenvalues distribution of A (down) and of [image: there is no content] (up) after 20 iterations of the MinCos Algorithm when applied to the Wathen matrix for [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].

[image: Mathematics 04 00046 g003]

Table 4. Performance of MinCos applied to the Wathen matrix for different values of n and a maximum of 20 iterations, when [image: there is no content], [image: there is no content], and [image: there is no content].

	
Matrix A

	
Size (n × n)

	
[image: there is no content][image: there is no content]

	
[image: there is no content] of [image: there is no content]

	
Iter

	
% Fil-in

	
wathen (30)

	
n=2821

	
0.0447

	
[image: there is no content]

	
20

	
0.73

	
wathen (50)

	
n=7701

	
0.0461

	
[image: there is no content]

	
20

	
0.27

	
wathen (70)

	
n=14981

	
0.0457

	
[image: there is no content]

	
20

	
0.14

	
wathen (100)

	
n=30401

	
0.0467

	
[image: there is no content]

	
20

	
6.8436 × 10−2

Table 5, Table 6 and Table 7 show the performance of the MinCos Algorithm when applied to the Poisson 2D, the Poisson 3D, and the Lehmer matrices, respectively, for different values of n, and different values of the maximum number of iterations, ϵ, [image: there is no content], and [image: there is no content]. We can observe that, for the Poisson 2D and 3D matrices, the MinCos Algorithm produces a sparse symmetric and positive definite preconditioner with very few iterations, a low level of fill-in, and a significant reduction of the condition number.

Table 5. Performance of MinCos applied to the Poisson 2D matrix, for different values of n and a maximum of 20 iterations, when [image: there is no content], [image: there is no content], and [image: there is no content].

	
Matrix A

	
Size n × n

	
[image: there is no content][image: there is no content]

	
[image: there is no content] of [image: there is no content]

	
Iter

	
% Fil-in

	
Poisson 2D (50)

	
n = 2500

	
0.1361

	
[image: there is no content]

	
6

	
1.65

	
Poisson 2D (100)

	
n = 10000

	
0.1249

	
[image: there is no content]

	
7

	
0.41

	
Poisson 2D (150)

	
n = 22500

	
0.1248

	
[image: there is no content]

	
7

	
0.18

	
Poisson 2D (200)

	
n = 40000

	
0.1246

	
[9.78 × 10−4,1.1484]

	
7

	
0.10

Table 6. Performance of MinCos applied to the Poisson 3D matrix, for different values of n and a maximum of 20 iterations, when [image: there is no content], [image: there is no content], and [image: there is no content].

	
Matrix A

	
Size n × n

	
[image: there is no content][image: there is no content]

	
[image: there is no content] of [image: there is no content]

	
Iter

	
% Fil-in

	
Poisson 3D (10)

	
n=1000

	
0.3393

	
[image: there is no content]

	
2

	
2.09

	
Poisson 3D(15)

	
n=3375

	
0.3357

	
[image: there is no content]

	
2

	
0.66

Table 7. Performance of MinCos applied to the Lehmer matrix, for different values of n and a maximum of 40 iterations, when [image: there is no content], [image: there is no content], and [image: there is no content].

	
Matrix A

	
[image: there is no content][image: there is no content]

	
[image: there is no content] of [image: there is no content]

	
Iter

	
% Fil-in

	
Lehmer (100)

	
0.0150

	
[image: there is no content]

	
40

	
37.04

	
Lehmer (200)

	
0.0180

	
[image: there is no content]

	
40

	
38.34

For the Lehmer matrix, which is one of the most difficult considered matrices, we observe in Table 7 that the MinCos Algorithm produces a symmetric and positive definite preconditioner with a significant reduction of the condition number, but after 40 iterations and fixing [image: there is no content], for which the preconditioner accepts a high level of fill-in. If we impose a low level of fill-in, by reducing the value of [image: there is no content], MinCos still produces a symmetric and positive definite matrix, but the reduction of the condition number is not significant.

We close this section mentioning that both methods (MinCos and MinRes) produce sparse approximations to the inverse with comparable sparsity as shown in Table 3 (last column). Notice also that MinCos produces a sequence [image: there is no content] such that the eigenvalues of [image: there is no content] are strictly positive at convergence, which, in turn, implies that the matrices [image: there is no content] are invertible after a sufficiently large k. This important property cannot be satisfied by MinRes.

