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1. Introduction

For an ideal I of a commutative ring R with identity , the arithmetical rank (ara I) of the ideal I
is defined as the minimum number s of elements a1, . . . , as of R such that

√
I =

√
(a1, . . . , as). For a

squarefree monomial ideal I, it is known that pdR(R/I) ≤ ara(I) and bight(I) ≤ pdR(R/I) (see,
for example, [1,2]). Thus,

ht(I) ≤ bight(I) ≤ pdR(R/I) ≤ ara(I) ≤ µ(I)

where µ(I) is the minimum number of generators of I. R/I is Cohen–Macaulay if and only if
ht(I) = pdR(R/I). An ideal I is called a set-theoretic complete intersection whenever ht(I) = ara(I).
If I is not unmixed, then I is not a set-theoretic complete intersection. However, it is possible to
have bight(I) = pdR(R/I) = ara(I). The question then arises, “For which ideal does the previous
equality hold?”

Given a polynomial ring R = K[x1, . . . , xn] over a field K and a simple graph G with the vertex
set VG = {x1, . . . , xn} and the edge set EG, the edge ideal of G, denoted by I(G), is the ideal of R
generated by xixj such that {xi, xj} ∈ EG. The graph G is called Cohen–Macaulay over the field K if
the ring R/I(G) is Cohen–Macaulay.

It is still an open problem to find an explicit formula for the arithmetical rank of the edge ideal of a
graph. For the edge ideal of a forest, it is shown that bight(I(G)) = araI(G) = pd(R/I(G)) by Barile [3]
and Kimura and Terai [4]. In [5], Barile et al. proved that araI(G) = pd(R/I(G)) when G is a cyclic or
bicyclic graph. In [6], Mohammadi and Kiani investigated the graphs consisting of some cycles and
lines that have a common vertex. It is shown that the projective dimension equals the arithmetical rank
for all such graphs. A graph G is called an n-cyclic graph with a common edge if G is a graph consisting
of n cycles C3r1+1, . . . , C3rk1

+1, C3t1+2, . . . , C3tk2
+2, C3s1 , . . . , C3sk3

connected through a common edge,
where k1 + k2 + k3 = n. Zhu, Shi and Gu proved that pd(R/I(G)) = bightI(G) = ara(I(G)) for some
special n-cyclic graphs with a common edge [7]. For the class of generalized theta graphs, G = θn1,...,nk ,
the authors in [8] showed that pd(R/I(G)) = bightI(G) except in the following two cases:
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1. ni ≡ 0 (mod 3) for any 1 ≤ i ≤ k;
2. there exists exactly one nj such that nj ≡ 1 (mod 3), and for any 1 ≤ i 6= j ≤ k, we have ni ≡ 2

(mod 3).

For these cases, they show that pd(R/I(G)) = bightI(G) + 1.
Since bightI(G) ≤ ara(I(G)), it can be interesting to compare these invariants for the generalized

theta graphs. In the sequel, we compute the height of the edge ideal of generalized theta graphs based
on the number of vertices being even or odd in any path. Moreover, we show that G = θn1,...,nk is
Cohen–Macaulay (and unmixed) if and only if G = θ2,3,4.

2. Arithmetical Rank of the Edge Ideal of a Generalized Theta Graph

Let k ≥ 3 be a positive integer and n1, . . . , nk be a sequence of positive integers. Let θn1,...,nk be the
graph constructed by k paths with n1, . . . , nk vertices with only the endpoints in common. Since the
graphs are assumed to be simple, at most one of n1, . . . , nk can be equal to two. Throughout this paper,
we assume that x and y are the common vertices. We define the projective dimension of G to be the
projective dimension of the R-module R/I(G) and we will write pd(G) = pd(R/I(G)). The edge
ideal of a cycle of length n with the vertex set {x1, . . . , xn} is I(Cn) = (x1x2, x2x3, . . . , xn−1xn, xnx1).
The edge ideal of a line (path) with the vertex set {x1, . . . , xn} is I(Ln) = (x1x2, x2x3, . . . , xn−1xn).
In the following, we consider the labeling below:

I(L3si ) = (x1,ix2,i, x2,ix3,i, . . . , x3si−1,ix3si ,i); f or i = 1, . . . , k3

I(L3rj+1) = (y1,jy2,j, y2,jy3,j, . . . , y3rj ,jy3rj+1,j); f or j = 1, . . . , k1

I(L3tl+2) = (z1,lz2,l , z2,lz3,l , . . . , z3tl+1,lz3tl+2,l); f or l = 1, . . . , k2

Suppose that min{n1, . . . , nk} = nt. One can consider the graph θn1,...,nk as a (k− 1)-cyclic graph
with common path Lnt consisting of k − 1 cycles of lengths ni + nt − 2 for any 1 ≤ i 6= t ≤ k.
This generalizes the concept of n-cyclic graphs with a common edge.

For instance, let G = θn1,...,nk1+k3
be the graph consisting of lines L3r1+1, . . . , L3rk1

+1, L3s1 , . . . , L3sk3
such that k1, k3 > 0. Without loss of generality, suppose that min{n1, . . . , nk1+k3} = 3s1. One can
consider G as a (k1 + k3 − 1)-cyclic graph with common path L3s1 that the cycles are of lengths
3s1 + 3rj + 1− 2 = 3(s1 + rj − 1) + 2 or 3s1 + 3si− 2 = 3(s1 + si− 1)+ 1 for 1 ≤ j ≤ k1 and 2 ≤ i ≤ k3.
Consider the following labeling for I(C3(s1+rj−1)+2):

I(C3(s1+rj−1)+2) = (x1,1x2,1, . . . ,x3s1−1,1x3s1,1, x3s1,1y3s1+1,j, y3s1+1,jy3s1+2,j, . . . ,

y3(s1+rj−1)+1,jy3(s1+rj−1)+2,j, y3(s1+rj−1)+2,jx1,1)

In this section, we obtain an upper bound for the arithmetical rank of the edge ideal of generalized
theta graphs. Using the big height of the edge ideal of these graphs computed in [8], we estimate an
upper bound for araI(θn1,...,nk )− bightI(θn1,...,nk ). For this purpose, we consider seven cases that are
treated separately in the following theorems.

