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Abstract: The stochastic collocation method for solving differential equations with random inputs has
gained lots of popularity in many applications, since such a scheme exhibits exponential convergence
with smooth solutions in the random space. However, in some circumstance the solutions do not fulfill
the smoothness requirement; thus a direct application of the method will cause poor performance and
slow convergence rate due to the well known Gibbs phenomenon. To address the issue, we propose
an adaptive high-order multi-element stochastic collocation scheme by incorporating a WENO
(Weighted Essentially non-oscillatory) interpolation procedure and an adaptive mesh refinement
(AMR) strategy. The proposed multi-element stochastic collocation scheme requires only repetitive
runs of an existing deterministic solver at each interpolation point, similar to the Monte Carlo method.
Furthermore, the scheme takes advantage of robustness and the high-order nature of the WENO
interpolation procedure, and efficacy and efficiency of the AMR strategy. When the proposed scheme
is applied to stochastic problems with non-smooth solutions, the Gibbs phenomenon is mitigated by
the WENO methodology in the random space, and the errors around discontinuities in the stochastic
space are significantly reduced by the AMR strategy. The numerical experiments for some benchmark
stochastic problems, such as the Kraichnan-Orszag problem and Burgers’ equation with random
initial conditions, demonstrate the reliability, efficiency and efficacy of the proposed scheme.

Keywords: stochastic collocation method; high-order; multi-element; WENO interpolation; adaptive
mesh refinement

1. Introduction

Problems subject to uncertainty arise in many engineering [1,2], environmental and biological
applications. Such uncertainty is mainly due to a lack of knowledge about the true value of model
parameters or the random nature of the quantity of interest being studied. Uncertainty quantification
(UQ) for practical problems has been drawing growing interest in recent years, in particular in
developing numerical methods for stochastic computations. Due to the computational cost of
high-fidelity models for complex systems, many researchers are investigating more efficient stochastic
algorithms than the classic Monte Carlo (MC) method. One of the popular stochastic methodologies
is generalized polynomial chaos (gPC) [3], which is an extension of the standard polynomial chaos
method [4]. In addition, advanced gPC algorithms for high-dimensional stochastic problems have
been developed [5–15].
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The performance and convergence of gPC depends on the smoothness of the function in the
random parameter space. gPC will converge quickly for smooth functioning in random parameter
space. However, the performance and convergence will deteriorate when the function has low
regularity, particularly with discontinuities in the random parameter space. In such cases, Gibbs-type
phenomenon will be observed in gPC approximation, which causes the slow convergence. To alleviate
such a challenging issue, multi-element gPC methods [16,17] and multi-element stochastic collocation
methods [18,19] were developed to decompose the random space into sub-domains, then employ
a gPC expansion in each element. The challenge of the standard multi-element gPC or multi-element
stochastic collocation method is to detect the discontinuities in high-dimensional random space and
the computational cost. It requires the users to resolve the stochastic problem in each of the random
element. A few recent works on the development of efficient stochastic algorithms for handling
discontinuities also exist [20–26].

In this paper, we propose an adaptive high-order multi-element stochastic collocation method in
conjunction with Weighted Essentially non-oscillatory (WENO) reconstruction methodology and
adaptive mesh refinement (AMR) strategy to address the challenging issue regarding standard
multi-element approaches for solving stochastic differential equations with discontinuities in the
random space. The proposed method consists of two important components. (1) Adaptive stochastic
domain decomposition framework: it is known that solution in the random space may exhibit local complex
structures such as discontinuities; hence, we employ a stochastic domain decomposition framework
based on the idea that in the smooth region a multi-element stochastic collocation scheme is used in
order to take advantage of its low computational cost and fast convergence, while an AMR WENO
scheme on a local tensor-product grid is used in the region with complex discontinuous solution
structures; (2) High-order WENO interpolation scheme in random space: it is a grand challenge to detect
the discontinuities in high-dimensional random space. However, by employing the WENO scheme,
there is no need to know the location of the discontinuities exactly. High-order WENO interpolation
scheme in random space can provide essentially non-oscillatory solutions across the discontinuities,
which is particular suitable for stochastic problems with complex discontinuity structure; (3) AMR
strategy in random space [27]: Even though the AMR WENO scheme has been developed in different
settings in the literature, such as an AMR WENO scheme for solving hyperbolic conservation
laws [27], it has not been investigated in the uncertainty quantification context. By employing AMR
strategy, we can identify the regions that contain discontinuities in random space and only apply the
high-order WENO interpolation scheme in such regions. In this paper, we will show the efficiency
and efficacy of the proposed scheme for solving stochastic problems with complex solution structure
including discontinuities.

