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Abstract:



Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result x rather than y, for any pair [image: there is no content]. This induces a notion of optimal transport cost for a pair of probability distributions, and we include an Appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
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1. Introduction


Measurement uncertainty relations are quantitative expressions of complementarity. As Bohr often emphasized, the predictions of quantum theory are always relative to some definite experimental arrangement, and these settings often exclude each other. In particular, one has to make a choice of measuring devices, and typically, quantum observables cannot be measured simultaneously. This often used term is actually misleading, because time has nothing to do with it. For a better formulation, recall that quantum experiments are always statistical, so the predictions refer to the frequency with which one will see certain outcomes when the whole experiment is repeated very often. Therefore, the issue is not simultaneous measurement of two observables, but joint measurement in the same shot. That is, a device R is a joint measurement of observable A with outcomes [image: there is no content] and observable B with outcomes [image: there is no content], if it produces outcomes of the form [image: there is no content] in such a way that if we ignore outcome y, the statistics of the x outcomes is always (i.e., for every input state) the same as obtained with a measurement of A and symmetrically for ignoring x and comparing to B. It is in this sense that non-commuting projection-valued observables fail to be jointly measurable.



However, this is not the end of the story. One is often interested in approximate joint measurements. One such instance is Heisenberg’s famous γ-ray microscope [1], in which a particle’s position is measured by probing it with light of some wavelength λ, which from the outset sets a scale for the accuracy of this position measurement. Naturally, the particle’s momentum is changed by the Compton scattering, so if we make a momentum measurement on the particles after the interaction, we will find a different distribution from what would have been obtained directly. Note that in this experiment, we get from every particle a position value and a momentum value. Moreover, errors can be quantified by comparing the respective distributions with some ideal reference: the accuracy of the microscope position measurement is judged by the degree of agreement between the distribution obtained and the one an ideal position measurement would give. Similarly, the disturbance of momentum is judged by comparing a directly measured distribution with the one after the interaction. The same is true for the uncontrollable disturbance of momentum. This refers to a scenario where we do not just measure momentum after the interaction, but try to build a device that recovers the momentum in an optimal way, by making an arbitrary measurement on the particle after the interaction, utilizing everything that is known about the microscope, correcting all known systematic errors and even using the outcome of the position measurement. The only requirement is that at the end of the experiment, for each individual shot, some value of momentum must come out. Even then it is impossible to always reproduce the pre-microscope distribution of momentum. The tradeoff between accuracy and disturbance is quantified by a measurement uncertainty relation. Since it simply quantifies the impossibility of a joint exact measurement, it simultaneously gives bounds on how an approximate momentum measurement irretrievably disturbs position. The basic setup is shown in Figure 1.


Figure 1. Basic setup of measurement uncertainty relations. The approximate joint measurement R is shown in the middle, with its array of output probabilities. The marginals [image: there is no content] and [image: there is no content] of this array are compared to the output probabilities of the reference observables A and B, shown at the top and at the bottom. The uncertainties [image: there is no content] and [image: there is no content] are quantitative measures for the difference between these distributions.
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Note that in this description of errors, we did not ever bring in a comparison with some hypothetical “true value”. Indeed, it was noted already by Kennard [2] that such comparisons are problematic in quantum mechanics. Even if one is willing to feign hypotheses about the true value of position, as some hidden variable theorists will, an operational criterion for agreement will always have to be based on statistical criteria, i.e., the comparison of distributions. Another fundamental feature of this view of errors is that it provides a figure of merit for the comparison of two devices, typically some ideal reference observable and an approximate version of it. An “accuracy” ε in this sense is a promise that no matter which input state is chosen, the distributions will not deviate by more than ε. Such a promise does not involve a particular state. This is in contrast to preparation uncertainty relations, which quantify the impossibility to find a state for which the distributions of two given observables (e.g., position and momentum) are both sharp.



Measurement uncertainty relations in the sense described here were first introduced for position and momentum in [3] and were initially largely ignored. A bit earlier, an attempt by Ozawa [4] to quantify error-disturbance tradeoffs with state dependent and somewhat unfortunately chosen [5] quantities had failed, partly for reasons already pointed out in [6]. When experiments confirmed some predictions of the Ozawa approach (including the failure of the error-disturbance tradeoff), a debate ensued [7,8,9,10]. Its unresolved part is whether a meaningful role for Ozawa’s definitions can be found.



Technically, the computation of measurement uncertainty remained hard, since there were no efficient methods to compute sharp bounds in generic cases. A direct computation along the lines of the definition is not feasible, since it involves three nested optimization problems. The only explicit solutions were for qubits [11,12,13], one case of angular momentum [14] and all cases with phase space symmetry [7,15,16], in which the high symmetry allows the reduction to preparation uncertainty as in [3,9]. The main aim of the current paper is to provide efficient algorithms for sharp measurement uncertainty relations of generic observables, even without any symmetry.



In order to do that, we restrict the setting in some ways, but allow maximal generality in others. We will restrict to finite dimensional systems and reference observables, which are projection valued and non-degenerate. Thus, each of the ideal observables will basically be given by an orthonormal basis in the same d-dimensional Hilbert space. The labels of this basis are the outcomes [image: there is no content] of the measurement, where X is a set of d elements. We could choose all [image: there is no content], but it will help to keep track of things using a separate set for each observable. Moreover, this includes the choice [image: there is no content], the set of eigenvalues of some Hermitian operator. We allow not just two observables, but any finite number [image: there is no content] of them. This makes some expressions easier to write down, since the sum of an expression involving observable A and an analogous one for observable B becomes an indexed sum. We also allow much generality in the way errors are quantified. In earlier works, we relied on two elements to be chosen for each observable, namely a metric D on the outcome set and an error exponent α, distinguishing, say, absolute ([image: there is no content]), root-mean-square ([image: there is no content]) and maximal ([image: there is no content]) deviations. Deviations were then averages of [image: there is no content]. Here, we generalize further to an arbitrary cost function [image: there is no content], which we take to be positive and zero exactly on the diagonal (e.g., [image: there is no content]), but not necessarily symmetric. Again, this generality comes mostly as a simplification of notation. For a reference observable A with outcome set X and an approximate version [image: there is no content] with the same outcome set, this defines an error ε(A′|A). Our aim is to provide algorithms for computing the uncertainty diagram associated with such data, of which Figure 2 gives an example. The given data for such a diagram are n projection valued observables [image: there is no content], with outcome sets [image: there is no content], for each of which we are given also a cost function [image: there is no content] for quantifying errors. An approximate joint measurement is then an observable R with outcome set [image: there is no content], and hence, with POVMelements [image: there is no content], where [image: there is no content]. By ignoring every output, but one, we get the n marginal observables:


[image: there is no content]



(1)




and a corresponding tuple:


[image: there is no content]



(2)




of errors. The set of such tuples, as R runs over all joint measurements, is the uncertainty region. The surface bounding this set from below describes the uncertainty tradeoffs. For [image: there is no content], we call it the tradeoff curve. Measurement uncertainty is the phenomenon that, for general reference observables [image: there is no content], the uncertainty region is bounded away from the origin. In principle, there are many ways to express this mathematically, from a complete characterization of the exact tradeoff curve, which is usually hard to get, to bounds that are simpler to state, but suboptimal. Linear bounds will play a special role in this paper.