Theorem 1. Let G = θn1,...,nk3
be the graph consisting of lines L3s1 , . . . , L3sk3

, i.e., ni = 3si for 1 ≤ i ≤ k3. Then,

0 ≤ araI(G)− bightI(G) ≤ k3 − 1

Proof. By definition, one can consider G as a (k3 − 1)-cyclic graph with common path of
length min{n1, . . . , nk3}. Without loss of generality, we may assume min{n1, . . . , nk3} = 3s1.
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Since 3s1 + 3si − 2 = 3(s1 + si − 1) + 1 for any i 6= 1, by ([5], Proposition 2.3), we can construct
Q2, . . . , Qk3 as follows: for any 2 ≤ i ≤ k3, set Qi = (q0, q1,i, q2, . . . , q2(s1+si−1)+1,i) where

q0 = x1,1x2,1

q1,i = x1,1x3(s1+si−1)+1,i + x2,1x3,1

q2 = x4,1x5,1

q3 = x3,1x4,1 + x5,1x6,1

...

q2(s1−1) = x3s1−2,1x3s1−1,1

q2s1−1 = x3s1−3,1x3s1−2,1 + x3s1−1,1x3s1,1

q2s1,i = x3s1+1,ix3s1+3,i

...

q2(s1+si−1),i = x3(s1+si−1),ix3(s1+si−1)+1,i

Observe that the sequences Q2, . . . , Qk3 have 2s1 − 1 common elements, namely q0, q2, . . . , q2s1−1.
On the other hand, by ([9] p. 249), we have

√
Qi = I(C3(s1+si−1)+1). Therefore, we deduce

araI(G) ≤ (2s1 − 1) +
k3

∑
i=2

((2s1 + 2si − 2− 2s1 + 1) + 1) = 2
k3

∑
i=1

si − 1

Similar to the proof of Theorem 2.11 of [8], we obtain that bightI(G) = 2 ∑k3
i=1 si − k3, it follows that

0 ≤ araI(G)− bightI(G) ≤ k3 − 1

as desired.

Theorem 2. Let G = θn1,...,nk1
be the graph consisting of lines L3r1+1, . . . , L3rk1

+1, i.e., ni = 3ri + 1 for
1 ≤ i ≤ k1. Then,

pd(G) = bightI(G) = araI(G) = 2
k1

∑
i=1

ri

Proof. For 1 ≤ i ≤ k1, a similar argument as in ([3], p. 4701), Put Qi is generated up to radical by

y2,iy3,i

y1,iy2,i + y3,iy4,i

...

y3j−1,iy3j,i

y3j−2,iy3j−1,i + y3j,iy3j+1,i

...

y3ri−2,iy3ri−1,i + y3ri ,iy3ri+1,i

we have I(G) =
√

Q1 + . . . + Qk1 by ([9], p. 249). Then, araI(G) ≤ 2 ∑k1
i=1 ri. Similar to the proof of

Theorem 2.6 of [8], we obtain that 2 ∑k1
i=1 ri, it follows that



Mathematics 2016, 4, 43 4 of 18

pd(G) = bightI(G) = araI(G) = 2
k1

∑
i=1

ri

Theorem 3. Let G = θn1,...,nk2
be the graph consisting of lines L3t1+2, . . . , L3tk2

+2, i.e., ni = 3ti + 2 for
1 ≤ i ≤ k2. Then,

0 ≤ araI(G)− bightI(G) ≤ k2 − 2

Proof. We can assume, without loss of generality, that min{n1, . . . , nk2} = n1. By definition,
one may consider G as a (k2 − 1)-cyclic graph with common path Ln1 that any cycle
contains only 3(t1 + ti) + 2 vertices. Applying Proposition 2.4 of [5], we construct
Qi = (q0, q1, . . . , q2(t1−1)+1, q2t1,i, q2t1+1,i, . . . , q2(t1+ti),i) for any 2 ≤ i ≤ k2 as follows:

q0 = z1,1z2,1

q1 = z2,1z3,1 + z4,1z5,1

...

q2l = z3l,1z3l+1,1 + z3l+2,1z3l+3,1

q2l+1 = z3l+2,1z3l+3,1 + z3l+4,1z3l+5,1

...

q2(t1−1)+1 = z3t1−1,1z3t1,1 + z3t1+1,1z3t1+2,1

q2t1,i = z3t1,1z3t1+1,1 + z3t1+2,1z3t1+3,i

...

q2(t1+h),i = z3(t1+h),iz3(t1+h)+1,i + z3(t1+h)+2,iz3(t1+h)+3,i

q2(t1+h)+1,i = z3(t1+h)+2,iz3(t1+h)+3,i + z3(t1+h)+4,iz3(t1+h)+5,i

...

q2(t1+ti),i = z1,1z3(t1+ti)+2,i + z3(t1+ti),iz3(t1+h)+1,i

We have I(G) = ∑k2
i=2 I(C3(t1+ti)+2), and it follows from ([9], p. 249) that

I(G) =

√√
(Q2) + . . . +

√
(Qk2). It is easily seen that the sequences Q2, . . . , Qk2 have the terms

q0, q1, . . . , q2(t1−1)+1 in common. Hence,

araI(G) ≤ 2
k3

∑
i=1

ti + k2 − 1

Similar to the proof of Theorem 2.7 of [8], we obtain that bightI(G) = 2 ∑k2
i=1 ti + 1, and it

follows that

0 ≤ araI(G)− bightI(G) ≤ 2
k2

∑
i=1

ti + k2 − 1− (2
k2

∑
i=1

ti + 1) = k2 − 2

as required.

Theorem 4. Let G = θn1,...,nk1+k3
be the graph consisting of lines L3r1+1, . . . , L3rk1

+1, L3s1 , . . . , L3sk3
, i.e.,

ni = 3ri + 1 for 1 ≤ i ≤ k1 and ni = 3si for k1 + 1 ≤ i ≤ k1 + k3 such that k1, k3 > 0. Then,
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1. If there exists 1 ≤ i ≤ k1 such that min{n1, . . . , nk1+k3} = 3ri + 1, then 0 ≤ araI(G)− bightI(G) ≤
min{k3, ri + k1 + k3 − 3};

2. If there exists 1 ≤ j ≤ k3 such that min{n1, . . . , nk1+k3} = 3sj, then 0 ≤ araI(G) − bightI(G) ≤
min{k3, sj + k3 − 2}.

Proof. We have araI(L3ri+1) = 2ri and araI(L3sj) = 2sj by ([3], p. 4701). It follows that

araI(G) ≤ 2
k1

∑
i=1

ri + 2
k3

∑
j=1

sj (1)

1. Without loss of generality, assume that min{n1, . . . , nk1+k3} = 3r1 + 1. One can consider G as a
(k1 + k3 − 1)-cyclic graph with common path L3r1+1 that the cycles are of lengths 3r1 + 1 + 3ri +

1− 2 = 3(r1 + ri) or 3r1 + 1 + 3sj − 2 = 3(r1 + sj − 1) + 2 for 2 ≤ i ≤ k1 and 1 ≤ j ≤ k3. Now,
suppose that

q0 = y1,1y2,1

q1,i = y1,1y3(r1+ri),i + y2,1y3,1

...

q2(r1−1)+1 = y3(r1−1),1y3(r1−1)+1,1 + y3(r1−1)+2,1y3(r1−1)+3,1

q2r1,i = y3r1+1,1y3r1+2,i

...

