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Abstract:



The rate of change of any function versus its independent variables was defined as a derivative. The fundamentals of the derivative concept were constructed by Newton and l’Hôpital. The followers of Newton and l’Hôpital defined fractional order derivative concepts. We express the derivative defined by Newton and l’Hôpital as an ordinary derivative, and there are also fractional order derivatives. So, the derivative concept was handled in this paper, and a new definition for derivative based on indefinite limit and l’Hôpital’s rule was expressed. This new approach illustrated that a derivative operator may be non-linear. Based on this idea, the asymptotic behaviors of functions were analyzed and it was observed that the rates of changes of any function attain maximum value at inflection points in the positive direction and minimum value (negative) at inflection points in the negative direction. This case brought out the fact that the derivative operator does not have to be linear; it may be non-linear. Another important result of this paper is the relationships between complex numbers and derivative concepts, since both concepts have directions and magnitudes.
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1. Introduction


The asymptotic behaviors of functions can be analyzed by velocities or rates of change in functions, while very small changes occur in the independent variables. The concept of rate of change in any function versus change in the independent variables was defined as a derivative, and this concept attracted many scientists and mathematicians such as Newton, l’Hôpital, Leibniz, Abel, Euler, Riemann, etc.



Isaac Newton defined the fundamentals of classical mechanics and this study contains rates of changes of functions [1]. He collected his works in Philosophiæ Naturalis Principia Mathematica, a book that includes geometrical proofs, gravitational force law, and attraction of bodies [1]. He was the first scientist who concerned himself with the concept of derivatives/fluxions. On the other hand, Newton tried to determine the change in length of distance in terms of the velocity of bodies, and the change in velocity of bodies in terms of acceleration. L’Hôpital was a follower of Newton in that he defined the concept of a derivative and generalized this concept. There are other mathematicians who dealt with the concepts of derivatives/fluxions.



The first important and detailed work in differential calculus and differential geometry was done by l’Hôpital [2,3]. L’Hôpital generalized the ideas of Newton through variations on calculus. Leibniz is another scientist who expounded on differential calculus and infinitesimal calculus [4]; he mastered the mathematics of his day and developed his own calculus over the short span of a few years [4]. Newton, l’Hôpital, and Leibniz are not the only mathematicians who dealt with variations of calculus. Some mathematicians tried to explain the ratio between the two displacements of at least two variables [5], since it is important for analyzing the asymptotic behaviors of functions.



The asymptotic behaviors of functions can be regarded as the rates of displacements of functions versus rates of displacement of independent variables—in other words, the rates of movement of functions. The term fluxion indicates motion and the idea of the fluxional calculus developed from the concept that a geometrical magnitude was the result of continuous motion of a point, line, or plane [6]. This motion, speaking of plane curves, could be considered in reference to coordinate axes as the result of two motions, one in the direction of the X-axis and the other in the direction of the Y-axis [6]. The velocity of the X-component and the Y-component were called “fluxions” by Newton [1,6]. The velocity of a point is represented by an equation involving the fluxions x and y [6].



The problems of variation of calculus are attractive to mathematicians and there are several familiar mathematicians who focused their attention on these problems such as Newton, l’Hôpital, Leibniz, Euler, Abel, Caputo, Riemann, Grünwald, Miller, Ross, et al. [7,8,9,10,11].



The problems of variation of calculus and infinitesimal calculus are not solved completely, and there are still open problems in fractional variation of calculus. There are a lot of studies about the fractional variations of calculus [11,12,13,14,15,16,17,18,19,20,21,22]. Euler, Caputo, Riemann, Abel, et al. dealt with fractional variations of calculus and fractional order calculus and systems. Karci defined the fractional order derivative concept in a different way by using indefinite limits and the l’Hôpital rule [23,24,25].



Some popular fractional order derivative methods, such as Euler, Caputo, and Riemann-Liouville, can be summarized as follows.



The Euler method is [image: there is no content] and its deficiencies can be illustrated for constant and identity functions. Assume that f(x) = cx0 where c is a constant and [image: there is no content]. Assume that n = 1 and [image: there is no content] and:


[image: there is no content]











The derivative of any constant function is always zero; however, the result of fractional order derivative with respect to the Euler method is different from zero. Assume that f(x) = x, n = 1 and [image: there is no content].