Figure 2. Uncertainty regions for three reference observables, namely the angular momentum components [image: there is no content] for spin 1, each with outcome set [image: there is no content] and the choice [image: there is no content] for the cost function. The three regions indicated correspond to the different overall figures of merit εM(A′|A)≥εC(A′|A)≥εE(A′|A) described in Section 2.
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We will consider three ways to build a single error quantity out of the comparison of distributions, denoted by εM(A′|A), εC(A′|A) and εE(A′|A). These will be defined in Section 2. For every choice of observables and cost functions, each will give an uncertainty region, denoted by [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Since they are all based on the same cost function c, they are directly comparable (see Figure 2). We show in Section 3 that the three regions are convex and hence characterized completely by linear bounds. In Section 4, we show how to calculate the optimal linear lower bounds by semidefinite programs. Finally, an Appendix collects the basic information on the beautiful theory of optimal transport, which is needed in Section 2.1 and Section 4.1.




2. Deviation Measures for Observables


Here, we define the measures we use to quantify how well an observable [image: there is no content] approximates a desired observable A. In this section, we do not use the marginal condition Equation (1), so [image: there is no content] is an arbitrary observable with the same outcome set X as A, i.e., we drop all indices i identifying the different observables. Our error quantities are operational in the sense that each is motivated by an experimental setup, which will in particular provide a natural way to measure them. All error definitions are based on the same cost function [image: there is no content], where [image: there is no content] is the “cost” of getting a result [image: there is no content], when [image: there is no content] would have been correct. The only assumptions are that [image: there is no content] with [image: there is no content] iff [image: there is no content].



As described above, we consider a quantum system with Hilbert space [image: there is no content]. As a reference observable A, we allow any complete von Neumann measurement on this system, that is any observable whose set X of possible measurement outcomes has size [image: there is no content] and whose POVM elements [image: there is no content] ([image: there is no content]) are mutually orthogonal projectors of rank 1; we can then also write A(y)=|ϕy⟩⟨ϕy| with an orthonormal basis [image: there is no content] of [image: there is no content]. For the approximating observable [image: there is no content], the POVM elements [image: there is no content] (with [image: there is no content]) are arbitrary with [image: there is no content] and [image: there is no content].



The comparison will be based on a comparison of output distributions, for which we use the following notations: given a quantum state ρ on this system, i.e., an operator with [image: there is no content] and [image: there is no content], and an observable, such as A, we will denote the outcome distribution by [image: there is no content], so [image: there is no content]. This is a probability distribution on the outcome set X and can be determined physically as the empirical outcome distribution after many experiments.



For comparing just two probability distributions [image: there is no content] and [image: there is no content], a canonical choice is the “minimum transport cost”:


cˇ(p,q):=infγ∑xyc(x,y)γ(x,y)|γcouplesptoq



(3)




where the infimum runs over the set of all couplings or “transport plans” [image: there is no content] of p to q, i.e., the set of all probability distributions γ satisfying the marginal conditions [image: there is no content] and [image: there is no content]. The motivations for this notion and the methods to compute it efficiently are described in the Appendix. Since X is finite, the infimum is over a compact set, so it is always attained. Moreover, since we assumed [image: there is no content] and [image: there is no content], we also have [image: there is no content] with equality iff [image: there is no content]. If one of the distributions, say q, is concentrated on a point [image: there is no content], only one coupling exists, namely [image: there is no content]. In this case, we abbreviate [image: there is no content], and get:


[image: there is no content]



(4)




i.e., the average cost of moving all of the points x distributed according to p to [image: there is no content].



2.1. Maximal Measurement Error εM(A′|A)


The worst case error over all input states is:


εM(A′|A):=supρcˇ(ρA′,ρA)| ρquantumstateonCd



(5)




which we call the maximal error. Note that, like the cost function c and the transport costs [image: there is no content], the measure εM(A′|A) need not be symmetric in its arguments, which is sensible, as the reference and approximating observables have distinct roles. Similar definitions for the deviation of an approximating measurement from an ideal one have been made, for specific cost functions, in [7,9] and [14] before.



The definition Equation (5) makes sense even if the reference observable A is not a von Neumann measurement. Instead, the only requirement is that A and [image: there is no content] be general observables with the same (finite) outcome set X, not necessarily of size d. All of our results below that involve only the maximal measurement error immediately generalize to this case, as well.



One can see that it is expensive to determine the quantity εM(A′|A) experimentally according to the definition: one would have to measure and compare (see Figure 3) the outcome statistics [image: there is no content] and [image: there is no content] for all possible input states ρ, which form a continuous set. The following definition of observable deviation alleviates this burden.


Figure 3. For the maximal measurement error εM(A′|A) the transport distance of output distributions is maximized over all input states ρ.



[image: Mathematics 04 00038 g003 1024]







2.2. Calibration Error εC(A′|A)


Calibration (see Figure 4) is a process by which one tests a measuring device on inputs (or measured objects) for which the “true value” is known. Even in quantum mechanics, we can set this up by demanding that the measurement of the reference observable on the input state gives a sharp value y. In a general scenario with continuous outcomes, this can only be asked with a finite error δ, which goes to zero at the end [7], but in the present finite scenario, we can just demand [image: there is no content]. Since, for every outcome y of a von Neumann measurement, there is only one state with this property (namely ρ=|ϕy⟩⟨ϕy|), we can simplify even further, and define the calibration error by:


εC(A′|A):=supy,ρ{cˇ(ρA′,y)|tr(ρA(y))=1}=maxy∑x⟨ϕy|A′(x)|ϕy⟩c(x,y)



(6)






Figure 4. For the calibration error εC(A′|A), the input state is constrained to the eigenstates of A, say with sharp A-value y, and the cost of moving the [image: there is no content]-distribution to y is maximized over y.
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Note that the calibration idea only makes sense when there are sufficiently many states for which the reference observable has deterministic outcomes, i.e., for projective observables A.



A closely related quantity has recently been proposed by Appleby [10]. It is formulated for real valued quantities with cost function [image: there is no content] and has the virtue that it can be expressed entirely in terms of first and second moments of the probability distributions involved. Therefore, for any ρ, let m and v be the mean and variance of [image: there is no content] and [image: there is no content] the mean quadratic deviation of [image: there is no content] from m. Then, Appleby defines:


εD(A′|A)=supρ(v′-v)2



(7)







Here, we added the square to make Appleby’s quantity comparable to our variance-like (rather than standard deviation-like) quantities and chose the letter D, because Appleby calls this the D-error. Since in the supremum, we have also the states for which A has a sharp distribution (i.e., [image: there is no content]), we clearly have εD(A′|A)≥εC(A′|A). On the other hand, let [image: there is no content] and [image: there is no content]. Then, one easily checks that [image: there is no content], so [image: there is no content] is a pricing scheme in the sense defined in the Appendix. Therefore:


cˇ(ρA′,ρA)≥∑x(ρA′)(x)Φ(x)-∑y(ρA)(y)Ψ(y)=tv′-t1-tv



(8)







Maximizing this expression over t gives exactly Equation (7). Therefore,


εC(A′|A)≤εD(A′|A)≤εM(A′|A).