q2h,i = y3h+1,iy3h+2,i

q2h+1,i = y3h,iy3h+1,i + y3h+2,iy3h+3,i

...

q2(r1+ri−1)+1,i = y3(r1+ri−1),iy3(r1+ri−1)+1,i + y3(r1+ri−1)+2,iy3(r1+ri−1)+3,i

Which generate up to radical I(C3(r1+ri)
). Note that the terms q0, q2, . . . , q2(r1−1)+1 are in common

for any sequences generating ideal I(C3(r1+ri)
) up to radical and 2 ≤ i ≤ k1. For any 1 ≤ j ≤ k3,

we define:

q′0 = y1,1y2,1

q′1 = y2,1y3,1 + y4,1y5,1

...

q′2l = y3l,1y3l+1,1 + y3l+2,1y3l+3,1

q′2l+1 = y3l+2,1y3l+3,1 + y3l+4,1y3l+5,1

...

q′2(r1−1) = y3r1−3,1y3r1−2,1 + y3r1−1,1y3r1,1

q′2r1−1,j = y3r1−1,1y3r1,1 + y3r1+1,1x3r1+2,j

...

q′2h,j = x3h,jx3h+1,j + x3h+2,jx3h+3,j

q′2h+1,j = x3h+2,jx3h+3,j + x3h+4,jx3h+5,j

...

q′2(r1+sj−1),i = y1,1x3(r1+sj−1)+2,j + x3(r1+sj−1),jx3(r1+sj−1)+1,j
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and we can obtain that I(C3(r1+sj−1)+2) =
√
(q′0, q′1, . . . , q2(r1+sj−1),j). We can obtain that there

are the common terms q′0, q′1, . . . , q′2(r1−1) in any of sequences generating ideal I(C3(r1+sj−1)+2)

up to radical for any 1 ≤ j ≤ k3. On the other hand, we have q0 = q′0 and q2m+1 = q′2m, for any
1 ≤ m ≤ r1 − 1. Applying these arguments, we obtain

araI(G) ≤ 2
k1

∑
i=1

ri + 2
k3

∑
j=1

sj + r1 + k1 − 3 (2)

Thus, the inequalities Equations (1) and (2), together with ([8], Theorem 2.8), imply that

0 ≤ araI(G)− bightI(G) ≤ min{k3, r1 + k1 + k3 − 3}

2. We may assume, without loss of generality, that min{n1, . . . , nk1+k3} = 3s1. One can consider G as
a (k1 + k3 − 1)-cyclic graph with common path L3s1 that the cycles are of lengths 3s1 + 3si − 2 =

3(s1 + si − 1) + 1 for any 2 ≤ i ≤ k3 or 3s1 + 3rj + 1− 2 = 3(s1 + rj − 1) + 2 for any 1 ≤ j ≤ k1.
Applying Proposition 2.3 of [5], we construct the following sequences:

q0 = x1,1x2,1

q1,i = x1,1x3(s1+si−1)+1,i + x2,1x3,1

...

q2(s1−1) = x3s1−2,1x3s1−1,1

q2s1−1 = x3s1−3,1x3s1−2,1 + x3s1−1,1x3s1,1

q2s1,i = x3s1+1,ix3s1+2,i

...

q2h,i = x3h+1,ix3h+2,i

q2h+1,i = x3h,ix3h+1,i + x3h+2,ix3h+3,i

...

q2(s1+si−1),i = x3(s1+si−1),ix3(s1+si−1)+1,i

We have I(C3(s1+si−1)+1) =
√
(q0, q1,i, . . . , q2(s1+si−1),i) for any 2 ≤ i ≤ k3. It is easily seen

that the above constructed sequences have 2s1 − 1 terms in common. Now, suppose that
I(C3(s1+rj−1)+2) =

√
(q′0, . . . , q′2(s1+rj−1),j) where
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q′0 = x1,1x2,1

q′1 = x2,1x3,1 + x4,1x5,1

...

q′2l = x3l,1x3l+1,1 + x3l+2,1x3l+3,1

q′2l+1 = x3l+2,1x3l+3,1 + x3l+4,1x3l+5,1

...

q′2(s1−1) = x3s1−3,1x3s1−2,1 + x3s1−1,1x3s1,1

q′2s1−1,j = x3s1−1,1x3s1,1 + y3s1+1,jy3s1+2,j

...

q′2h,j = y3h,jy3h+1,j + y3h+2,jy3h+3,j

q′2h+1,j = y3h+2,jy3h+3,j + y3h+4,jy3h+5,j

...

q′2(s1+rj−1),j = x1,1y3(s1+rj−1)+2,j + y3(s1+rj−1),jy3(s1+rj−1)+1,j

for all 1 ≤ j ≤ k1. One can check that the above constructed sequences have 2s1 − 1 terms in
common. On the other hand, we have q0 = q′0 and q2m+1 = q′2m for any 1 ≤ m ≤ s1 − 1. Using
the preceding arguments and the fact that I(G) = ∑k3

i=2 I(C3(s1+si−1)+1) + ∑k1
j=1 I(C3(s1+rj−1)+2),

we get

araI(G) ≤ 2
k3

∑
i=1

si + 2
k1

∑
j=1

rj + s1 − 2 (3)

Thus, the inequalities Equations (1) and (3), together with ([8], Theorem 2.8), yield the inequality

0 ≤ araI(G)− bightI(G) ≤ min{k3, s1 + k3 − 2}

Theorem 5. Let G = θn1,...,nk2+k3
be the graph consisting of lines L3s1 , . . . , L3sk3

, L3t1+2, . . . , L3tk2
+2, i.e.,

ni = 3si for 1 ≤ i ≤ k3 and ni = 3ti + 2 for k3 + 1 ≤ i ≤ k3 + k2 such that k2, k3 > 0. Then,

1. If there exists 1 ≤ i ≤ k3 such that min{n1, . . . , nk2+k3} = 3si, then 0 ≤ araI(G) − bightI(G) ≤
k2 + k3 − 2;

2. If there exists 1 ≤ j ≤ k2 such that min{n1, . . . , nk2+k3} = 3tj + 2, then 0 ≤ araI(G)− bightI(G) ≤
min{k2 + k3 + tj − 2, k2 + k3 − 1}.

Proof.