[image: there is no content]











The Riemann-Liouville method is for function f(t) Dtαaf(t)=1Γ(n−α)(ddt)n∫atf(v)dv(t−v)α−n+1. The fractional order derivative also can be applied to constant and identity functions with respect to the Riemann-Liouville method.



Assuming that f(x) = cx0, [image: there is no content], n = 1 and [image: there is no content],


Dtαaf(t)=1Γ(n−α)(ddt)n∫atf(v)dv(t−v)α−n+1=Dt23af(t)=1Γ(13)ddt∫atcdv(t−v)23=cΓ(13)(−1(t−a)23)≠0











The obtained result is inconsistent, since the result is a function of x. However, the initial function is a constant function and its derivative is zero, since there is no change in the dependent variable. The same case is valid for identity functions.


Dtαaf(t)=1Γ(n−α)(ddt)n∫atf(v)dv(t−v)α−n+1=Dt23af(t)=1Γ(13)ddt∫atxdx(t−x)23−1+1=1Γ(13)ddt∫atxdx(t−x)23=1Γ(13)(3a(t−a)23+94(t−a)43)≠1











The Caputo method is DtαaCf(t)=1Γ(α−n)∫atf(n)(v)dv(t−v)α+1−n. The Caputo method does not have inconsistency for constant functions; however, it has inconsistency for identity functions. Assuming that f(x) = x, n = 1 and [image: there is no content],


DtαaCf(t)=1Γ(α−n)∫atf(n)(v)dv(t−v)α+1−n=1Γ(−13)∫atdv(t−v)23+1−1=1Γ(−13)(3(t−a)13)≠1











Due to these deficiencies, there is a need for a new approach to fractional order derivatives; this paper contains such a definition and some important properties of this approach.



This paper is organized as follows. The motivation of this paper will be presented in Section 2. Section 3 illustrates the applications of rational/irrational orders of derivatives. Section 4 is the definition and details of the new approach and puts forth the analytical results of this new approach for the derivative concept. Finally, the paper is concluded in Section 5.




2. Motivation


The rate of change of functions is an important concept to examine in mathematics. For this purpose, the concept of derivatives was identified, because the rate of change of the function gives detailed information about a system modeled by that function, and the nature of the problems or systems. For this purpose, an athlete’s speed may be examined on a ski-jump ramp (Figure 1). The trajectory of movement of an athlete on the ski-jump ramp can be considered as a curve. The rate of change of the athlete’s speed increases until the inflection point (Figure 1); after that point the rate of change of the athlete’s speed will decrease. So, the rate of change has its maximum at the inflection point. The rate of change of the athlete’s speed will be zero at point E (the local extremum point). The rate of change can be determined as shown in Figure 1, where it can be seen that the rate of change has magnitude and direction. The rate of change as seen in Figure 1 is directed to positive, and the situation of rates is seen in Figure 1. This concept and the relationships with complex numbers will be discussed in detail in subsequent sections of this paper.


Figure 1. The movement of an athlete on the ski-jump ramp and the rates of change.



[image: Mathematics 04 00030 g001 1024]






In order to make this situation more clear and understandable, trigonometric and polynomial functions can be used. To this end, sine and cosine and two polynomial functions can be examined as examples. The rate of change can be regarded as the velocity of function change.



In order to determine the behaviors of rate of change for any function, there will be very small increments/decrements in the independent variable (these increments/decrements are equal) and the response of the dependent variable to these small increments/decrements must be examined. Assume that f(x) = sin(x) and [image: there is no content]. This closed interval can be divided into four closed intervals as follows:


[image: there is no content]











The first interval I1 = [Inf1, E1] can be examined for equal-length increments/decrements in the independent variable x such as Δx1 = Δx2 = … = Δxn-1 = Δxn = Δx << 1. The first point is inflection point [Inf1, E1]; assume that yinf1 = sin(xinf1) is valid.