2.3. Entangled Reference Error εE(A′|A)


In quantum information theory, a standard way of providing a reference state for later comparison is by applying a channel or observable to one half of a maximally-entangled system. Two observables would be compared by measuring them (or suitable modifications) on the two parts of a maximally-entangled system (see Figure 5). Let us denote the entangled vector by [image: there is no content]. Since later, we will look at several distinct reference observables, the basis kets [image: there is no content] in this expression have no special relation to A or its eigenbasis [image: there is no content]. We denote by [image: there is no content] the transpose of an operator X in the [image: there is no content] basis, and by [image: there is no content] the observable with POVM elements A(y)T=|ϕy¯⟩⟨ϕy¯|, where [image: there is no content] is the complex conjugate of [image: there is no content] in [image: there is no content]-basis. These transposes are needed due to the well-known relation [image: there is no content]. We now consider an experiment, in which [image: there is no content] is measured on the first part and [image: there is no content] on the second part of the entangled system, so we get the outcome pair [image: there is no content] with probability:


[image: there is no content]



(9)






Figure 5. The entangled reference error εE(A′|A) is a single expectation value, namely of the cost [image: there is no content], where y is the output of [image: there is no content] and x the output of [image: there is no content]. Like the other error quantities, this expectation vanishes iff [image: there is no content].
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As A is a complete von Neumann measurement, this probability distribution is concentrated on the diagonal ([image: there is no content]) iff [image: there is no content], i.e., there are no errors of [image: there is no content] relative to A. Averaging with the error costs, we get a quantity we call the entangled reference error:


εE(A′|A):=∑xy1dtrA′(x)A(y)c(x,y)



(10)







Note that this quantity is measured as a single expectation value in the experiment with source Ω. Moreover, when we later want to measure different such deviations for the various marginals, the source and the tested joint measurement device can be kept fixed, and only the various reference observables [image: there is no content] acting on the second part need to be adapted suitably.




2.4. Summary and Comparison


The quantities εM(A′|A), εC(A′|A) and εE(A′|A) constitute three different ways to quantify the deviation of an observable [image: there is no content] from a projective reference observable A. Nevertheless, they are all based on the same distance-like measure, the cost function c on the outcome set X. Therefore, it makes sense to compare them quantitatively. Indeed, they are ordered as follows:


εM(A′|A)≥εC(A′|A)≥εE(A′|A)



(11)







Here, the first inequality follows by restricting the supremum Equation (5) to states that are sharp for A and the second by noting that the Equation (6) is the maximum of a function of y, of which Equation (10) is the average.



Moreover, as we argued before in Equation (10), εE(A′|A)=0 if and only if [image: there is no content], which is hence equivalent also to εM(A′|A)=0 and εC(A′|A)=0.





3. Convexity of Uncertainty Diagrams


For two observables [image: there is no content] and [image: there is no content] with the same outcome set, we can easily realize their mixture or convex combination [image: there is no content] by flipping a coin with probability t for heads in each instance and then apply [image: there is no content] when heads is up and [image: there is no content] otherwise. In terms of POVM elements, this reads [image: there is no content]. We show first that this mixing operation does not increase the error quantities from Section 2.



Lemma 1. 

For [image: there is no content] the error quantity [image: there is no content], is a convex function of B, i.e., for [image: there is no content] and [image: there is no content]:


εL(B|A)≤tεL(B1|A)+(1-t)εL(B1|A)



(12)









Proof. 

The basic fact used here is that the pointwise supremum of affine functions (i.e., those for which equality holds in the definition of a convex function) is convex. This is geometrically obvious and easily verified from the definitions. Hence, we only have to check that each of the error quantities is indeed represented as a supremum of functions, which are affine in the observable B.



For [image: there is no content], we even get an affine function, because Equation (10) is linear in [image: there is no content]. For [image: there is no content], Equation (6) has the required form. For [image: there is no content], Equation (5) is a supremum, but the function [image: there is no content] is defined as an infimum. However, we can use the duality theory described in the Appendix to write it instead as a supremum over pricing schemes, of an expression that is just the expectation of [image: there is no content] plus a constant and, therefore, an affine function. Finally, for Appleby’s case Equation (7), we get the same supremum, but over the subset of pricing schemes (the quadratic ones).  ☐





The convexity of the error quantities distinguishes measurement from preparation uncertainty. Indeed, the variances appearing in preparation uncertainty relations are typically concave functions, because they arise from minimizing the expectation of [image: there is no content] over m. Consequently, the preparation uncertainty regions may have gaps and non-trivial behavior on the side of large variances. The following proposition will show that measurement uncertainty regions are better behaved.



For every cost function c on a set X, we can define a “radius” [image: there is no content], the largest transportation cost from the uniform distribution (the “center” of the set of probability distributions) and a “diameter” [image: there is no content], the largest transportation cost between any two distributions:


c¯*=maxy∑xc(x,y)/dc*=maxxyc(x,y)



(13)







Proposition 2. 

Let n observables [image: there is no content] and cost functions [image: there is no content] be given, and define [image: there is no content] and [image: there is no content]. Then, for [image: there is no content], the uncertainty regions [image: there is no content] is a convex set and has the following (monotonicity) property: when [image: there is no content] and [image: there is no content] are such that [image: there is no content], then [image: there is no content].





Proof. 

Let us first clarify how to make the worst possible measurement B, according to the various error criteria, for which we go back to the setting of Section 2, with just one observable A and cost function c. In all cases, the worst measurement is one with constant and deterministic output, i.e., [image: there is no content]. For [image: there is no content] and [image: there is no content], such a measurement will have [image: there is no content], and we can choose [image: there is no content] to make this equal to [image: there is no content]. For [image: there is no content], we get instead the average, which is maximized by [image: there is no content].



We can now make a given joint measurement R worse by replacing it partly by a bad one, say for the first observable [image: there is no content]. That is, we set, for [image: there is no content],


R˜(x1,x2,…,xn)=λB1(x1)∑y1R(y1,x2,…,xn)+(1-λ)R(x1,x2,…,xn)



(14)







Then, all marginals [image: there is no content] for [image: there is no content] are unchanged, but [image: there is no content]. Now, as λ changes from zero to one, the point in the uncertainty diagram will move continuously in the first coordinate direction from [image: there is no content] to the point in which the first coordinate is replaced by its maximum value (see Figure 6 (left)). Obviously, the same holds for every other coordinate direction, which proves the monotonicity statement of the proposition.


Figure 6. The blue shaded region corresponds to the monotonicity statement for [image: there is no content]. (Left) [image: there is no content] is a mixture of R and [image: there is no content]. We can also get an observable V by mixing the second marginal of [image: there is no content] with [image: there is no content] and, thus, reach every point in the blue shaded region. (Right) [image: there is no content] is componentwise convex. Therefore, the mixture of the points [image: there is no content] and [image: there is no content] is always in the monotonicity region corresponding to [image: there is no content].
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Let [image: there is no content] and [image: there is no content] be two observables, and let [image: there is no content] be their mixture. For proving the convexity of [image: there is no content], we will have to show that every point on the line between [image: there is no content] and [image: there is no content] can be attained by a tuple of errors corresponding to some allowed observable (see Figure 6 (right)). Now, lemma 1 tells us that every component of [image: there is no content] is convex, which implies that [image: there is no content]. However, by monotonicity, this also means that [image: there is no content] is in [image: there is no content] again, which shows the convexity of [image: there is no content]. ☐





Example: Phase Space Pairs


As is plainly visible from Figure 2, the three error criteria considered here usually give different results. However, under suitable circumstances, they all coincide. This is the case for conjugate pairs related by Fourier transform [15]. The techniques needed to show this are the same as for the standard position/momentum case [9,17] and, in addition, imply that the region for preparation uncertainty is also the same.