This paper is organized as follows: in the next section, the mathematical formulation of the
proposed stochastic domain decomposition framework, high-order WENO interpolation, and AMR
strategy in random space is introduced. In Section 3, the numerical examples are given. Finally,
concluding remarks are provided in Section 4.

2. Formulation

In this section, we formulate the adaptive AMR WENO-based multi-element stochastic collocation
scheme for solving differential equations with random inputs. We start with a review of the
multi-element stochastic collocation method, the high-order WENO interpolation methodology for
non-smooth problems, which has been widely used in many applications. In the second part, an ARM
strategy in conjunction with the WENO interpolation is formulated in order to take advantage of both
numerical ingredients.

2.1. Multi-Element Stochastic Collocation Method (ME-SCM)

The ME-SCM introduced in [19] decomposes the random space Γ into non-overlapping elements
and then employs the stochastic collocation method on each element. This will provide the



Mathematics 2016, 4, 29 3 of 14

approximation of local moment statistics in each element. We can assemble such local moment
statistics in each element to obtain the global statistics. To improve the efficiency of the proposed
ME-SCM, both the high-order WENO interpolation scheme and AMR strategy will be employed,
which will be discussed in the following subsections.

In particular, we discretize the parametric space Γ into a nonoverlapping mesh of open hypercubes.
We denote {Bi}Ne

i=1 to be a finite collection of open subsets of Γ such that
⋃Ne

i=1 B̄i = Γ and Bi ⋂ Bj = ∅
whenever i 6= j. For illustrative purposes, we let Bi be hypercubes. These sets consists of the elements of
a mesh on the random space Γ and Ne denotes the number of elements. In the prescribed mesh, a set of
collocation points {yi,q}s

q=1 is prescribed in each element Bi. Here, s refers to the number of collocation
points. The collocation points are selected so that they coincide with the points of an cubature rule
on Bi with integration weights {wi,q}s

q=1. In particular, we employ full tensor products of Gauss
quadrature points as the collocation points.

At each of the collocation points {yi,q}s
q=1, we obtain the numerical solution uk(x, yi,q) of the

corresponding deterministic problem,

L(x, yi,q; uk(x, yi,q)) = f (x, yi,q), x ∈ D, B(x, uk(x, yi,q)) = g(x), x ∈ ∂D (1)

The fully discrete approximation IBi uk(x, y) based on the tensor product Lagrangian interpolant
can be written as:

IBi uk(x, y) ≡ Lp
Bi uk(x, y) =

s

∑
q=1

uk(x, yi,q)li
q(y) (2)

where p determines the degree of the interpolant in each dimension. li
j(y) is the Lagrange polynomial

with respect to the quadrature point yi,q.
The global approximant is defined as,

ũ(x, y) =
Ne

∑
i=1

IBi uk(x, y)Υ{y∈Bi} ∀x ∈ D̄, ∀y ∈ Γ (3)

where Υ{y∈Bi} is the characteristic function of set Bi.
The corresponding probability density function in each element is defined as,

ηi(y) =
ρ(y)∫

Bi ρ(y)dy
(4)

where ρ(y) = ∏N
j=1 ρj(yj). The local mean of a function u in an element i is given by,

Ei[u(x, y] =
∫

Bi
u(x, y)ηi(y)dy (5)

The approximation of local mean of ũ using the cubature rule over each element can be
computed as,

Ẽi[ũ](x) =
s

∑
q=1

uk(x, yi,q)wi,q ≈ Ei[ũ](x) (6)

where Ẽi is the expected value approximation operator using numerical quadrature rule.
The approximate global mean can be obtained from the local mean as:

Ẽ[ũ](x) =
Ne

∑
i=1

Ẽi[ũ](x)P(Y(ω) ∈ Bi) ≈ E[ũ](x) (7)

Other statistics can be obtained by a similar procedure.
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2.2. High-Order WENO Interpolation in Random Space

The widely recognized WENO interpolation method is known to be able to effectively resolve
non-smooth data. By carefully assigning weights to each stencil candidate, the WENO interpolation
attains high order accuracy in the smooth region while avoiding oscillations in regions with
singularities (see [28] for a detailed review on the recent development and applications).