1. Without loss of generality, one may assume min{n1, . . . , nk2+k3} = 3s1. We can consider G as a
(k2 + k3− 1)-cyclic graph with common path L3s1 of which the cycles are of lengths 3s1 + 3si− 2 =

3(s1 + si − 1) + 1 for any 2 ≤ i ≤ k3 or 3s1 + 3tj + 2 − 2 = 3(s1 + tj) for any 1 ≤ j ≤ k2.
Applying Proposition 2.2 of [5], we have I(C3(s1+tj)

) =
√
(q′0, q′1,j, . . . , q′2(s1+tj)−1,j), where
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q′0 = x1,1x2,1

q′1,j = x1,1z3(s1+tj),j + x2,1x3,1

...

q′2(s1−1)+1 = x3(s1−1),1x3(s1−1)+1,1 + x3(s1−1)+2,1x3(s1−1)+3,1

q′2s1,j = z3s1+1,jz3s1+2,j

...

q′2h,j = z3h+1,jz3h+2,j

q′2h+1,j = z3h,jz3h+1,j + z3h+2,jz3h+3,j

...

q′2(s1+tj−1)+1,j = z3(s1+tj−1),jz3(s1+tj−1)+1,j + z3(s1+tj−1)+2,jz3(s1+tj−1)+3,j

for any 1 ≤ j ≤ k2. Note that, for the above constructed sequences, the elements q′0, q′2, . . . , q′2s1−1
are in common. With the same argument as in the proof of Theorem 4, we have I(C3(s1+ri−1)+1) =√
(q0, . . . , q2(s1+si−1),i) for any 2 ≤ i ≤ k3. On the other hand, we have q0 = q′0 and qm = q′m

for any 2 ≤ m ≤ 2s1 − 1. In addition, I(G) = ∑k3
i=2 I(C3(s1+si−1)+1) + ∑k2

j=1 I(C3(s1+tj)
). Thus, it

follows that

araI(G) ≤ 2
k3

∑
i=1

si + 2
k2

∑
j=1

tj + k2 − 1 (4)

Furthermore, ([3], p. 4701) implies that araI(L3tj+2) = 2tj + 1 and araI(L3si ) = 2si, and hence

araI(G) ≤ 2
k3

∑
i=1

si + 2
k2

∑
j=1

tj + k2 (5)

From the Equations (4) and (5), together with ([8], Theorem 2.9), we get

0 ≤ araI(G)− bightI(G) ≤ k2 + k3 − 2

as desired.
2. Without loss of generality, one may assume min{n1, . . . , nk2+k3} = 3t1 + 2. One can consider

G as a (k2 + k3 − 1)-cyclic graph with common path L3t1+2 which the cycles are of lengths
3(t1 + ti) + 2 for any 2 ≤ i ≤ k2 or 3(t1 + sj) for any 1 ≤ j ≤ k3. Using the proof of Theorem 3,

we get I(C3(t1+ti)+2) =
√
(q0, . . . , q2(t1+ti),i) for any 2 ≤ i ≤ k2. Assume that
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q′0 = z1,1z2,1

q′1,j = z1,1x3(t1+rj),j + z2,1z3,1

...

q′2(t1−1)+1 = z3(t1−1),1z3(t1−1)+1,1 + z3(t1−1)+2,1z3(t1−1)+3,1

q′2t1,j = z3t1+1,1x3t1+2,j

...

q′2h,j = x3h+1,jx3h+2,j

q′2h+1,j = x3h,jx3h+1,j + x3h+2,jx3h+3,j

...

q′2(t1+sj−1)+1,j = x3(t1+sj−1),jx3(t1+sj−1)+1,j + x3(t1+sj−1)+2,jx3(t1+sj−1)+3,j

which generate up to radical I(C3(t1+sj)
). Observe that in all sequences generating ideal

I(C3(t1+sj)
) up to the radical, the elements q′0, q′2, . . . , q′2(t1−1)+1 are in common, for any

1 ≤ j ≤ k3. We have q0 = q′0 and q2m = q′2m+1 for any 1 ≤ m ≤ t1 − 1. Since I(G) =√
∑k2

i=2 I(C3(t1+ti)+2) + ∑k3
j=1 I(C3(t1+sj)

),

araI(G) ≤ 2
k3

∑
j=1

sj + 2
k2

∑
i=1

ti + t1 + k2 − 1 (6)

Thus, the inequalities Equations (4) and (6), together with ([8], Theorem 2.9), yield the
asserted inequality.

Theorem 6. Let G = θn1,...,nk1+k2
be the graph consisting of lines L3r1+1, . . . , L3rk1+1 , L3t1+2, . . . , L3tk2

+2, i.e.,
ni = 3ri + 1 for 1 ≤ i ≤ k1 and ni = 3ti + 2 for k1 + 1 ≤ i ≤ k1 + k2 such that k1, k2 > 0. Then,

1. If there exists 1 ≤ i ≤ k1 such that min{n1, . . . , nk1+k2} = 3ri + 1, then 0 ≤ araI(G)− bightI(G) ≤
min{2k2 + k1 − 2, k2};

2. If there exists 1 ≤ j ≤ k2 such that min{n1, . . . , nk1+k2} = 3tj + 2, then 0 ≤ araI(G)− bightI(G) ≤
min{tj + k2 + k1 − 1, k2}.

Proof.

1. Without loss of generality, suppose that min{n1, . . . , nk1+k2} = 3r1 + 1. One can consider G as a
(k1 + k2− 1)-cyclic graph with common path L3r1+1 where the cycles are of lengths 3r1 + 1+ 3tj +

2− 2 = 3(r1 + tj) + 1 for any 1 ≤ j ≤ k2 or 3r1 + 1 + 3ri + 1− 2 = 3(r1 + ri) for any 2 ≤ i ≤ k1.
Applying the same argument in the proof of Theorem 5 (1), we get

araI(G) ≤ 2
k1

∑
i=1

ri + 2
k2

∑
j=1

tj + 2k2 + k1 − 2 (7)

Hence, ([8], Theorem 2.12), ([3], p. 4701) and Equation (7) imply that 0 ≤ araI(G)− bightI(G) ≤
min{2k2 + k1 − 2, k2}.

2. We may assume, without loss of generality, that min{n1, . . . , nk1+k2} = 3t1 + 2. One can consider
G as a (k1 + k2 − 1)-cyclic graph with common path L3t1+2. Therefore, the cycles are of lengths
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3t1 + 2 + 3ti + 2− 2 = 3(t1 + ti) + 2 for any 2 ≤ i ≤ k2 or 3t1 + 2 + 3rj + 1− 2 = 3(t1 + rj) + 1
for any 1 ≤ j ≤ k1. The same argument as in the proof of Theorem 4 (2) shows that

araI(G) ≤ 2
k1

∑
i=1

ri + 2
k2

∑
i=1

ti + t1 + k2 + k1 − 1 (8)

Using ([8], Theorem 2.12), ([3], p. 4701) and Equation (8), one derives that 0 ≤ araI(G) −
bightI(G) ≤ min{t1 + k2 + k1 − 1, k2}.