In the finite case, there is not much to choose: we have to start from a finite abelian group, which we think of as position space, and its dual group, which is then the analogue of momentum space. The unitary connecting the two observables is the finite Fourier associated with the group. The cost function needs to be translation invariant, i.e., [image: there is no content]. Then, by an averaging argument, we find for all error measures that a covariant phase space observable minimizes measurement uncertainty (all three versions). The marginals of such an observable can be simulated by first doing the corresponding reference measurement and then adding some random noise. This implies [14] that εM(A′|A)=εC(A′|A). However, we know more about this noise: it is independent of the input state, so that the average and the maximum of the noise (as a function of the input) coincide, i.e., εC(A′|A)=εE(A′|A). Finally, we know that the noise of the position marginal is distributed according to the position distribution of a certain quantum state, which is, up to normalization and a unitary parity inversion, the POVM element of the covariant phase space observable at the origin. The same holds for the momentum noise. However, then the two noise quantities are exactly related like the position and momentum distributions of a state, and the tradeoff curve for that problem is exactly preparation uncertainty, with variance criteria based on the same cost function.



If we choose the discrete metric for c, the uncertainty region depends only on the number d of elements in the group we started from [15]. The largest ε for all quantities is the distance from a maximally-mixed state to any pure state, which is [image: there is no content]. The exact tradeoff curve is then an ellipse, touching the axes at the points [image: there is no content] and [image: there is no content]. The resulting family of curves, parameterized by d, is shown in Figure 7. In general, however, the tradeoff curve requires the solution of a non-trivial family of ground state problems and cannot be given in closed form. For bit strings of length n and the cost, some convex function of Hamming distance there is an expression for large n [15].


Figure 7. The uncertainty tradeoff curves for discrete position/momentum pairs, with a discrete metric. In this case, all uncertainty regions, also the one for preparation uncertainty, coincide. The parameter of the above tradeoff curves is the order [image: there is no content] of the underlying abelian group.
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4. Computing Uncertainty Regions via Semidefinite Programming


We show here how the uncertainty regions, and therefore, optimal uncertainty relations, corresponding to each of the three error measures can actually be computed, for any given set of projective observables [image: there is no content] and cost functions [image: there is no content]. Our algorithms will come in the form of semidefinite programs (SDPs) [18,19], facilitating efficient numerical computation of the uncertainty regions via the many existing program packages to solve SDPs. Moreover, the accuracy of such numerical results can be rigorously certified via the duality theory of SDPs. To obtain the illustrations in this paper, we used the CVX package [20,21] under MATLAB.



As all of our uncertainty regions [image: there is no content] (for [image: there is no content]) are convex and closed (Section 3), they are completely characterized by their supporting hyperplanes (for a reference to convex geometry, see [22]). Due to the monotonicity property stated in Proposition 2, some of these hyperplanes just cut off the set parallel along the planes [image: there is no content]. The only hyperplanes of interest are those with nonnegative normal vectors [image: there is no content] (see Figure 8). Each hyperplane is completely specified by its “offset” [image: there is no content] away from the origin, and this function determines [image: there is no content]:


bL(w→):=infw→·ε→|ε→∈UL



(15)






UL=ε→∈Rn|∀w→∈R+nw→·ε→≥bL(w→)



(16)






Figure 8. The lower bound of the uncertainty region [image: there is no content] can be described by its supporting hyperplanes (red line) with a normal vector [image: there is no content].



[image: Mathematics 04 00038 g008 1024]






In fact, due to homogeneity bL(tw→)=tbL(w→), we can restrict everywhere to the subset of vectors [image: there is no content] that, for example, satisfy [image: there is no content], suggesting an interpretation of the [image: there is no content] as weights of the different uncertainties [image: there is no content]. Our algorithms will, besides evaluating [image: there is no content], also allow one to compute a (approximate) minimizer [image: there is no content], so that one can plot the boundary of the uncertainty region [image: there is no content] by sampling over [image: there is no content], which is how the figures in this paper were obtained.



Let us further note that knowledge of [image: there is no content] for some [image: there is no content] immediately yields a quantitative uncertainty relation: every error tuple [image: there is no content] attainable via a joint measurement is constrained by the affine inequality [image: there is no content], meaning that some weighted average of the attainable error quantities [image: there is no content] cannot become too small. When [image: there is no content] is strictly positive, this excludes in particular the zero error point [image: there is no content]. The obtained uncertainty relations are optimal in the sense that there exists [image: there is no content], which attains strict equality [image: there is no content].



Having reduced the computation of an uncertainty region essentially to determining [image: there is no content] (possibly along with an optimizer [image: there is no content]), we now treat each case [image: there is no content] in turn.



4.1. Computing the Uncertainty Region [image: there is no content]


On the face of it, the computation of the offset [image: there is no content] looks daunting: expanding the definitions, we obtain:


bM(w→)=infR∑i=1nwisupρcˇi(ρAi′,ρAi)



(17)




where the infimum runs over all joint measurements R with outcome set [image: there is no content], inducing the marginal observables [image: there is no content] according to Equation (1), and the supremum over all sets of n quantum states [image: there is no content] and where the transport costs [image: there is no content] are given as a further infimum Equation (3) over the couplings [image: there is no content] of [image: there is no content] and [image: there is no content].



The first simplification is to replace the infimum over each coupling [image: there is no content], via a dual representation of the transport costs, by a maximum over optimal pricing schemes [image: there is no content], which are certain pairs of functions [image: there is no content], where α runs over some finite label set [image: there is no content]. The characterization and computation of the pairs [image: there is no content], which depend only on the chosen cost function [image: there is no content] on [image: there is no content], are described in the Appendix. The simplified expression for the optimal transport costs is then:


cˇi(p,q)=maxα∈Si∑xΦα(x)p(x)-∑yΨα(y)q(y)



(18)







We can then continue our computation of [image: there is no content]:


bM(w→)=infR∑iwisupρmaxα∈Si∑xΦα(x)tr[ρAi′(x)]-∑yΨα(y)tr[ρAi(y)]



(19)






=infR∑iwimaxα∈Sisupρtrρ∑xΦα(x)Ai′(x)-∑yΨα(y)Ai(y)



(20)






=infR∑iwimaxα∈Siλmax∑xΦα(x)Ai′(x)-∑yΨα(y)Ai(y)



(21)




where [image: there is no content] denotes the maximum eigenvalue of a Hermitian operator [image: there is no content]. Note that λmax(Bi,α)=inf{μi|Bi,α≤μi𝟙}, which one can also recognize as the dual formulation of the convex optimization [image: there is no content] over density matrices, so that:


maxα∈Siλmax(Bi,α)=inf{μi|∀α∈Si:Bi,α≤μi𝟙}



(22)







We obtain thus a single constrained minimization:


bM(w→)=infR,{μi}∑iwiμi|∀i∀α∈Si:∑xΦα(x)Ai′(x)-∑yΨα(y)Ai(y)≤μi𝟙



(23)







Making the constraints on the POVM elements [image: there is no content] of the joint observable R explicit and expressing the marginal observables [image: there is no content] directly in terms of them by Equation (1), we finally obtain the following SDP representation for the quantity [image: there is no content]:


bM(w→)=inf∑iwiμiwithrealvariablesμiandd×d-matrixvariablesR(x1,…,xn)subjecttoμi𝟙≥∑x1,…,xnΦα(xi)R(x1,…,xn)-∑yΨα(y)A(y)∀i∀α∈SiR(x1,…,xn)≥0∀x1,…,xn∑x1,…,xnR(x1,…,xn)=𝟙.