2.2.1. One-Dimensional Case

We start with the simple one-dimensional case. The extension to high-dimensional problems can
be established by a tensor product construction and will be discussed later. Consider the following
problem: given a set of point values ui on a uniform mesh xi in a bound domain, i = 1, . . . , N with
a mesh size ∆x = xi+1 − xi, we need to interpolate a local polynomial approximating the original
function u(x) with high order accuracy and free of oscillations. Such a local polynomial uh

i (x) can be
reconstructed as follows.

Assume that we would like to obtain a fifth order approximation from five point values ui−2,
ui−1, ui, ui+1, ui+2. Rather than directly reconstructing a polynomial on the interval [xi−1/2, xx+1/2],
we first interpolate the values at five local quadrature points xi,q, q = 1, . . . , 5, see Figure 1, then obtain
the polynomial from the values at these points. Such an idea has been used to develop the WENO
limiter for discontinuous Galerkin (DG) schemes [29]. First, note that for each point xi,q, we have three
interpolation values

v(0)i,q = c(0)0,q ui−2 + c(0)1,q ui−1 + c(0)2,q ui

v(1)i,q = c(1)0,q ui−1 + c(1)1,q ui + c(1)2,q ui+1

v(2)i,q = c(2)0,q ui + c(2)1,q ui+1 + c(2)2,q ui+2

from three small stencils as third order approximations, and

vi,q = c0,qui−2 + c1,qui−1 + c2,qui + c3,qui+1 + c4,qui+1 + c5,qui+2

from the large stencil as a fifth order approximation of the underlying function. We can also seek a set
of linear weights d(r)q , r = 0, 1, 2, such that

vi,q = v(0)i,q d(0)q + v(1)i,q d(1)q + v(2)i,q d(2)q (8)

Note that a direct application of linear weights d(r)q will lead to oscillations due to the famous
Gibbs phenomenon. Instead, they are replaced by the nonlinear weights, which is known as the main
idea of the WENO methodology. Denote three local polynomials of degree two on each small stencil
by p(r)(x). Then, the smoothness indicators measuring the relative smoothness of each stencil are
defined as:

β(r) =
2

∑
l=1

∫ x
i+ 1

2

x
i− 1

2

∆x2l−1

(
∂l p(r)(x)

∂l x

)
dx

In particular, it gives

β(0) =
13
12

(ui−2 − 2ui−1 + ui)
2 +

1
4
(ui−2 − 4ui−1 + 3ui)

2

β(1) =
13
12

(ui−1 − 2ui + ui+1)
2 +

1
4
(ui−1 − ui−1)

2

β(2) =
13
12

(ui − 2ui+1 + ui+2)
2 +

1
4
(3ui − 4ui+1 + ui+2)

2
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Then, the nonlinear weights are defined accordingly as:

w(r)
q =

α(r)q

∑2
s=0 α

(r)
q

, α
(r)
q =

d(r)q

(ε + β(r))2
, r = 0, 1, 2

where ε is chosen as a small number 10−6 in order to avoid zero denominator. Lastly, the interpolation
values at quadrature nodes are obtained by applying the nonlinear weights, i.e.,

ṽi,q = v(0)i,q w(0)
q + v(1)i,q w(1)

q + v(2)i,q w(2)
q (9)

Based on the WENO interpolation values at the quadrature points ṽi,q, q = 1, . . . , 5, we are able
to reconstruct a polynomial ũ(x) of degree four. We remark that ṽi,q, q = 1, . . . , 5 share the same set
of smoothness indicators, and the interpolation polynomial ũ(x) automatically attains the desired
essentially non-oscillatory properties.

Figure 1. One-dimensional WENO interpolation.

If a cell is close to boundaries, then we need to apply a one-sided WENO interpolation procedure
proposed in [30] to avoid oscillations. For brevity, we do not review the details but refer the readers
to [30]. We also remark that, if only the first several moments such as mean or variance are of interest,
the WENO reconstruction can be directly applied to compute such quantities to save computational
cost. In particular, we only need to perform the WENO interpolation for several moments rather than
the whole solution.