Theorem 7. Let G = θn1,...,nk1+k2+k3
consist of lines L3s1 , . . . , L3sk3

, L3r1+1, . . . , L3rk1
+1, L3t1+2, . . . , L3tk2

+2, i.e.,
ni = 3si for 1 ≤ i ≤ k3, ni = 3ri + 1 for k3 + 1 ≤ i ≤ k3 + k1 and ni = 3ti + 2 for k1 + k3 + 1 ≤ i ≤
k1 + k3 + k2 such that k1, k2, k3 > 0. Then,

1. If there exists 1 ≤ i ≤ k3 such that min{n1, . . . , nk1+k2+k3} = 3si, then 0 ≤ araI(G)− bightI(G) ≤
min{k2 + k3 + si − 2, k2 + k3};

2. If there exists 1 ≤ j ≤ k1 such that min{n1, . . . , nk1+k2+k3} = 3rj + 1, then 0 ≤ araI(G) −
bightI(G) ≤ min{k1 + 2k2 + k3 + ri − 3, k2 + k3};

3. If there exists 1 ≤ l ≤ k2 such that min{n1, . . . , nk1+k2+k3} = 3tl + 2, then 0 ≤ araI(G)− bightI(G) ≤
min{k1 + k2 + k3 + tl − 1, k2 + k3}.

Proof.

1. Without loss of generality, suppose that min{n1, . . . , nk1+k2+k3} = 3s1. One can consider that
G is a (k1 + k2 + k3 − 1)-cyclic graph with common path L3s1 where the cycles are of lengths
3s1 + 3si − 2 = 3(s1 + si − 1) + 1 for any 2 ≤ i ≤ k3 or 3s1 + 3rj + 1− 2 = 3(s1 + rj − 1) + 2 for
any 1 ≤ j ≤ k1 or 3s1 + 3tl + 2− 2 = 3(s1 + tl) for any 1 ≤ l ≤ k2. Using the same argument as
in the proof of Theorems 1, 4 (2) and 5 (1), we get

araI(G) ≤(2s1 − 1) + 2
k2

∑
l=1

tl + k2

+ (2s1 − 1) + 2
k3

∑
i=2

si + (2s1 − 1) + 2
k1

∑
j=1

rj

− (1 + 2s1 − 2)− (1 + s1 − 1)

= 2
k2

∑
l=1

tl + 2
k1

∑
j=1

rj + 2
k3

∑
i=1

si + k2 + s1 − 2 (9)

It follows from Equation (9), ([8], Theorem 2.10) and ([3], p. 4701) that

0 ≤ araI(G)− bightI(G) ≤ min{k2 + k3 + s1 − 2, k2 + k3}

2. Without loss of generality, assume that min{n1, . . . , nk1+k2+k3} = 3r1 + 1. One can consider that
G is a (k1 + k2 + k3 − 1)-cyclic graph with common path L3r1+1 where the cycles are of lengths
3(r1 + rj) for any 2 ≤ j ≤ k1, 3(r1 + tl) + 1 for any 1 ≤ l ≤ k2 or 3(r1 + si − 1) + 2 for any
1 ≤ i ≤ k3. The same argument as in the proof of Theorems 4 (1) and 6 (1) shows that
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araI(G) ≤(2r1 − 1) + 2
k1

∑
l=1

rl + k1 − 1

+ (2r1 − 1) + 2
k2

∑
j=2

tj + 2k2 + (2r1 − 1) + 2
k3

∑
i=1

si

− (2r1 − 1)− (1 + r1 − 1)

= 2
k2

∑
l=1

tl + 2
k1

∑
j=1

rj + 2
k3

∑
i=1

si + 2k2 + k1 + r1 − 3 (10)

Therefore, by Equation (10), ([8], Theoerem 2.10) and ([3], p. 4701), we conclude that

0 ≤ araI(G)− bightI(G) ≤ min{k1 + 2k2 + k3 + r1 − 3, k2 + k3}

3. Without loss of generality, assume that min{n1, . . . , nk1+k2+k3} = 3t1 + 2. One can consider that
G is a (k1 + k2 + k3 − 1)-cyclic graph with common path L3t1+2, where the cycles are of lengths
3(t1 + si) for any 1 ≤ i ≤ k3, 3(t1 + rj) + 1 for any 1 ≤ j ≤ k1 or 3(t1 + tl) + 2 for any 2 ≤ l ≤ k2.
We can use the same argument as in the proof of Theorems 3, 5 (2) and 6 (2) to obtain

araI(G) ≤2t1 + 2
k3

∑
i=1

si

+ 2t1 + 2
k1

∑
j=1

rj + k1 + 2t1 + 2
k2

∑
l=2

tl + (k2 − 1)

− 2t1 − (1 + t1 − 1)

= 2
k2

∑
l=1

tl + 2
k1

∑
j=1

rj + 2
k3

∑
i=1

si + t1 + k2 + k1 − 1 (11)

Applying Equation (11), ([8], Theoerem 2.10) and ([3], p. 4701), we get

0 ≤ araI(G)− bightI(G) ≤ min{k1 + k2 + k3 + t1 − 1, k2 + k3}

as desired.

3. Cohen-Macaulayness of Generalized Theta Graph

In [2], Mohammadi and Kiani investigated some properties of graphs of the form θn1,...,nk ,
such as shellability, vertex decomposability and sequential Cohen-Macaulayness. The present
section is devoted to study Cohen-Macaulayness and unmixedness of these graphs, especially the
height of generalized theta graphs. The most important motivation to study this property comes
from the fact that R/I is Cohen-Macaulay if and only if ht(I) = pd(R/I). We check the equality
htI(G) = pd(R/I(G)) to verify Cohen-Macaulayness of the graph G = θn1,...,nk in some cases. Since the
projective dimension of a graph in this class is computed in [8], it only remains to obtain the value
of htI(G).
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Let us fix some notations that will be used throughout this section. By G1 ∪ G2, we mean the
graph obtaind by the disjoint union of G1 and G2. Furthermore, we suppose that the vertices of a line
graph Lni are labeled by x1,i, x2,i, . . . , xni ,i where x1,i = x and xni ,i = y. Note that

ht(I(Ln)) =

{
k n = 2k

k n = 2k + 1

Lemma 8. Let G = θn1,...,nk such that ni = 2mi for any 1 ≤ i ≤ k. Then,

htI(G) = (
k

∑
i=1

mi)− k + 1

Proof. Assume that A is a minimal vertex cover of G. One of the following cases may happen:
(x ∈ A, y /∈ A), (x /∈ A, y ∈ A), (x, y ∈ A), or (x, y /∈ A).