(24)







The derivation above shows further that, when [image: there is no content], the [image: there is no content] attaining the infimum equals [image: there is no content], where [image: there is no content] is the marginal coming from a corresponding optimal joint measurement [image: there is no content]. Since numerical SDP solvers usually output an (approximate) optimal variable assignment, one obtains in this way directly a boundary point [image: there is no content] of [image: there is no content] when all [image: there is no content] are strictly positive. If [image: there is no content] vanishes, a corresponding boundary point [image: there is no content] can be computed via εi=εM(Ai′|Ai)=maxα∈Siλmax(∑x1,…,xnΦα(xi)R(x1,…,xn)-∑yΨα(y)A(y)) from an optimal assignment for the POVM elements [image: there is no content].



For completeness, we also display the corresponding dual program [18] (note that strong duality holds and the optima of both the primal and the dual problem are attained):


bM(w→)=suptr[C]-∑i,αtr[Di,α∑yΨα(y)Ai(y)]withd×d-matrixvariablesCandDi,αsubjectto:C≤∑i,αΦα(xi)Di,α∀x1,…,xn0≤Di,α∀i∀α∈Siwi=∑αtr[Di,α]∀i.



(25)








4.2. Computing the Uncertainty Region [image: there is no content]


To compute the offset function [image: there is no content] for the calibration uncertainty region [image: there is no content], we use the last form in Equation (6) and recall that the projectors onto the sharp eigenstates of [image: there is no content] (see Section 2.2) are exactly the POVM elements [image: there is no content] for [image: there is no content]:


bC(w→)=infR∑iwimaxy∑xtr[Ai′(x)Ai(y)]ci(x,y)



(26)






=infR∑iwisup{λi,y}∑yλi,y∑xtr[Ai′(x)Ai(y)]ci(x,y)



(27)






=infRsup{λi,y}∑x1,…,xntrR(x1,…,xn)∑i,ywiλi,yci(xi,y)Ai(y)



(28)




where again, the infimum runs over all joint measurements R, inducing the marginals [image: there is no content], and we have turned, for each [image: there is no content], the maximum over y into a linear optimization over probabilities [image: there is no content] ([image: there is no content]) subject to the normalization constraint [image: there is no content]. In the last step, we have made the [image: there is no content] explicit via Equation (1).



The first main step towards a tractable form is von Neumann’s minimax theorem [23,24]: as the sets of joint measurements R and of probabilities [image: there is no content] are both convex and the optimization function is an affine function of R and, separately, also an affine function of the [image: there is no content], we can interchange the infimum and the supremum:


[image: there is no content]



(29)







The second main step is to use SDP duality [19] to turn the constrained infimum over R into a supremum, abbreviating the POVM elements as [image: there is no content]:


inf{Rξ}{∑ξRξBξ|Rξ≥0∀ξ,∑ξRξ=𝟙}=supY{tr[Y]|Y≤Bξ∀ξ}



(30)




which is very similar to a dual formulation often employed in optimal ambiguous state discrimination [25,26].



Putting everything together, we arrive at the following SDP representation for the offset quantity [image: there is no content]:


bC(w→)=suptr[Y]withrealvariablesλi,yandad×d-matrixvariableYsubjecttoY≤∑i,ywiλi,yci(xi,y)Ai(y)∀x1,…,xnλi,y≥0∀i∀y∑yλi,y=1∀i.



(31)







The dual SDP program reads (again, strong duality holds, and both optima are attained):


bC(w→)=inf∑iwimiwithrealvariablesmiandd×d-matrixvariablesR(x1,…,xn)subjecttomi≥∑x1,…,xntr[R(x1,…,xn)Ai(y)]ci(xi,y)∀i∀yR(x1,…,xn)≥0∀x1,…,xn∑x1,…,xnR(x1,…,xn)=𝟙.



(32)







This dual version can immediately be recognized as a translation of Equation (26) into SDP form, via an alternative way of expressing the maximum over y (or via the linear programming dual of [image: there is no content] from Equation (28)).



To compute a boundary point [image: there is no content] of [image: there is no content] lying on the supporting hyperplane with normal vector [image: there is no content], it is best to solve the dual SDP Equation (32) and to obtain [image: there is no content] from an (approximate) optimal assignment of the [image: there is no content]. Again, this works when [image: there is no content], whereas otherwise, one can compute [image: there is no content] from an optimal assignment of the [image: there is no content]. From many primal-dual numerical SDP solvers (such as CVX [20,21]), one can alternatively obtain optimal POVM elements [image: there is no content] also from solving the primal SDP Equation (31) as optimal dual variables corresponding to the constraints [image: there is no content] and compute [image: there is no content] from there.




4.3. Computing the Uncertainty Region [image: there is no content]


As one can see by comparing the last expressions in the defining Equations (6) and (10), respectively, the evaluation of [image: there is no content] is quite similar to Equation (26), except that the maximum over y is replaced by a uniform average over y. This simply corresponds to fixing [image: there is no content] for all [image: there is no content] in Equation (28), instead of taking the supremum. Therefore, the primal and dual SDPs for the offset [image: there is no content] are:


bE(w→)=sup1dtr[Y]withad×d-matrixvariableYsubjecttoY≤∑i,ywici(xi,y)Ai(y)∀x1,…,xn.



(33)




and:


bE(w→)=inf1d∑i∑y∑x1,…,xnwitr[R(x1,…,xn)Ai(y)]ci(xi,y)withd×d-matrixvariablesR(x1,…,xn)subjecttoR(x1,…,xn)≥0∀x1,…,xn∑x1,…,xnR(x1,…,xn)=𝟙.



(34)







The computation of a corresponding boundary point [image: there is no content] is similar as above.





5. Conclusions


We have provided efficient methods for computing optimal measurement uncertainty bounds in the case of finite observables. The extension to infinite dimensional and unbounded observables would be very interesting. The SDP formulation is also a powerful tool for deriving further analytic statements. This process has only just begun.
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Appendix A. Optimal Transport


Appendix A.1. Kantorovich Duality


In this Appendix, we collect the basic theory of optimal transport adapted to the finite setting at hand. This eliminates all of the topological and measure theoretic fine points that can be found, e.g., in Villani’s book [27], which we also recommend for extended proofs of the statements in our summary. We slightly generalize the setting from the cost functions used in the main text of this paper: we allow the two variables on which the cost function depends to range over different sets. This might actually be useful for comparing observables, which then need not have the same outcome sets. Which outcomes are considered to be close or the same must be specified in terms of the cost function. We introduce this generalization here less for the sake of applications rather than for a simplification of the proofs, in particular for the book-keeping of paths in the proof of Lemma 5.