2.2.2. Two-Dimensional Extension

The extension of the WENO interpolation methodology to two-dimensional cases is based on
a tensor product construction. Specifically, in order to obtain a fifth order approximation ũij(x), we
need the stencil plotted in Figure 2. Similar to a one-dimensional case, we need to interpolate the
point values ṽij,qg, q, g = 1, . . . , 5 on the local cell [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], then reconstruct
a polynomial of degree 4. The interpolation procedure is performed in a dimension-by-dimension
fashion. To obtain the value ṽij,qg (the red circle in Figure 2), we first apply the one-dimensional WENO
interpolation in x-direction to get vir,q, r = j− 2, . . . , j + 2 (the blue circles in Figure 2). Then, we can
further apply the interpolation in y-direction. Once the values ṽij,qg are obtained, the interpolating
polynomial is constructed from ṽij,qg.
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Figure 2. Two-dimensional WENO interpolation.

2.3. AMR Methodology in Random Space

The AMR methodology is known as an efficient numerical tool for solving problems with
local complex solution structures, which has soared in popularity in many applications since the
1980s [31,32]. In this work, we consider a cluster based method to generate fine grids where the local
mesh refinement is needed. It is also known that such a method is very suited for WENO interpolation
on a tensor product grid. The AMR interpolation methodology has the following steps:

1. Use a multi-resolution analysis to flag the regions of refinement interest (RRI): We compute the
difference between the solution ui,j and the average of its four neighbors b = 1

4 (ui+1,j + ui−1,j +

ui,j+1, ui,j−1). If |ui,j − b| > ε∆x, where ε is a user specified constant, then the point and its eight
neighbors are marked as regions of refinement interest (RRI).

2. Generate finer grids using the algorithm proposed in [33]: We generate some non-overlapping
rectangular clusters that cover the RRI. In each cluster, the grid is refined with a ratio of
three, i.e., ∆xl+1 = ∆xl/3, where ∆xl denotes the mesh size on the mesh level l (see Figure 3;
two non-overlapping clusters are generated, and red circles denote point values on the fine grid).

3. Repeat steps 1 and 2 until the maximal mesh level is attained.
4. Generate the WENO interpolating polynomial by applying the algorithm reviewed in Section 2.2.

We start from the clusters with the finest mesh level. The needed boundary values in the WENO
interpolation procedure can be either obtained from the neighboring cluster with same mesh level
or interpolated from coarser clusters. Again, the WENO interpolation should be used in order to
avoid the oscillations (see Figure 3; the green circles are interpolated from the blue circles on a
coarser cluster).

Figure 3. Two-dimensional AMR WENO interpolation.
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Note that the refinement ratio is set as three, since the solution on the coarse mesh level can be
reused. Even though we only consider the two-dimensional case, the algorithm in [33] can be applied
to problem in arbitrary dimension. Further, the rectangular clusters may contain some nodes are not
RRI, however, the cutoff ratio is set as 0.7 meaning that at least 70% nodes included in the clusters
are RRI.

Lastly, we remark that the use of tensor product grid seems less efficient than the sparse grid
for high-dimensional problems. However, one should note that for many real applications in UQ,
such as discontinuous response, the solution may have local dense structures in the random space.
An adaptive sparse-grid based stochastic collocation scheme such as the one proposed in [26] still
needs sufficient nodes clustered in the region to adequately represent the solution structures. Hence,
in such a scenario, the computation cost of the tensor product grid is comparable to that of the sparse
grid. Another rationale of the tensor product grid is that it is quite complicated to implement a high
order WENO interpolation on an adaptive sparse grid, which is highly non-uniform. We leave the
investigation of the WENO interpolation in conjunction with a sparse grid to the future work.