	(a)

	
[image: there is no content] and 1 ≤ i ≤ n



x1inf1 = xinf1 + Δx



y1inf1 = yinf1 + Δy1inf1 = sin(xinf1 + Δx)



x2inf1 = x1inf1 + Δx = xinf1 + 2Δx



y2inf1 = y1inf1 + Δy2inf1 = yinf1 + Δy1inf1 + Δy2inf1 = sin(x1inf1 + Δx) = sin(xinf1 + 2Δx)



x3inf1 = x2inf1 + Δx = x1inf1 + 2Δx = xinf1 + 3Δx



y3inf1 = y2inf1 + Δy3inf1 = y1inf1 + Δy2inf1 + Δy3inf1 = sin(x2inf1 + Δx) = sin(x1inf1 + 2Δx) = sin(xinf1 + 3Δx)



……



xninf1 = x(n-1)inf1 + Δx = xinf1 + [image: there is no content]



[image: there is no content].









At this point, the changes in the dependent variable y = f(x) are Δy1inf1, Δy2inf1, …, Δy(n-1)inf1, Δyninf1 and inequalities for these changes are as follows: Δy1inf1 ≥ Δy2inf1 ≥ …. ≥ Δy(n-1)inf1 ≥ Δyninf1 and |Δy1inf1| ≥ |Δy2inf1| ≥ …. ≥ |Δy(n-1)inf1| ≥ |Δyninf1|. So, the velocities of change can be identified as follows:


[image: there is no content]









	(b)

	
The same argument can be made for the second closed interval [image: there is no content], and y = f(x) = sin(xE1).



x1E1 = xE1 + Δx



y1E1 = yE1 + Δy1E1 = sin(xE1 + Δx)



x2E1 = x1E1 + Δx = xE1 + 2Δx



y2E1 = y1E1 + Δy2E1 = yE1 + Δy1E1 + Δy2E1 = sin(x1E1 + Δx) = sin(xE1 + 2Δx)



x3E1 = x2E1 + Δx3 = x1E1 + 2Δx = xE1 + 3Δx



y3E1 = y2E1 + Δy3E1 = y1E1 + Δy2E1 + Δy3E1 = sin(x2E1 + Δx) = sin(x1E1 + 2Δx) = sin(xE1 + 3Δx)



……



xnE1 = x(n-1)E1 + Δx = xE1 + [image: there is no content]



[image: there is no content].









At this point, the changes in the dependent variable y = f(x) are Δy1E1, Δy2E1, …, Δy(n-1)E1, ΔynE1 and inequalities for these changes are as follows: Δy1E1 ≥ Δy2E1 ≥ …. ≥ Δy(n-1)E1 ≥ ΔynE1 and |Δy1E1| ≤ |Δy2E1| ≤ … ≤ |Δy(n-1)E1| ≤ |ΔynE1|. So, the velocities of change can be identified as follows:


[image: there is no content]









	(c)

	
The same argument can be done for the second closed interval [image: there is no content], and y = f(x) = sin(xinf2).



x1inf2 = xinf2 + Δx



y1inf2 = yinf2 + Δy1inf2 = sin(xinf2 + Δx)



x2inf2 = x1inf2 + Δx2 = xinf2 + 2Δx



y2inf2 = y1inf2 + Δy2inf2 = yinf2 + Δy1inf2 + Δy2inf2 = sin(x1inf2 + Δx) = sin(xinf2 + 2Δx)



x3inf2 = x2inf2 + Δx = x1inf2 + 2Δx = xinf2 + 3Δx



y3inf2 = y2inf2 + Δy3inf2 = y1inf2 + Δy2inf2 + Δy3inf2 = sin(x2inf2 + Δx) = sin(x1inf2 + 2Δx) = sin(xinf2 + 3Δx)



……



xninf2 = x(n-1)inf2 + Δx = xinf2 + [image: there is no content]



[image: there is no content].