The basic setting is that of two finite sets X and Y and an arbitrary function [image: there is no content], called the cost function. The task is to optimize the transport of some distribution of stuff on X, described by a distribution function [image: there is no content], to a final distribution [image: there is no content] on Y when the transportation of one unit of stuff from the point x to the point y costs [image: there is no content]. In the first such scenario ever considered, namely by Gaspar Monge, the “stuff” was earth, the distribution p a hill and q a fortress. Villani [27] likes to phrase the scenario in terms of bread produced at bakeries [image: there is no content] to be delivered to cafés [image: there is no content]. This makes plain that optimal transport is sometimes considered a branch of mathematical economics, and indeed, Leonid Kantorovich, who created much of the theory, received a Nobel prize in economics. In our case, the “stuff” will be probability.



A transport plan (or coupling) will be a probability distribution [image: there is no content], which encodes how much stuff is moved from any x to any y. Since all of p is to be moved, [image: there is no content], and since all stuff is to be delivered, [image: there is no content]. Now, for any transport plan γ, we get a total cost of [image: there is no content], and we are interested in the optimum:


cˇ(p,q)=infγ∑xyc(x,y)γ(x,y)| γcouplesptoq



(A1)







This is called the primal problem, to which there is also a dual problem. In economic language, it concerns pricing schemes, that is pairs of functions [image: there is no content] and [image: there is no content] satisfying the inequality:


Φ(x)-Ψ(y)≤c(x,y)forallx∈X,y∈Y



(A2)




and demands to maximize:


c^(p,q)=supΦ,Ψ∑xΦ(x)p(x)-∑yΨ(y)q(y)|(Φ,Ψ)isapricingscheme



(A3)







In Villani’s example [27], think of a consortium of bakeries and cafés that is used to organize the transport themselves according to some plan γ. Now, they are thinking of hiring a contractor, which offers to do the job, charging [image: there is no content] for every unit picked up from bakery x and giving [image: there is no content] to café y on delivery (these numbers can be negative). Their offer is that this will reduce overall costs, since their pricing scheme satisfies Equation (A2). Indeed, the overall charge to the consortium will be:


[image: there is no content]



(A4)







Taking the sup on the left-hand side of this inequality (the company will try to maximize their profits by adjusting the pricing scheme [image: there is no content]) and the inf on the right-hand side (the transport plan γ was already optimized), we get [image: there is no content]. The general duality theory for linear programs shows that the duality gap closes in this case since both optimization problems satisfy Slater’s constraint qualification condition ([18] Section 5.3.2) [22], i.e., we actually always have:


[image: there is no content]



(A5)







Therefore, the consortium will face the same transport costs in the end if the contractor chooses an optimal pricing scheme (note that both the infimum and the supremum in the definitions of [image: there is no content] and [image: there is no content], respectively, are attained as X and Y are finite sets).



What is especially interesting for us, however, is that the structure of the optimal solutions for both variational problems is very special, and both problems can be reduced to a combinatorial optimization over finitely many possibilities, which furthermore can be constructed independently of p and q. Indeed, pricing schemes and transport plans are both related to certain subsets of [image: there is no content]. We define [image: there is no content] as the support of γ, i.e., the set of pairs on which [image: there is no content]. For a pricing scheme [image: there is no content], we define the equality set [image: there is no content] as the set of points [image: there is no content] for which equality holds in Equation (A2). Then, equality holds in Equation (A4) if and only if [image: there is no content]. Note that for γ to satisfy the marginal condition for given p and q, its support [image: there is no content] cannot become too small (depending on p and q). On the other hand, [image: there is no content] cannot be too large, because the resulting system of equations for [image: there is no content] and [image: there is no content] would become overdetermined and inconsistent. The kind of set for which they meet is described in the following definition.



Definition 3. 

Let [image: there is no content] be finite sets and [image: there is no content] a function. Then, a subset [image: there is no content] is called cyclically c-monotone (“ccm” for short), if for any sequence of distinct pairs [image: there is no content], and any permutation π of [image: there is no content] the inequality:


[image: there is no content]



(A6)




holds. When Γ is not properly contained in another cyclically c-monotone set, it is called maximally cyclically c-monotone (“mccm” for short).



A basic example of a ccm set is the equality set [image: there is no content] for any pricing scheme [image: there is no content]. Indeed, for [image: there is no content] and any permutation π, we have:


[image: there is no content]



(A7)







The role of ccm sets in the variational problems Equations (A1) and (A3) is summarized in the following proposition.





Proposition 4. 

Let [image: there is no content] be given as above. Then:

	(1) 

	
A coupling γ minimizes Equation (A1) if and only if [image: there is no content] is ccm.




	(2) 

	
The dual problem Equation (A3) has a maximizer [image: there is no content] for which [image: there is no content] is mccm.




	(3) 

	
If [image: there is no content] is mccm, there is a pricing scheme [image: there is no content] with [image: there is no content], and [image: there is no content] is uniquely determined by Γ up to the addition of the same constant to Φ and to Ψ.











Sketch of the proof. 


	(1)

	
Suppose [image: there is no content] ([image: there is no content]), and let π be any permutation. Set [image: there is no content]. Then, we can modify γ by subtracting δ from any [image: there is no content] and adding δ to [image: there is no content]. This operation keeps [image: there is no content] and does not change the marginals. The target functional in the infimum Equation (A1) is changed by δ times the difference of the two sides of Equation (A6). For a minimizer γ, this change must be [image: there is no content], which gives inequality Equation (A6). For the converse, we need a Lemma, whose proof will be sketched below.











Lemma 5. 

For any ccm set Γ, there is some pricing scheme [image: there is no content] with [image: there is no content].





 

By applying this to [image: there is no content], we find that the duality gap closes for γ, i.e., equality holds in Equation (A4), and hence, γ is a minimizer.

	(2)

	
Every subset, [image: there is no content] can be thought of as a bipartite graph with vertices [image: there is no content] and an edge joining [image: there is no content] and [image: there is no content] iff [image: there is no content] (see Figure A1). We call Γ connected, if any two vertices are linked by a sequence of edges. Consider now the equality set [image: there is no content] of some pricing scheme. We modify [image: there is no content] by picking some connected component and setting [image: there is no content] and [image: there is no content] for all [image: there is no content] in that component. If [image: there is no content] is sufficiently small, [image: there is no content] will still satisfy all of the inequalities of Equation (A2), and [image: there is no content]. The target functional in the optimization Equation (A3) depends linearly on a, so moving in the appropriate direction will increase, or at least not decrease, it. We can continue until another one of the inequalities of Equation (A2) becomes tight. At this point, [image: there is no content]. This process can be continued until the equality set [image: there is no content] is connected. Then, [image: there is no content] is uniquely determined by [image: there is no content] up to a common constant.


Figure A1. Representation of a subset [image: there is no content] (left) as a bipartite graph (right). The graph is a connected tree.
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It remains to show that connected equality sets [image: there is no content] are mccm. Suppose that [image: there is no content] is ccm. Then, by Lemma 5, we can find a pricing scheme [image: there is no content] with [image: there is no content]. However, using just the equalities in Equation (A2) coming from the connected [image: there is no content], we already find that [image: there is no content] and [image: there is no content], so we must have [image: there is no content].

	(3)

	
This is trivial from the proof of (2) that mccm sets are connected.  ☐











Proof sketch of Lemma 5. 