4. Conclusions

We have introduced and analyzed two gradient-type optimization schemes to build sparse inverse preconditioners for symmetric positive definite matrices. For that, we have proposed the novel objective function [image: there is no content], which is invariant under positive scaling and has some special properties that are clearly related to the geometry of the [image: there is no content] cone. One of the new schemes, the CauchyCos Algorithm, is closely related to the classical steepest descent method, and as a consequence, it shows in most cases a very slow convergence. The second new scheme, denoted as the MinCos Algorithm, shows a much faster performance and competes favorably with well-known methods. Based on our numerical results, by choosing properly the numerical dropping parameters, the MinCos Algorithm produces a sparse inverse preconditioner in the [image: there is no content] cone for which a significant reduction of the condition number is observed, while keeping a low level of fill-in.

Acknowledgments

The second author was supported by the Fédération ARC (FR CNRS 3399) throughout a 3 months stay "Poste Rouge CNRS". The major part of this work was done on this occasion.

Author Contributions

Both authors contributed at exactly the same level in all aspects (theoretical, algorithmic, experimental and redactional) of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Bertaccini, D.; Filippone, S. Sparse approximate inverse preconditioners on high performance GPU platforms. Comput. Math. Appl. 2016, 71, 693–711. [CrossRef]

	2.
Carr, L.E.; Borges, C.F.; Giraldo, F.X. An element based spectrally optimized approximate inverse preconditioner for the Euler equations. SIAM J. Sci. Comput. 2012, 34, 392–420. [CrossRef]

	3.
Chehab, J.-P. Matrix differential equations and inverse preconditioners. Comput. Appl. Math. 2007, 26, 95–128. [CrossRef]

	4.
Chen, K. An analysis of sparse approximate inverse preconditioners for boundary integral equations. SIAM J. Matrix Anal. Appl. 2001, 22, 1058–1078. [CrossRef]

	5.
Chen, K. Matrix Preconditioning Techniques and Applications; Cambridge University Press: Cambridge, UK, 2005.

	6.
Chow, E.; Saad, Y. Approximate inverse preconditioners via sparse–sparse iterations. SIAM J. Sci. Computing 1998, 19, 995–1023. [CrossRef]

	7.
Chung, J.; Chung, M.; O’Leary, D.P. Optimal regularized low rank inverse approximation. Linear Algebra Appl. 2015, 468, 260–269. [CrossRef]

	8.
Guillaume, P.H.; Huard, A.; LeCalvez, C. A block constant approximate inverse for preconditioning large linear systems. SIAM J. Matrix Anal. Appl. 2002, 24, 822–851. [CrossRef]

	9.
Labutin, I.; Surodina, I.V. Algorithm for sparse approximate inverse preconditioners in the conjugate gradient method. Reliab. Comput. 2013, 19, 120–126.

	10.
Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2010.

	11.
Sajo-Castelli, A.M.; Fortes, M.A.; Raydan, M. Preconditioned conjugate gradient method for finding minimal energy surfaces on Powell-Sabin triangulations. J. Comput. Appl. Math. 2014, 268, 34–55. [CrossRef]

	12.
Li, R.; Saad, Y. GPU-accelerated preconditioned iterative linear solvers. J. Supercomput. 2013, 63, 443–466. [CrossRef]

	13.
Chow, E.; Saad, Y. Experimental study of ILU preconditioners for indefinite matrices. J. Comput. Appl. Math. 1997, 86, 387–414. [CrossRef]

	14.
Manteuffel, T.A. An incomplete factorization technique for positive definite linear systems. Math. Comp. 1980, 34, 473–497. [CrossRef]

	15.
Benzi, M.; Tuma, M. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 1999, 30, 305–340. [CrossRef]

	16.
Kaporin, I.E. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU decomposition. Numer. Linear Algebra Appl. 1998, 5, 483–509. [CrossRef]

	17.
Chow, E.; Saad, Y. Approximate inverse techniques for block-partitioned matrices. SIAM J. Sci. Comput. 1997, 18, 1657–1675. [CrossRef]

	18.
Cosgrove, J.D.F.; Díaz, J.C.; Griewank, A. Approximate inverse preconditioning for sparse linear systems. Int. J. Comput. Math. 1992, 44, 91–110. [CrossRef]

	19.
González, L. Orthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioning. SIAM Rev. 2006, 48, 66–75. [CrossRef]

	20.
Gould, N.I.M.; Scott, J.A. Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM J. Sci. Comput. 1998, 19, 605–625. [CrossRef]