At this point, the changes in the dependent variable y = f(x) are Δy1inf2, Δy2inf2, …, Δy(n-1)inf2, Δyninf2 and inequalities for these changes are as follows: Δy1inf2 ≤ Δy2inf2 ≤ … ≤ Δy(n-1)inf2 ≤ Δyninf2 and |Δy1inf2| ≥ |Δy2inf2| ≥ … ≥ |Δy(n-1)inf2| ≥ |Δyninf2|. So, the velocities of change can be identified as follows:


[image: there is no content]









	(d)

	
The same argument can be made for the second closed interval [image: there is no content], and y = f(x) = sin(xE2).



x1E2 = xE2 + Δx



y1E2 = yE2 + Δy1E2 = sin(xE2 + Δx)



x2E2 = x1E2 + Δx = xE2 + 2Δx



y2E2 = y1E2 + Δy2E2 = yE2 + Δy1E2 + Δy2E2 = sin(x1E2 + Δx) = sin(xE2 + 2Δx)



x3E2 = x2E2 + Δx = x1E2 + 2Δx = xE2 + 3Δx



y3E2 = y2E2 + Δy3E2 = y1E2 + Δy2E2 + Δy3E2 = sin(x2E2 + Δx) = sin(x1E2 + 2Δx) = sin(xE2 + 3Δx)



……



xnE2 = x(n-1)E2 + Δx = xE2 + [image: there is no content]



[image: there is no content].









At this point, the changes in the dependent variable y = f(x) are Δy1E2, Δy2E2, …, Δy(n-1)E2, ΔynE2 and inequalities for these changes are as follows: Δy1E2 ≥ Δy2E2 ≥ … ≥ Δy(n-1)E2 ≥ ΔynE2 and |Δy1E2| ≥ |Δy2E2| ≥ … ≥ |Δy(n-1)E2| ≥ |ΔynE2|. So, the velocities of change can be identified as follows:


[image: there is no content]











Similar arguments can be made for one period of a cosine function; this period was divided into four closed intervals as follows:


[image: there is no content]











The very small increments/decrements in independent variable x can be Δx1 = Δx2 = … = Δxn-1 = Δxn = Δx. First of all, the changes in the dependent variable y = f(x) = cos(x) can be examined for the closed interval I1. At this point, the changes in the dependent variable y = f(x) are Δy1E1, Δy2E1, …, Δy(n-1)E1, ΔynE1 and inequalities for these changes are as follows: Δy1E1 ≥ Δy2E1 ≥ … ≥ Δy(n-1)E1 ≥ ΔynE1 and |Δy1E1| ≤ |Δy2E1| ≤ … ≤ |Δy(n-1)E1| ≤ |ΔynE1|. So, the velocities of change can be identified as follows:


[image: there is no content]











The very small increments/decrements in independent variable x can be Δx1 = Δx2 = …. = Δxn-1 = Δxn = Δx. The changes in the dependent variable y = f(x) = cos(x) can be examined for the closed interval I2. At this point, the changes in the dependent variable y = f(x) are Δy1inf1, Δy2inf1, …, Δy(n-1)inf1, Δyninf1 and inequalities for these changes are as follows: Δy1inf1 ≤ Δy2inf1 ≤ … ≤ Δy(n-1)inf1 ≤ Δyninf1 and |Δy1inf1| ≥ |Δy2inf1| ≥ … ≥ |Δy(n-1)inf1| ≥ |Δyninf1|. So, the velocities of change can be identified as follows:


[image: there is no content]











The changes in the dependent variable y = f(x) = cos(x) can be examined for the closed interval I3. At this point, the changes in the dependent variable y = f(x) are Δy1E2, Δy2E2, …., Δy(n-1)E2, ≤ ΔynE2 and inequalities for these changes are as follows: Δy1E2 ≤ Δy2E2 ≤ … ≤ Δy(n-1)E2 ≤ ΔynE2 and |Δy1E2| ≤ |Δy2E2| ≤ … ≤ |Δy(n-1)E2| ≤ |ΔynE2|. So, the velocities of change can be identified as follows:


[image: there is no content]











The changes in the dependent variable y = f(x) = cos(x) can be examined for the closed interval I4. At this point, the changes in the dependent variable y = f(x) are Δy1inf2, Δy2inf2, …, Δy(n-1)inf2, Δyninf2 and inequalities for these changes are as follows: Δy1inf2 ≥ Δy2inf2 ≥ … ≥ Δy(n-1)inf2 ≥ Δyninf2 and |Δy1inf2| ≥ |Δy2inf2| ≥ … ≥ |Δy(n-1)inf2| ≥ |Δyninf2|. So, the velocities of change can be identified as follows:


[image: there is no content]












3. Applications of Rational/Irrational Orders


The theoretical information given in Section 2 can be verified by applications of trigonometric and polynomial functions. To this end, sine, cosine, and increasing and decreasing polynomial functions are selected. These functions are sin(x) for [image: there is no content], cos(x) for [image: there is no content], x3 − 7x2 for [image: there is no content] and −x3 − 7x2 for [image: there is no content].