Our proof will give some additional information on the set of all pricing schemes that satisfy [image: there is no content] and [image: there is no content] for some reference point [image: there is no content] to fix the otherwise arbitrary additive constant. Namely we will explicitly construct the largest element [image: there is no content] of this set and the smallest [image: there is no content], so that all other schemes [image: there is no content] satisfy:


Φ-(x)≤Φ(x)≤Φ+(x)andΨ-(y)≤Ψ(y)≤Ψ+(y)



(A8)




for all [image: there is no content] and [image: there is no content]. The idea is to optimize the sums of certain costs over paths in [image: there is no content].



We define a Γ-adapted path as a sequence of vertices [image: there is no content] such that the [image: there is no content], and [image: there is no content]. For such a path, we define:


[image: there is no content]



(A9)




with the convention [image: there is no content] for x∈X,y∈Y. Then, Γ is ccm if and only if [image: there is no content] for every Γ-adapted closed path. This is immediate for cyclic permutations and follows for more general ones by cycle decomposition. The assertion of Lemma 5 is trivial if [image: there is no content], so we can pick a point [image: there is no content] for which some edge [image: there is no content] exists. Then, for any [image: there is no content], we define, for [image: there is no content],


χ+(z):=-supc(x0,…,z)andχ-(z):=supc(z,…,x0)



(A10)




where the suprema are over all Γ-adapted paths between the specified endpoints; we define [image: there is no content], and empty suprema are defined as [image: there is no content]. Then, [image: there is no content] are the maximal and minimal pricing schemes, when written as two functions [image: there is no content] and [image: there is no content] for [image: there is no content] and [image: there is no content].



For proving these assertions, consider paths of the type [image: there is no content]. For this to be Γ-adapted, there is no constraint on the last link, so:


-χ+(y)-c(x,y)≤-χ+(x),andsupy-χ+(y)-c(x,y)=χ+(x)



(A11)







Here, the inequality follows because the adapted paths [image: there is no content] going via y as the last step are a subclass of all adapted paths and give a smaller supremum. The second statement follows, because for [image: there is no content], there has to be some last step from Y to x. The inequality Equation (A11) also shows that [image: there is no content] is a pricing scheme. The same argument applied to the decomposition of paths [image: there is no content] with [image: there is no content] gives the inequality:


-χ+(x)+c(x,y)≤-χ+(y)for(x,y)∈Γ



(A12)







Combined with inequality Equation (A11), we get that [image: there is no content] has equality set [image: there is no content] at least Γ. The corresponding statements for [image: there is no content] follow by first considering paths [image: there is no content] and then [image: there is no content] with [image: there is no content].



Finally, in order to show the inequalities Equation (A8), let [image: there is no content] be a tight pricing scheme with [image: there is no content] and [image: there is no content]. Consider first any Γ-adapted path [image: there is no content]. Then,


c(x0,…,xn,y)=∑i=0n-1(Φ(xi)-Ψ(yi)-c(xi+1,yi))+Φ(xn)-Ψ(y)=Φ(x0)-Ψ(y)+∑i=0n-1(Φ(xi+1)-Ψ(yi)-c(xi+1,yi))≤Φ(x0)-Ψ(y)=-Ψ(y)



(A13)




because the sum is term-wise non-positive due to the pricing scheme property. Hence, by taking the supremum, we get [image: there is no content]. The other inequalities follow with the same arguments applied to paths of the type [image: there is no content], [image: there is no content] and [image: there is no content].  ☐





Let us summarize the consequences of Proposition 4 for the computation of minimal costs Equation (A1). Given any cost function c, the first step is to enumerate the corresponding mccm sets, say [image: there is no content], [image: there is no content], for some finite label set [image: there is no content], and to compute for each of these the pricing scheme [image: there is no content] (up to an overall additive constant; see Proposition 4). This step depends only on the chosen cost function c. Then, for any distributions [image: there is no content], we get:


[image: there is no content]



(A14)







This is very fast to compute, so the preparatory work of determining the [image: there is no content] is well invested if many such expressions have to be computed. However, even more important for us is that Equation (A14) simplifies the variational problem sufficiently, so that we can combine it with the optimization over joint measurements (see Section 4.1). Of course, this leaves open the question of how to determine all mccm sets for a cost function. Some remarks about this will be collected in the next subsection.




Appendix A.2. How to Find All mccm Sets


We will begin with a basic algorithm for the general finite setting, in which [image: there is no content] and the cost function c are arbitrary. Often, the task can be greatly simplified if more structure is given. These simplifications will be described in the following sections.



The basic algorithm will be a growth process for ccm subsets [image: there is no content], which stops as soon as Γ is connected (cf. the proof of Proposition 4(2)). After that, we can compute the unique pricing scheme [image: there is no content] with equality on Γ by solving the system of linear equations with [image: there is no content] from Equation (A2). This scheme may have additional equality pairs extending Γ to an mccm set. Hence, the same [image: there is no content] and mccm sets may arise from another route of the growth process. Nevertheless, we can stop the growth when Γ is connected and eliminate doubles as a last step of the algorithm. The main part of the algorithm will thus aim at finding all connected ccm trees, where by definition, a tree is a graph containing no cycles. We take each tree to be given by a list of edges [image: there is no content], which we take to be written in lexicographic ordering, relative to some arbitrary numberings [image: there is no content] and [image: there is no content]. Hence, the first element in the list will be [image: there is no content], where y is the first element connected to [image: there is no content].



At stage k of the algorithm, we will have a list of all possible initial sequences [image: there is no content] of lexicographically-ordered ccm trees. For each such sequence, the possible next elements will be determined and all of the resulting edge-lists of length [image: there is no content] form the next stage of the algorithm. Now, suppose we have some list [image: there is no content]. What can the next pair [image: there is no content] be? There are two possibilities:

	(1)

	
[image: there is no content] is unchanged. Then, lexicographic ordering dictates that [image: there is no content]. Suppose that [image: there is no content] is already connected to some [image: there is no content]. Then, adding the edge [image: there is no content] would imply that [image: there is no content] could be reached in two different ways from the starting node ([image: there is no content]). Since we are looking only for trees, we must therefore restrict to only those [image: there is no content] that are yet unconnected.




	(2)

	
x is incremented. Since, in the end, all vertices x must lie in one connected component, the next one has to be [image: there is no content]. Since the graphs at any stage should be connected, [image: there is no content] must be a previously-connected Y-vertex.









With each new addition, we also check the ccm property of the resulting graph. The best way to do this is to store with any graph the functions [image: there is no content] on the set of already connected nodes (starting from [image: there is no content]) and to update them with any growth step. We then only have to verify inequality Equation (A2) for every new node paired with every old one. Since the equality set of any pricing scheme is ccm, this is sufficient. The algorithm will stop as soon as all nodes are included, i.e., after [image: there is no content] steps.




Appendix A.3. The Linearly-Ordered Case


When we look at standard quantum observables, given by a Hermitian operator A, the outcomes are understood to be the eigenvalues of A, i.e., real numbers. Moreover, we typically look at cost functions, which depend on the difference [image: there is no content] of two eigenvalues, i.e.,


[image: there is no content]



(A15)







For the Wasserstein distances, one uses [image: there is no content] with [image: there is no content]. The following Lemma allows, in addition, arbitrary convex, not necessarily even functions h.



Lemma 6. 

Let [image: there is no content] be convex and c be given by Equation (A15). Then, for [image: there is no content] and [image: there is no content], we have:


[image: there is no content]



(A16)




with strict inequality if h is strictly convex, [image: there is no content] and [image: there is no content].