	21.
Kolotilina, L.Y.; Yeremin, Y.A. Factorized sparse approximate inverse preconditioning I. Theory. SIAM J. Matrix Anal. Appl. 1993, 14, 45–58. [CrossRef]

	22.
Montero, G.; González, L.; Flórez, E.; García, M.D.; Suárez, A. Approximate inverse computation using Frobenius inner product. Numer. Linear Algebra Appl. 2002, 9, 239–247. [CrossRef]

	23.
Andreani, R.; Raydan, M.; Tarazaga, P. On the geometrical structure of symmetric matrices. Linear Algebra Appl. 2013, 438, 1201–1214. [CrossRef]

	24.
Chehab, J.P.; Raydan, M. Geometrical properties of the Frobenius condition number for positive definite matrices. Linear Algebra Appl. 2008, 429, 2089–2097. [CrossRef]

	25.
Hill, R.D.; Waters, S.R. On the cone of positive semidefinite matrices. Linear Algebra Appl. 1987, 90, 81–88. [CrossRef]

	26.
Iusem, A.N.; Seeger, A. On pairs of vectors achieving the maximal angle of a convex cone. Math. Program. Ser. B 2005, 104, 501–523. [CrossRef]

	27.
Tarazaga, P. Eigenvalue estimates for symmetric matrices. Linear Algebra Appl. 1990, 135, 171–179. [CrossRef]

	28.
Bertsekas, D.P. Nonlinear Programming; Athena Scientific: Boston, MA, USA, 1999.

	29.
Ribeiro, A.A.; Karas, E.W. Otimização Contínua: Aspectos Teóricos e Computacionais; Cengage Learning Editora: Curitiba, Brazil, 2014.

	30.
Forsman, K.; Gropp, W.; Kettunen, L.; Levine, D.; Salonen, J. Solution of dense systems of linear equations arising from integral equation formulations. Antennas Propag. Mag. 1995, 37, 96–100. [CrossRef]

	31.
Helsing, J. Approximate inverse preconditioners for some large dense random electrostatic interaction matrices. BIT Numer. Math. 2006, 46, 307–323. [CrossRef]

	32.
Matrix Market. Available online: http://math.nist.gov/MatrixMarket/ (accessed on 1 October 2015).

	33.
Schulz, G. Iterative Berechnung der Reziproken matrix. Z. Angew. Math. Mech. 1933, 13, 57–59. [CrossRef]

	34.
Cahueñas, O.; Hernández-Ramos, L.M.; Raydan, M. Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems. Bull. Comput. Appl. Math. 2013, 1, 69–91.

	35.
Soleymani, F. On a fast iterative method for approximate inverse of matrices. Commun. Korean Math. Soc. 2013, 28, 407–418. [CrossRef]

	36.
Toutounian, F.; Soleymani, F. An iterative method for computing the approximate inverse of a square matrix and the Moore—Penrose inverse of a non-square matrix. Appl. Math. Comput. 2013, 224, 671–680. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 mathematics-04-00046

 		
 mathematics-04-00046

media/file5.png
Eigenvalues of the preconditioned matrix computed with cos MF

*

* % %

Kok ok

¥
*
*

Eigenvalues of A

100

150 200

250

300

350

media/file3.png
Residual

——— Precond CG

—CG

(0] 50 100 150 200 250 300
iterations

media/file1.png
Merit function=1-cos Merit function=1-cos
10 T T 10 T T T T

[—e— Cauchy cos |] —— MinRes |]
+ — — = Cauchy fro |[{ F MinCos |

2

10 "
S~ - <4
-~ - - -
1 Te—a 10*3 1 1 1 1
1000 1500 0 5 10 15 20 25
iterations iterations
Merit function=Frobenius norm s Merit function=Frobenius norm
T 10 T T T T
—s— Cauchy cos |] [
+ == Cauchy fro | 3
- 101 -
100 1 1 100 1 1 1 1
0 500 1000 1500 0 5 10 15 20 25
iterations iterations

(a) CauchyFro versus CauchyCos (b) MinRes versus MinCos

media/file4.jpg
abbbbozees.

abbbbozree.

media/file6.png

media/file0.jpg
(a) CauchyFro versus CauchyCos (b) MinRes versus MinCos

media/file2.jpg
Residual

10

10

207

1071

——— Precond CG
—CG

50

100

150 200 250
iterations

300