1. Suppose that x ∈ A, y /∈ A. We are going to find the minimum cardinality of minimal vertex
cover of G which do not contain y, so it suffices to cover the disjoint lines Ln1−2, . . . , Lnk−2 with
the minimum number of vertices such that NG(y) ⊆ A. We claim that

htI(Ln1−2 ∪ . . . ∪ Lnk−2) =
k

∑
i=1

(mi − 1)

Note that ni − 2 = 2(mi − 1). Furthermore, there exists a minimal vertex cover Bi for Lni−2 with
the minimum cardinality mi − 1 such that x2,i /∈ Bi and x3,i, xni−1,i ∈ Bi for any 1 ≤ i ≤ k. Hence,
in this case, the minimum number of vertices of such A to be equal to

1 +
k

∑
i=1

(mi − 1) = (
k

∑
i=1

mi)− k + 1

The number 1 appears in the above equality because x ∈ A.
2. Suppose that y ∈ A, x /∈ A. We can apply the same argument as in the previous case.
3. Assume that x, y ∈ A. To obtain a minimal vertex cover of G with minimum cardiality, we

may cover the disjoint lines Ln1−2, . . . , Lnk−2 with the minimum number of vertices such that
NG(x) and NG(y) are not contained in A. Since ni − 2 = 2(mi − 1) and there exists a minimal
vertex cover Bi for Lni−2 with the minimum cardinality mi − 1 such that x2,i, xni−1,i /∈ Bi for any
1 ≤ i ≤ k, we deduce that

htI(Ln1−2 ∪ . . . ∪ Lnk−2) =
k

∑
i=1

(mi − 1)

It follows that the minimum cardinality of such A to be equal to

2 +
k

∑
i=1

(mi − 1) = (
k

∑
i=1

mi)− k + 2

The number 2 appears in the above equality because x, y ∈ A.
4. Assume that x, y /∈ A. Applying the same argument, we may cover the disjoint lines

Ln1−2, . . . , Lnk−2 with the minimum number of vertices such that A contains NG(x) and NG(y).
There exists a minimal vertex cover Bi of cardinality mi for the line Lni−2 having an even number
of vertices such that x2,i, xni−1,i ∈ Bi for any 1 ≤ i ≤ k; therefore, we obtain the minimum number
of vertices of such A to be equal to ∑k

i=1 mi because x, y /∈ A.
Now, by comparing the above cases, we get
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htI(G) = (
k

∑
i=1

mi)− k + 1

as desired.

Lemma 9. Let G = θn1,...,nk such that ni = 2mi + 1 for any 1 ≤ i ≤ k. Then,

htI(G) = (
k

∑
i=1

mi)− k + 2

Proof. The techniques used in this proof are similar to the previous lemma. Suppose that A is a
minimal vertex cover of G. The only possible cases for x, y are (x ∈ A, y /∈ A), (x /∈ A, y ∈ A),
(x, y ∈ A), or (x, y /∈ A).

1. Suppose that x ∈ A, y /∈ A. We have NG(y) ⊆ A. There exists a minimal vertex cover Bi for
the line Lni−2 having an odd number of vertices such that x2,i /∈ Bi and xni−1,i ∈ Bi where the
minimum cardinality of Bi is mi for any 1 ≤ i ≤ k. Therefore,

htI(Ln1−2 ∪ . . . ∪ Lnk−2) =
k

∑
i=1

mi

Hence, we get the minimum number of vertices of such A to be equal to

1 +
k

∑
i=1

mi

The number 1 appears in the above equality because x ∈ A.
2. Suppose that y ∈ A, x /∈ A. We can apply the same argument as in the previous case.
3. Suppose that x, y ∈ A. There exists a minimal vertex cover Bi for Lni−2 such that x2,i, xni−1,i /∈

Bi, and, furthermore, the minimum number vertices of such Bi is mi − 1 for any 1 ≤ i ≤ k.
Since ni − 2 = 2(mi − 1) + 1,

htI(Ln1−2 ∪ . . . ∪ Lnk−2) = (
k

∑
i=1

mi)− k

It follows that the minimum cardinality of such A is equal to

2 +
k

∑
i=1

(mi − 1) = (
k

∑
i=1

mi)− k + 2

The number 2 appears in the above equality because x, y ∈ A.
4. Suppose that x, y /∈ A. Applying the same argument, we may cover the disjoint lines

Ln1−2, . . . , Lnk−2 with the minimum number of vertices such that A contains NG(x) and NG(y).
There exists a minimal vertex cover Bi of cardinality mi for the line Lni−2 having an odd number
of vertices such that x2,i, xni−1,i ∈ Bi for any 1 ≤ i ≤ k; therefore, we obtain the minimum number
of vertices of such A to be equal to ∑k

i=1 mi, because x, y /∈ A.
Since k ≥ 3, 2− k < 0. Now, we compare the results obtained from the cases above to get

htI(G) = (
k

∑
i=1

mi)− k + 2

as required.
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Lemma 10. Let G = θn1,...,nk such that ni = 2mi for any 1 ≤ i ≤ k1 and ni = 2li + 1 for any k1 + 1 ≤ i ≤ k. Then,

htI(G) = (
k1

∑
i=1

mi) + (
k

∑
i=k1+1

li)− k + 2

Proof. Assume that A is a minimal vertex cover for G. Applying the same argument in lemma 8,
the only possible cases for the common vertices x, y are (x ∈ A, y /∈ A), (x /∈ A, y ∈ A), (x, y ∈ A),
or (x, y /∈ A).

1. Assume that x ∈ A, y /∈ A. We have to cover the disjoint lines Ln1−2, . . . , Lnk−2 with the minimum
number of vertices such that NG(y) ⊆ A. We have ni − 2 = 2(mi − 1) for 1 ≤ i ≤ k1 and
ni − 2 = 2(li − 1) + 1 for k1 + 1 ≤ i ≤ k. It is easily seen that there exists a minimal vertex cover Bi
for Lni−2 having an even number of vertices, and the minimal vertex cover Ci for Lni−2 having an
odd number of vertices such that x2,i /∈ Bi for 1 ≤ i ≤ k1, x2,i /∈ Ci for k1 + 1 ≤ i ≤ k, xni−1,i ∈ Bi
for 1 ≤ i ≤ k1 and xni−1,i ∈ Ci for k1 + 1 ≤ i ≤ k1. The minimum size for Bi and Ci is mi − 1 and
li, respectively. Hence, in this case, we need at least ∑k1

i=1(mi − 1) + ∑k
i=k1+1 li vertices to create a

minimal vertex cover for the disjoint lines Ln1−2, . . . , Lnk−2. Then, the minimum size of such A is