Figure 2 and Figure 3 show the rates of changes for sine functions and the obtained results support the claims of Figure 1. The red circles in both figures depict the inflection points. Figure 4 and Figure 5 depict the same cases for the cosine function. In the case of Figure 3 and Figure 5, while power is equal to 1, the rate of change is the same as an ordinary derivative. The domains of sine and cosine functions were determined as a period of functions. The inflection points for sine function are {(0, 0), (0, π), (0, 2π)} and large changes occur at these points for sine function (Figure 2 and Figure 3). The inflection points for cosine function are {(π/2, 0), (3π/2, 0} and large changes occur at these points for cosine function (Figure 4 and Figure 5).


Figure 2. The rational orders of rates of change for the sine function (Orders are 0, 1/5, 2/5).



[image: Mathematics 04 00030 g002 1024]





Figure 3. The rational orders of rates of change for the sine function (Orders are 3/5, 4/5, 1).



[image: Mathematics 04 00030 g003 1024]





Figure 4. The rational orders of rates of change for the cosine function (Orders are 0, 1/5, 2/5).



[image: Mathematics 04 00030 g004 1024]





Figure 5. The rational orders of rates of change for the cosine function (Orders are 3/5, 4/5, 1).



[image: Mathematics 04 00030 g005 1024]






The same idea can be argued for polynomial functions, specifically functions f(x) = x3 − 7x2 for [image: there is no content] and f(x) = −x3 − 7x2 for [image: there is no content]. The domains for these functions were selected to cover the inflection points and extremum points. The inflection point for f(x) = x3 − 7x2 is (7/3, 1372/27); it is illustrated by a red circle. The inflection point for f(x) = −x3 − 7x2 is (−7/3, −686/27); it is also illustrated by a red circle. The black diamond points are extremum points for both functions. The approach in Section 2 was verified by applications for polynomials as seen in Figure 6, Figure 7, Figure 8 and Figure 9.


Figure 6. The rates of change for f(x) = x3 − 7x2 orders {0, 1/5, 2/5}.



[image: Mathematics 04 00030 g006 1024]





Figure 7. The rates of change for f(x) = x3 − 7x2 orders {3/5, 4/5, 1}.



[image: Mathematics 04 00030 g007 1024]





Figure 8. The rates of change for f(x) = −x3 − 7x2 orders {0, 1/5, 2/5}.



[image: Mathematics 04 00030 g008 1024]





Figure 9. The rates of change for f(x) = x3 − 7x2 orders {3/5, 4/5, 1}.



[image: Mathematics 04 00030 g009 1024]






A similar case can be considered for negative order, and to this end, sine function was selected for illustration. Figure 10 illustrates that in the case of negative orders, the same comments can be made for fractional order derivatives. The negative order reverses the direction of the increase/decrease, so the inequalities in Section 2 can be rephrased.


Figure 10. The rates of change for f(x) = sin(x) for orders {−1, −0.8, −0.6}.



[image: Mathematics 04 00030 g010 1024]







4. Analytical Approach and Results


The meaning of derivative is the rate of change or velocity of change in the dependent variable versus the changes in the independent variables [23,24,25]. Thus, the derivative of f(x) = cx0 is:


[image: there is no content]











In the case of an identity function, it is:


[image: there is no content]











So, the definition for rational/irrational order derivative can be considered as follows.

Definition 1. 

f(x): R → R is a function, [image: there is no content]and the rational/irrational order derivative can be considered as follows:


[image: there is no content]



(1)











Before handling applications, the new definitions for rational/irrational order derivatives must be rephrased. Definition 1 is a classical definition of derivative, and it has an indefinite limit such that [image: there is no content], while h = 0. In this case, Definition 1 can be rephrased as seen in Definition 2.

Definition 2. 