3. Numerical Results

3.1. Approximation Investigation for Non-Smooth Functions

We first assess the approximation properties of the proposed AMR WENO stochastic collocation
scheme. Below, we consider two functions with singularities in domain [0, 1]2:

f1(x, y) =
1

|0.3− x2 − y2|+ 0.1

f2(x, y) =

 sin(2π(x− y)) (x, y) ∈ [0.3, 0.7]2

2 + cos(2π(x + y)) otherwise

Note that f1 has discontinuous derivative on the circle x2 + y2 = 0.3 and f2 is discontinuous with
a line singularity parallel to the grid line. We start with the a tensor-product mesh 50× 50 and local
mesh refinement is performed based on the multi-resolution analysis. The maximum mesh level is set
as 4 and 5 for f1 and f2, respectively. In Table 1, we report the “error in variance”, that is, we compute
the “numerically computed variance”

∫∫
f 2(x, y)dxdy− (

∫∫
f (x, y)dxdy)2 using the adaptive WENO

collocation method and compare the result with the “exact variance”, and the maximum error at
1000 randomly sampled points with different ε for f1. It can be observed that the errors decrease as ε is
getting smaller, while the number of sampling points is getting larger accordingly. Furthermore, if
the mesh level is increased, the error is reduced by the local mesh refinement strategy. However, we
remark that for a fixed ε, there is no gain in accuracy by excessively increasing the mesh level, since
the error eventually will be dominated by the coarsest mesh. For instance, the error by the three-level
mesh is comparable to that by the four-level mesh (see Table 1). Since the singular curve is ‘dense’ in
the one-dimensional space, the sparse grid algorithm will generate a ‘local’ tensor product grid around
the curve in order to resolve such a singularity of the solution.

Table 1. Approximation investigation of f1. The error of variance (var. err.) and maximum error
(max. err.) in 1000 randomly sampled points.

Mesh Level ε = 10 ε = 1 ε = 0.1
points var. err. max. err. points var. err. max. err. points var. err. max err.

2 4812 2.21 × 10−4 1.48 × 10−1 9964 2.20 × 10−4 1.18 × 10−1 22,500 2.19 × 10−4 8.62 × 10−2

3 11,028 5.22 × 10−6 1.65 × 10−2 47,140 2.25 × 10−6 8.94 × 10−3 135,308 1.65 × 10−6 6.85 × 10−3

4 22,332 4.05 × 10−6 6.08 × 10−3 144,468 1.13 × 10−6 7.64 × 10−4 676,324 3.75 × 10−7 6.51 × 10−5
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In Figure 4, we report the interpolant functions with the AMR WENO reconstruction method
and the corresponding AMR meshes for ε = 10, 1. It is observed that the local mesh refinement is
incurred around the line singularity of the function. Furthermore, the local refined region with smaller
ε is greater than that with larger ε.
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Figure 4. Interpolation comparison of f1 using the WENO reconstruction. (a) interpolant function of f1

with ε = 10; (b) AMR mesh with ε = 10; (c) interpolant function of f1 with ε = 1; (d) AMR mesh with
ε = 1.

We would like to use function f2 to demonstrate the advantages of using WENO reconstruction
Equation (9) over the linear reconstruction Equation (8), as shown in Figure 5. Note that the maximum
error for such a discontinuous function remains O(1), and hence we only report the convergence study
for variance. In Table 2, we summarize the error convergence with ε = 1 for both reconstruction
methodologies. Similar to the previous example, as we increase the mesh level, the error is reduced
accordingly for both methods. Moreover, the errors computed by the WENO reconstruction are
about one half of errors by the linear reconstruction, which justifies the usage of the robust WENO
reconstruction methodology. We also remark that the methods with ε = 0.1, 1, 10 will generate the
same AMR mesh. This is because f2 itself is discontinuous, and hence the local mesh refinement is
only carried out around discontinuities.
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Table 2. Approximation investigation of f2. The error of variance (var. err.) for linear reconstruction
and WENO reconstruction.

Mesh Level ε = 1
Points Linear Reconstruction WENO Reconstruction

1 2500 6.01 × 10−3 3.15 × 10−3

2 5060 1.99 × 10−3 1.04 × 10−3

3 12,740 6.51 × 10−4 3.43 × 10−4

4 35,780 2.16 × 10−4 1.13 × 10−4

5 104,900 7.08 × 10−5 3.66 × 10−5
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Figure 5. Interpolation of the discontinuous function f2 using the WENO reconstruction. (a) Interpolant
function of f2 with ε = 1; (b) AMR mesh with ε = 1.