(
k1

∑
i=1

mi) + (
k

∑
i=k1+1

li)− k1 + 1

2. Assume that y ∈ A, x /∈ A. We can apply the same argument as in the previous case.
3. Assume that x, y ∈ A. To obtain the minimum cardinality of such A, it suffices to cover the

disjoint graphs Ln1−2, . . . , Lnk−2 with the minimum number of vertices such that x2,i, xni−1,i /∈ A
for any 1 ≤ i ≤ k. There exists a minimal vertex cover Bi for the line having an even number of
vertices Lni−2 with the minimum number of vertices mi − 1 such that x2,i, xni−1,i for 1 ≤ i ≤ k1

are not contained in A. Moreover, there exists a minimal vertex cover Ci for the line having an
odd number of vertices Lni−2 with the minimum number of vertices li − 1 which does not contain
x2,i, xni−1,i for k1 + 1 ≤ i ≤ k . With this argument, to make a minimal vertex cover with the
minimum number vertices for the disjoint lines Ln1−2, . . . , Lnk−2 we may have

k1

∑
i=1

(mi − 1) +
k

∑
i=k1+1

(li − 1)

vertices. Then, the minimum cardinalty of such A is equal to

k1

∑
i=1

(mi − 1) +
k

∑
i=k1+1

(li − 1) + 2 =

(
k1

∑
i=1

mi) + (
k

∑
i=k1+1

li)− k1 − (k− k1) + 2 =

(
k1

∑
i=1

mi) + (
k

∑
i=k1+1

li)− k + 2

4. Assume that x, y /∈ A. In this case, we may cover the disjoint lines Ln1−2, . . . , Lnk−2 with
the minimum number of vertices such that A contains NG(x) and NG(y). For any line Lni−2

(1 ≤ i ≤ k1) containing even number of vertices, we can find the minimal vertex cover Bi with the
minimum number of vertices mi which contains x2,i, xni−1,i for 1 ≤ i ≤ k1. In addition, there exists
a minimal vertex cover Ci with the minimum number of vertices li which contains x2,i, xni−1,i for



Mathematics 2016, 4, 43 15 of 18

k1 + 1 ≤ i ≤ k . Therefore, in this case, the minimum number of vertices for covering the disjoint
lines Ln1−2, . . . , Lnk−2 is equal to ∑k1

i=1 mi + ∑k
i=k1+1 li. Hence, the minimum cardinality of such A

equals
k1

∑
i=1

mi +
k

∑
i=k1+1

li

Since k ≥ 3 and k1 ≥ 1, 1− (k− k1) ≤ 0. We compare the results obtained from the above cases
to obtain

htI(G) = (
k1

∑
i=1

mi) + (
k

∑
i=k1+1

li)− k + 2

as desired.

To verify Cohen-Macaulayness and unmixedness of the generalized theta graphs, we consider
only seven possible cases that are described in the following theorems.

Theorem 11. Let G be the graph θn1,...,nk1
consisting of lines L3r1+1, . . . , L3rk1

+1, i.e., ni = 3ri + 1 for
1 ≤ i ≤ k1. Then, G is not unmixed and hence not Cohen-Macaulay.

Proof. Applying Theorem 2.6 of [2], one can conclude that G is not sequentially Cohen–Macaulay.
This implies G is neither Cohen-Macaulay by ([10], Lemma 3.6) nor unmixed by ([8], Theorem 2.14).

Theorem 12. Let G be the graph θn1,...,nk2
consisting of lines L3t1+2, . . . , L3tk2

+2, i.e., ni = 3ti + 2 for
1 ≤ i ≤ k2. Then, G is not unmixed and hence not Cohen-Macaulay.

Proof. It suffices to show that G is not unmixed. We distinguish the three following cases:

1. There exist positive integers m1, . . . , mk2 such that ni = 2mi for any 1 ≤ i ≤ k2;
2. There exist nonnegative integers r1, . . . , rk2 such that ni = 2ri + 1 for any 1 ≤ i ≤ k2;
3. There exist positive integers m1, . . . , mk such that ni = 2mi for any 1 ≤ i ≤ k and nonnegative

integer numbers rk+1, . . . , rk2 such that ni = 2ri + 1 for any k + 1 ≤ i ≤ k2.

Using proof of Lemmas 8–10, it is readily seen that there exist two minimal vertex covers of
different sizes in any case, and then G is not unmixed.

Theorem 13. Let G be the graph θn1,...,nk1+k3
consisting of lines L3r1+1, . . . , L3rk1

+1, L3s1 , . . . , L3sk3
, i.e.,

ni = 3ri + 1 for 1 ≤ i ≤ k1 and ni = 3si for k1 + 1 ≤ i ≤ k1 + k3 such that k1, k3 > 0. Then, G is not
unmixed and hence not Cohen-Macaulay.

Proof. We have to verify the following cases:

• The set {n1, . . . , nk1+k3} does not contain {3, 4}. Applying Theorem 2.6 of [2], G is not sequentially
Cohen-Macaulay, and then G is not Cohen-Macaulay by ([10], Lemma 3.6). We therefore get G is
not unmixed by ([8], Theorem 2.14).

• {3, 4} ⊆ {n1, . . . , nk1+k3}. There exist positive integers mi such that ni = 2mi for any 1 ≤ i ≤ s
and there exist nonnegative integers li such that ni = 2li + 1 for any s + 1 ≤ i ≤ k1 + k3.
Using cases 3 and 4 of Lemma 10, we obtain two minimal vertex covers A and B of cardinalities
2 + (∑s

i=2 mi) + 1 + (∑k1+k3
i=s+2 li) − (k1 + k3) + 2 and 2 + (∑s

i=2 mi) + 1 + ∑k1+k3
i=s+2 li, respectively.

Since k1 + k3 ≥ 3, 5− (k1 + k3) 6= 3. Hence, G is not unmixed. Moreover, G is not Cohen-Macaulay.

Theorem 14. Let G be the graph θn1,...,nk2+k3
consisting of lines L3s1 , . . . , L3sk3

, L3t1+2, . . . , L3tk2
+2, i.e.,

ni = 3si for 1 ≤ i ≤ k3 and ni = 3ti + 2 for k3 + 1 ≤ i ≤ k3 + k2 such that k2, k3 > 0. Then, G is not
unmixed and hence not Cohen-Macaulay.
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Proof. It suffices to replace {3, 4} by {2, 3} in the proof of Theorem 13 and apply the same argument.

Theorem 15. Let G be the graph θn1,...,nk3
consisting of lines L3s1 , . . . , L3sk3

, i.e., ni = 3si for 1 ≤ i ≤ k3.
Then, G is not unmixed and hence not Cohen-Macaulay.

Proof. In order to show that G is not unmixed, we use the same argument of Theorem 12.

Theorem 16. Let G be the graph θn1,...,nk1+k2
consisting of lines L3r1+1, . . . , L3rk1

+1, L3t1+2, . . . , L3tk2
+2, i.e.,

ni = 3ri + 1 for 1 ≤ i ≤ k1 and ni = 3ti + 2 for k1 + 1 ≤ i ≤ k1 + k2 such that k1, k2 > 0. Then, G is not
unmixed and hence not Cohen-Macaulay.

Proof. From ([2], Lemma 2.6), we obtain that G is not sequentially Cohen-Macaulay and hence G is
not Cohen-Macaulay by ([10], Lemma 3.6). Applying Theorem 2.14 of [8], one concludes that G is
not unmixed for k1 ≥ 2. To complete the proof, it remains to prove that G is not unmixed for k1 = 1.
In this case, the same argument of Theorem 12 holds.