Proof. 

Since [image: there is no content] and [image: there is no content], there exists [image: there is no content], such that [image: there is no content]. This implies [image: there is no content], so that convexity of h gives [image: there is no content]. The same choice of λ also implies [image: there is no content], so that similarly, [image: there is no content]. Adding up the two inequalities yields the desired result. If [image: there is no content] and [image: there is no content] are strict inequalities, then [image: there is no content], so that strict convexity of h gives a strict overall inequality.  ☐





As a consequence, if Γ is a ccm set for the cost function c and [image: there is no content], then all [image: there is no content] satisfy either [image: there is no content] and [image: there is no content] or [image: there is no content] and [image: there is no content]. Loosely speaking, while in Γ, one can only move north-east or south-west, but never north-west or south-east.



This has immediate consequences for ccm sets: in each step in the lexicographically-ordered list (see the algorithm in the previous subsection), one either has to increase x by one or increase y by one, going from [image: there is no content] to the maximum. This is a simple drive on the Manhattan grid and is parameterized by the instructions on whether to go north or east in every step. Of the [image: there is no content] necessary steps, [image: there is no content] have to go in the east direction, so altogether, we will have at most:


[image: there is no content]



(A17)




mccm sets and pricing schemes. They are quickly enumerated without going through the full tree search described in the previous subsection.




Appendix A.4. The Metric Case


Another case in which a little bit more can be said is the following ([27] Case 5.4, p. 56):



Lemma 7. 

Let [image: there is no content], and consider a cost function [image: there is no content], which is a metric on X. Then:

	(1) 

	
Optimal pricing schemes satisfy [image: there is no content], and the Lipschitz condition [image: there is no content].




	(2) 

	
All mccm sets contain the diagonal.











Proof. 

Any pricing schemes satisfies [image: there is no content], i.e., [image: there is no content]. For an optimal scheme, and [image: there is no content], we can find [image: there is no content], such that [image: there is no content]. Hence:


[image: there is no content]



(A18)







By exchanging x and y, we get [image: there is no content]. Moreover, given x, some y will satisfy:


[image: there is no content]



(A19)




which combined with the previous first inequality gives [image: there is no content]. In particular, every [image: there is no content] belongs to the equality set.  ☐





One even more special case is that of the discrete metric, [image: there is no content]. In this case, it makes no sense to look at error exponents, because [image: there is no content]. Moreover, the Lipschitz condition [image: there is no content] is vacuous for [image: there is no content] and, otherwise, only asserts that [image: there is no content], which after adjustment of a constant just means that [image: there is no content] for all x. Hence, the transportation cost is just the [image: there is no content] norm up to a factor, i.e.,




[image: there is no content]



(A20)








References


	1. 
Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]

	2. 
Kennard, E. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]

	3. 
Werner, R.F. The uncertainty relation for joint measurement of position and momentum. Quant. Inform. Comput. 2004, 4, 546–562. [Google Scholar]

	4. 
Ozawa, M. Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A 2004, 320, 367–374. [Google Scholar] [CrossRef]

	5. 
Busch, P.; Lahti, P.; Werner, R.F. Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 2014, 86, 1261–1281. [Google Scholar] [CrossRef]

	6. 
Appleby, D.M. Concept of experimental accuracy and simultaneous measurements of position and momentum. Int. J. Theor. Phys. 1998, 37, 1491–1509. [Google Scholar] [CrossRef]

	7. 
Busch, P.; Lahti, P.; Werner, R.F. Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 2013, 111, 160405. [Google Scholar] [CrossRef] [PubMed]

	8. 
Ozawa, M. Disproving Heisenberg’s error-disturbance relation. 2013. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1308.3540 (accessed 1 April 2016). [Google Scholar]

	9. 
Busch, P.; Lahti, P.; Werner, R.F. Measurement uncertainty relations. J. Math. Phys. 2014, 55, 042111. [Google Scholar] [CrossRef]

	10. 
Appleby, D.M. Quantum errors and disturbances: Response to busch, lahti and werner. Entropy 2016, 18, 174. [Google Scholar] [CrossRef]

	11. 
Busch, P.; Heinosaari, T. Approximate joint measurement of qubit observables. Quantum Inf. Comput. 2008, 8, 0797–0818. [Google Scholar]

	12. 
Bullock, T.; Busch, P. Incompatibillity and error relations for qubit observables. 2015. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1512.00104 (accessed 1 April 2016). [Google Scholar]

	13. 
Busch, P.; Lahti, P.; Werner, R.F. Heisenberg uncertainty for qubit measurements. Phys. Rev. A 2014, 89, 012129. [Google Scholar] [CrossRef]

	14. 
Dammeier, L.; Schwonnek, R.; Werner, R.F. Uncertainty relations for angular momentum. New J. Phys. 2015, 17, 093046. [Google Scholar] [CrossRef]

	15. 
Werner, R.F. Uncertainty relations for general phase spaces. In Proceedings of the QCMC 2014: 12th International Conference on Quantum Communication, Measurement and Computing, Hefei, China, 2–6 November 2014.

	16. 
Busch, P.; Kiukas, J.; Werner, R.F. Sharp uncertainty relations for number and angle. 2016. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1604.00566 (accessed 1 April 2016).

	17. 
Werner, R.F. Quantum harmonic analysis on phase space. J. Math. Phys. 1984, 25, 1404–1411. [Google Scholar] [CrossRef]

	18. 
Vandenberghe, L.; Boyd, S. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]

	19. 
Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef]

	20. 
Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. Available online: http://cvxr.com/cvx (accessed on 1 April 2016).

	21. 
Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control; Blondel, V., Boyd, S., Kimura, H., Eds.; Springer-Verlag Limited: Berlin, Germany, 2008; pp. 95–110. [Google Scholar]

	22. 
Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]

	23. 
Nikaidô, H. On von Neumann’s minimax theorem. Pac. J. Math. 1954, 4, 65–72. [Google Scholar] [CrossRef]

	24. 
Sion, M. On general minimax theorems. Pac. J. Math. 1958, 8, 171–176. [Google Scholar] [CrossRef]

	25. 
Holevo, A.S. Statistical decision theory for quantum systems. J. Multivar. Anal. 1973, 3, 337–394. [Google Scholar] [CrossRef]

	26. 
Yuen, H.P.; Kennedy, R.S.; Lax, M. Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 1975, 21, 125–134. [Google Scholar] [CrossRef]

	27. 
Villani, C. Optimal Transport: Old and New; Springer: Berlin, Germany, 2009. [Google Scholar]























© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







media/file4.png
o,

|,

YNyl

<
=
O
w

o,

|

1Py \¥yl





nav.xhtml


  mathematics-04-00038


  
    		
      mathematics-04-00038
    


  




  





media/file1.png





media/file2.png
e(L3|L3)

E(L5|Ly)





media/file7.png
e(A7]Ar)






media/file5.png





media/file3.png
/:Z‘ em(A|A)
| , :—’: A,| II





media/file0.png





media/file8.png
e (A7|A1)

¢

Sl

er.(A5]A2)





media/file6.png
er(AyAr) e (Af]A1)
* €L(B1) o
“ ) e (R
(ﬂx ) AEL(R1) + (1= AYEL[Ry)
#.(R) £L(R) EL(Ry))
€
s er(Ay|Az) s (A3 A2)