3.2. Two-Dimensional Kraichnan-Orszag (K-O) Problem

In this subsection, we consider the following transformed two-dimensional K–O
three-mode problem:

dy1

dt
= y1y3

dy2

dt
= −y2y3

dy3

dt
= −y2

1 + y2
2

subject to the random initial condition

y1(0) = 1, y2(0) = 0.1Y1(0; ω), y3(0) = Y2(0; ω)

Similar to [26], we let Y1 and Y2 have the uniform distribution Y1, Y2 ∼ U(−1, 1). The stochastic
simulation for this benchmark problem is challenging since the solution exhibits a bifurcation on the
parameter y1(0) and y2(0) [16]. Note that a direct application of gPC will result in failure in convergence
after a short period of time. Here, we would like to use this example to further demonstrate the
performance of the AMR WENO stochastic collocation scheme. The maximum mesh level is set to
four and a classic forth order Runge–Kutta method with time step 0.01 is used to solve the differential
equations. First, we plot the numerical solution of y1 in the random space at T = 10 with ε = 2, 10 and
the associated adaptive mesh in Figure 6. The number of points sampled in the simulation is 29,460 and
3684 for ε = 2, 10, respectively. It is observed that the local mesh refinement is carried out around
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the line Y1 = 0, where discontinuity occurs (see [16] for more details about the singularity of the
K-O problem). We further report the time evolution of the variance of y1 with ε = 2, 10 in Figure 7.
Little difference is observed for the two simulations. For brevity, we do not report the results for y2

and y3, yet similar observations can be obtained. We remark that the numerical results reported agree
well with the benchmarks in the literature [26].
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Figure 6. Contour plots of solution of the K-O problem in the random space. (a) y1 with ε = 2; (b) AMR
mesh with ε = 2; (c) y1 with ε = 2; (d) AMR mesh with ε = 10.

Figure 7. The time evolution of the variance of y1.
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3.3. Burgers’ Equation with Random Initial Conditions

The last example we consider in this paper is the inviscid one-dimensional Burgers’ equation:

ut +

(
u2

2

)
x
= 0, x ∈ [0, 1]

with the following random initial condition
u(0, x) = 12 + 0.2Y1 x ∈ [0, 0.3]
u(0, x) = 6 + 0.2Y2 x ∈ (0.3, 0.6]
u(0, x) = 3 x ∈ (0.6, 1]

where Y1 and Y2 have the uniform distribution Y1, Y2 ∼ U[−1, 1]. Note that there are three states
for the initial condition. As time evolves, the solution will develop two shocks with different speed.
After some time, the two shocks will interact with each other and finally form one single shock. It is
quite challenging to simulate this problem, since this numerical solution is discontinuous in both
physical and random space. Below, we will apply the proposed AMR WENO stochastic collocation
method to solve this problem. We use a fifth order finite difference WENO scheme coupled with
a third order SSP Runge–Kutta method to solve Burgers’ equation, which is known as a highly accurate
and robust numerical scheme for solving general hyperbolic conservation laws [28]. The numerical
solution is computed up to T = 0.0543. In Figure 8, we report the contour plots of solution u in the
random space with ε = 1, 5 at location x = 0.79, where the shock interaction occurs. The associated
adaptive meshes are also provided. Again, it is observed that the local mesh refinement is carried out
around the discontinuities of the solution in the random space.
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Figure 8. Cont.
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Figure 8. Contour plots of solution of the one-dimensional Burgers equation in random space.
(a) numerical solution with ε = 1; (b) AMR mesh with ε = 1; (c) numerical solution with ε = 5;
(d) AMR mesh with ε = 5.

4. Conclusions and Discussion

In this paper, we developed an adaptive high-order AMR WENO-based multi-element stochastic
collocation method for differential equations with random coefficients and non-smooth solutions,
which consists of two important components including a WENO interpolation methodology and an
AMR stochastic domain decomposition framework in random space. The numerical experiments were
performed for several benchmark tests and the efficacy and efficiency of the proposed method was
verified. The scheme is based on a tensor-product construction and hence suffers from the “curse of
dimensionality”. Future work is to couple the AMR and WENO methodologies in random space with
sparse grid [23,26] and adaptive Analysis Of Variance (ANOVA) [11,18] techniques which are efficient
tools known for approximating high-dimensional problems.
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