Assume that f(x): R → R is a function, [image: there is no content]and L(.) is a l’Hôpital process. The rational/irrational order derivative of f(x) is:


[image: there is no content]



(2)











The new definition of rational/irrational order derivative (Definition 2) can be applied to some specific functions such as constant, identity, sine, and cosine functions. The velocity of change for a constant function is zero whatever the independent variable changes. The velocity of change for an identity function is 1 whatever the order of derivative and change of independent variable. The derivatives of sine, cosine, and polynomial functions for different orders are illustrated in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9.



These results demonstrated that the new definition obeys velocities of change of functions in extremum points, inflection points, etc.



The comments and descriptions in Section 2 can be supported with analytical results. The velocities of change of any functions can be expressed by derivatives. The point of this study is to analyze the powers of derivative with respect to all real powers.

Theorem 4.1. 

Assume that f(x) is any function such that f(x): R → R, and α1, α2, …, [image: there is no content]. Let f(x) be a positive, monotonically increasing/decreasing function in which the following conditions hold:

	(a) 

	
If α1, α2, …, [image: there is no content], α1 ≤ α2 ≤ … ≤ αn and f(x) is positive and monotonically increasing, then [image: there is no content].




	(b) 

	
If α1, α2, …, [image: there is no content], α1 ≤ α2 ≤ … ≤ αn, and f(x) is positive and monotonically decreasing, then [image: there is no content].











Proof. 


	(a)

	
f(x) is a monotonically increasing function, so f(xi) ≤ f(xj) for xi ≤ xj, [image: there is no content]. Then [image: there is no content] and [image: there is no content] where 1 ≤ i < j ≤ n, k is any index, αi, αj are two constants and αi ≤ αj. This case implies that [image: there is no content] and [image: there is no content]. So, this implies the following quotient:


[image: there is no content]





















This implies the following important relations.

Step 1. 

Assuming that n = 2, there are two rational/irrational powers of functions such as α1, [image: there is no content], α1 ≤ α2. Then:


[image: there is no content]













Step 2. 

Assuming that there are n − 1 rational/irrational powers of rates of change, there are n − 1 rational/irrational powers of functions such as α1, α2, …, [image: there is no content], α1 ≤ α2… ≤ αn-1. Then:


[image: there is no content]













Step 3. 

Assuming that α1, α2, …, [image: there is no content], α1 ≤ α2 ≤ … ≤ αn, the following inequality holds:


[image: there is no content]















This means that [image: there is no content] and [image: there is no content] for 1 ≤ i ≤ n − 1.

	(b)

	
f(x) is a monotonically decreasing function, so f(xi) ≥ f(xj) for xi ≤ xj, [image: there is no content]. Then [image: there is no content] and [image: there is no content] where 1 ≤ i < j ≤ n, k is any index, αi, αj are two constants and αi ≤ αj. This case implies that [image: there is no content] and [image: there is no content]. So, this implies the following quotient:


[image: there is no content]

















This implies the following important relations.

Step 1. 

Assuming that n = 2, there are two rational/irrational powers of functions such as α1, [image: there is no content], α1 ≤ α2. Then:


[image: there is no content]













Step 2. 

Assuming that there are n − 1 rational/irrational powers of rates of changes, then there are n − 1 rational/irrational powers of functions such as α1, α2, …, [image: there is no content], α1 ≤ α2…. ≤ αn-1. Then:


[image: there is no content]













Step 3. 

Assuming that α1, α2, …, [image: there is no content], α1 ≤ α2 ≤ … ≤ αn, the following inequality holds:


[image: there is no content]















This means that [image: there is no content] and [image: there is no content]for 1 ≤ i ≤ n − 1.

Theorem 4.2. 

Assume that f(x) is any function such that f(x): R → R, and α1, α2, …, [image: there is no content]. Let f(x) be a positive, monotonically increasing/decreasing function in which the following conditions hold:

	(a) 

	
If α1, α2, …, [image: there is no content], α1 ≥ α2 ≥ … ≥ αn and f(x) is positive and monotonically increasing, then [image: there is no content].




	(b) 

	
If α1, α2, …, [image: there is no content], α1 ≥ α2 ≥ … ≥ αn, and f(x) is positive and monotonically decreasing, then [image: there is no content].