Theorem 17. Let G be the graph θn1,...,nk1+k2+k3
consisting of lines

L3r1+1, . . . , L3rk1
+1, L3t1+2, . . . , L3tk2

+2, L3s1 , . . . , L3sk3
, i.e., ni = 3ri + 1 for 1 ≤ i ≤ k1, ni = 3ti + 2 for

k1 + 1 ≤ i ≤ k1 + k2 and ni = 3si for k1 + k2 + 1 ≤ i ≤ k1 + k2 + k3 such that k1, k2, k3 > 0. Then, G is
Cohen-Macaulay (unmixed) if and only if G = θ2,3,4.

Proof.
⇐) Suppose that G = θ2,3,4. Set I(L2) = (xy), I(L3) = (xe, ey) and I(L4) = (xz, zt, ty).

Using CoCoA, I(G) has the minimal primary decomposition as

I(G) = (y, z, e) ∩ (x, y, t) ∩ (x, y, z) ∩ (x, t, e)

Hence, G is unmixed and Cohen-Macaulay by ([8], Theorem 2.14).
⇒) We know that G is Cohen-Macaulay (and hence unmixed) if and only if htI(G) = pd(G).

It is not difficult to see that htI(G) changes according to being even or odd the numbers ri, tj, sm

(1 ≤ i ≤ k1, 1 ≤ j ≤ k2, 1 ≤ m ≤ k3). By the description given above, there are only nine possible
cases. By checking all cases, it is seen that the equality htI(G) = pd(G) holds only for one case. In the
following, we examine two cases that seem more important.

• Suppose that there are nonnegative integers ri, tj and sm such that ri = 2li + 1, tj = 2gj and
sm = 2hm + 1 for any 1 ≤ i ≤ k1, 1 ≤ j ≤ k2 and 1 ≤ m ≤ k3. By Lemma 10, we get

htI(G) =
k1

∑
i=1

(3li) +
k2

∑
j=1

(3gj) +
k3

∑
m=1

(3hm) + k1 + 2

=
3
2

k1

∑
i=1

ri +
3
2

k2

∑
j=1

tj +
3
2

k3

∑
m=1

sm −
k1

2
− 3

2
k3 + 2

Similar to the proof of Theorem 2.10 of [8], we obtain that pd(G) = 2 ∑k1
i=1 ri + 2 ∑k2

j=1 tj +

2 ∑k3
m=1 sm − k3. Applying Theorem 2.10 of [8], we have
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htI(G) = pd(G)⇐⇒ 3
2

k1

∑
i=1

ri +
3
2

k2

∑
j=1

tj +
3
2

k3

∑
m=1

sm −
k1
2
− 3

2
k3 + 2 = 2

k1

∑
i=1

ri + 2
k2

∑
j=1

tj + 2
k3

∑
m=1

sm − k3

⇐⇒ 1
2

k1

∑
i=1

ri +
1
2

k2

∑
j=1

tj +
1
2

k3

∑
m=1

sm = 2− k1
2
− k3

2

⇐⇒
k1

∑
i=1

ri +
k2

∑
j=1

tj +
k3

∑
m=1

sm = 4− k1 − k3

⇐⇒ k1 = k3 = 1⇐⇒ r1 +
k2

∑
j=1

tj + s1 = 2

⇐⇒ r1 = s1 = 1, k2 = 1, t1 = 0

⇐⇒ G = θ2,3,4

• Suppose that there exist nonnegative integers li, gj and hm such that ri = 2li for any 1 ≤ i ≤ α and ri = 2li + 1
for any α + 1 ≤ i ≤ k1, tj = 2gj for any 1 ≤ j ≤ β and tj = 2gj + 1 for any β + 1 ≤ j ≤ k2, sm = 2hm for any
1 ≤ m ≤ γ and sm = 2hm + 1 for any γ + 1 ≤ m ≤ k3 which at least one of α, β and γ is non zero. Note that
we choose α, β and γ such that any of the other cases do not occur. Using Lemma 10, we obtain

htI(G) =
α

∑
i=1

(3li) +
k1

∑
i=α+1

(3li) +
β

∑
j=1

(3gj) +
k2

∑
j=β+1

(3gj) +
γ

∑
m=1

(3hm) +
k3

∑
m=γ+1

(3hm)

+ k1 + k2 − 2α− β− γ + 2 =
3
2

k1

∑
i=1

ri +
3
2

k2

∑
j=1

tj +
3
2

k3

∑
m=1

sm

− k1
2
− k2

2
− 3

2
k3 + 2 +

β

2
+

γ

2
− α

2

Applying Theorem 2.10 of [8], we have

htI(G) = pd(G)⇐⇒ 3
2

k1

∑
i=1

ri +
3
2

k2

∑
j=1

tj +
3
2

k3

∑
m=1

sm −
k1

2
− k2

2
− 3

2
k3 +

β

2
+

γ

2
− α

2
+ 2

= 2
k1

∑
i=1

ri + 2
k2

∑
j=1

tj + 2
k3

∑
m=1

sm − k3

⇐⇒ 1
2

k1

∑
i=1

ri +
1
2

k2

∑
j=1

tj +
1
2

k3

∑
m=1

sm = 2 +
(β + γ− α)

2
− (k1 + k2 + k3)

2

⇐⇒
k1

∑
i=1

ri +
k2

∑
j=1

tj +
k3

∑
m=1

sm = 4 + (β− k2) + (γ− k3)− (α + k1)

By assumption, we have β − k2 ≤ 0, γ − k3 ≤ 0 and α + k1 ≥ 1. Then, it follows that
4 + (β− k2) + (γ− k3)− (α + k1) ≤ 3. Furthermore, we know ∑k1

i=1 ri + ∑k2
j=1 tj + ∑k3

m=1 sm ≥ 2.

Assume ∑k1
i=1 ri + ∑k2

j=1 tj + ∑k3
m=1 sm = 3. Since ri > 0, tj ≥ 0 and sm > 0, we conclude

(r1 = s1 = t1 = 1), (r1 = 1, t1 = 0, s1 = 2) or (r1 = 2, t1 = 0, s1 = 1) which are contradictions
by assumption. Suppose that ∑k1

i=1 ri + ∑k2
j=1 tj + ∑k3

m=1 sm = 2, then we have r1 = 1, t1 = 0 and
s1 = 1. This implies that α = γ = 0 and β = 1, a contradiction. Hence, G is not Cohen-Macaulay
(unmixed).

By considering the nine previous theorems, we get the following result:
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Corollary 18. Let G = θn1,...,nk . Then, the following conditions are equivalent:
(a) G is Cohen–Macaulay;
(b) G is unmixed;
(c) G = θ2,3,4.

4. Conclusions

We have shown that algebraic invariants of the ideals associated to combinatorial structers
are computable.
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