Proof. 

The proof can be handled in two steps: increasing function and decreasing function.

	(a)

	
f(x) is a positive, monotonically increasing function, so f(xi) ≤ f(xj) for xi ≤ xj, [image: there is no content], and α1, [image: there is no content] and α1 ≤ α2. Then [image: there is no content] and [image: there is no content], |α1| ≥ |α2|.


[image: there is no content]








and,


[image: there is no content]








where [image: there is no content] and [image: there is no content]. This case implies the following inequality:


[image: there is no content]





















This case is for two orders, and it can be enlarged to other orders. For α1 ≥ α2 ≥ … ≥ αn and |α1| ≤ |α2| ≤ … ≤ |αn|,


[image: there is no content]









	(b)

	
g(x) is a positive, monotonically decreasing function, so g(xi) ≥ g(xj) for xi ≤ xj, [image: there is no content], and α1, [image: there is no content] and α1 ≤ α2. Then [image: there is no content] and [image: there is no content], |α1| ≥ |α2|. Assuming that f(x) is a positive, monotonically increasing function, [image: there is no content] is a positive, monotonically decreasing function:


[image: there is no content]








and,


[image: there is no content]








where [image: there is no content] and [image: there is no content]. This case implies the following inequality.


[image: there is no content]

















This case is for two orders, and it can be enlarged to other orders. For α1 ≥ α2 ≥ … ≥ αn and |α1| ≤ |α2| ≤ … ≤ |αn|,


[image: there is no content]











Any complex number has direction and magnitude. It is known that derivative has direction and magnitude. So the relationship between complex numbers and derivatives must be verified.

Theorem 4.3. 

Assuming that f(x) is a function such as f: R → R and [image: there is no content], f(α)(x) is a function of complex variables.





Proof. 

Assume that [image: there is no content] and δ ≠ 0. If f(x) ≥ 0, the obtained results are positive, and they constitute the real part of complex numbers. The rational/irrational order derivative of f(x) is:


[image: there is no content]















If the rational/irrational derivative is a function of complex variables, then f(α)(x) = g(x) + ih(x), where [image: there is no content].



If f(x) < 0, there will be two cases:

Case 1: 

Assume that δ is odd.







If [image: there is no content] or [image: there is no content], then the obtained function f(α)(x) is a real function and h(x) = 0 for both cases since the multiplication of any negative number in odd steps yields a negative number.

Case 2: 

Assume that δ is even.







If [image: there is no content], then h(x) = 0 and f(α)(x) is a real function.



If [image: there is no content], then the multiplication of any number in even steps yields a positive number for real numbers. However, it yields a negative result for complex numbers, so, h(x) ≠ 0. This means that f(α)(x) is a complex function.



In fact, f(α)(x) is a complex function for both cases because h(x) = 0 for some situations.

Problem 1. 

The derivative operator D is a linear operator. The theoretical and application results presented in the previous sections demonstrated that the derivative operator does not have to be linear. The ordinary derivative operator D is linear; however, the rate of change of any function versus its independent variables does not have to be linear. This is in need of theoretical verification.





Problem 2. 

A new approach for derivatives was expressed in this paper. This new approach has the potential to change the integration rules in the case of orders of derivatives different from 1. The new rules for integration should be defined.





Problem 3. 

The geometrical meanings of ordinary derivatives are known. The geometrical meanings of this new approach for derivatives in the case of rational and irrational orders of derivatives are still unknown.








5. Conclusions


The ordinary definition of a derivative from Newton and l’Hôpital can be considered as order = 1; in this case, the derivative operator D is linear. This paper includes a new approach for the derivative concept in which the derivative operator is not linear. The following consequences can be put forth:

	(a)

	
All functions have maximum rates of changes at inflection points in the positive direction.




	(b)

	
All functions have minimum rates of changes at inflection points in the negative direction.




	(c)

	
The derivative operator does not have to be linear, since the rates of changes of functions are not linear.




	(d)

	
This new approach needs to prove geometrical meaning for derivative orders different from 1.




	(e)

	
This new approach brought out a new problem: how to handle the integration in cases of derivative orders different from 1.




	(f)

	
This new approach reveals that derivative and complex numbers have relationships.
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