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1. Introduction and Main Results

The purpose of this paper is to study the uniqueness of two meromorphic functions sharing
five or more values. Thus, we always assumed that the reader is familiar with the notations of the
Nevanlinna theory, such as T(r, f ), m(r, f ), N(r, f ), and so on (see [1–4]). We use C to denote the open
complex plane, C to denote the extended complex plane and X to denote the subset of C.

In 1929, R. Nevanlinna (see [5]) first investigated the uniqueness of meromorphic functions in the
whole complex plane and obtained the well-known theorem: the five IMtheorem:

Theorem 1.1. (see [5]). If f and g are two non-constant meromorphic functions that share five distinct values
a1, a2, a3, a4, a5 IM in C, then f (z) ≡ g(z).

After his theorem, there are vast references on the uniqueness of meromorphic functions sharing
values and sets in the whole complex plane (see [3]). It is an interesting topic how to extend some
important uniqueness results in the complex plane to an angular domain or the unit disc. In the past
several decades, the uniqueness of meromorphic functions in the value distribution attracted many
investigations. For example, I. Lahiri, H.X. Yi, X.M. Li and A. Banerjee (including [3,6–8]) studied
the uniqueness for meromorphic functions on the whole complex plane sharing one, two, three or
some sets; M.L. Fang, H.F. Liu, Z.Q. Mao and H.Y. Xu (including [9–11]) investigated the shared
value of meromorphic functions in the unit disc; J.H. Zheng, Q.C. Zhang, T.B. Cao and W.C. Lin
(including [12–16]) considered many uniqueness problem on meromorphic functions on the angular
domain.

In 2009, Z.Q. Mao and H.F. Liu [10] gave a different method to investigate the uniqueness problem
of meromorphic functions in the unit disc and obtained the following results.

Theorem 1.2. (see [10]). Let f , g be two meromorphic functions in D, aj ∈ C(j = 1, 2, . . . , 5) be five distinct
values and ∆(θ0, δ) = {z : |z| < 1}⋂{z : | arg z− θ0| < δ}, 0 ≤ θ0 ≤ 2π, 0 < δ < π be an angular domain,
such that for some a ∈ C,

lim sup
r→1−

log n(r, ∆(θ0, δ/2), f (z) = a)
log 1

1−r
= τ > 1. (1)

If f and g share aj(j = 1, 2, . . . , 5) IM in ∆(θ0, δ), then f (z) ≡ g(z).
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In the same year, T.B. Cao and H.X. Yi [12] investigated the uniqueness problem of
two transcendental meromorphic functions sharing five distinct values in an angular domain and
obtained the following theorem:

Theorem 1.3. (see [12], Theorem 1.3). Let f and g be two transcendental meromorphic functions. Given
one angular domain X = {z : α < arg z < β} with 0 < β− α ≤ 2π, we assume that f and g share five distinct
values aj ∈ C(j = 1, 2, 3, 4, 5) IM in X. Then, f (z) ≡ g(z), provided that:

lim
r→∞

Sα,β(r, f )
log(rT(r, f ))

= ∞, (r 6∈ E),

where Sα,β(r, f ) is used to denote the angular characteristic function of meromorphic function f .

Remark 1.1. We may denote Theorem 1.3 by the five IM theorem in an angular domain.

In 2003, J.H. Zheng [15,16] firstly took into account the value distribution of meromorphic
functions in an angular domain. In 2010, J.H. Zheng [17] investigated the uniqueness of the
meromorphic function sharing five values in an angular domain, by using Tsjui’s characteristic
function.

Theorem 1.4. (see [17]). Let f and g be two nonconstant meromorphic functions in an angular domain
Ω(α, β) = {z : α < arg z < β}(0 < β− α < 2π), and:

lim sup
r→∞

Tα,β(r, f )
log r

= ∞.

If f and g share five distinct values aj ∈ C(j = 1, 2, 3, 4, 5) IM in Ω(α, β), then f (z) ≡ g(z).

Remark 1.2. Tα,β(r, f ) is Tsjui’s characteristic function of f in the angular domain Ω(α, β), which is introduced
in [17].

However, the whole complex plane, the unit disc and the angular domain can all be regarded as a
simply-connected region; in other words, the theorems stated in the above references are only regarded
as the uniqueness results in a simply-connected region. In fact, there exists many other sub-regions in
the whole complex plane, such as: the annuli, the m-punctured complex plane, etc.

Recently, there have been some results focusing on the Nevanlinna theory of meromorphic
functions on the annulus (see [18–23]). The annulus can be regarded as the doubly-connected region.
From the doubly-connected mapping theorem [24], we can get that each doubly-connected domain
is conformally equivalent to the annulus {z : r < |z| < R}, 0 ≤ r < R ≤ +∞. For two cases: r = 0,
R = +∞, simultaneously, and 0 < r < R < +∞; the latter case, the homothety z 7→ z√

rR
reduces the

given domain to the annulus {z : 1
R0

< |z| < R0}, where R0 =
√

R
r . Thus, every annulus is invariant

with respect to the inversion z 7→ 1
z in two cases. In 2005, Khrystiyanyn and Kondratyuk [18,19]

proposed the Nevanlinna theory for meromorphic functions on annuli (see also [25]). The basic notions
of the Nevanlinna theory on annuli will be shown in the next section. Lund and Ye [21] in 2009 studied
meromorphic functions on annuli with the form {z : R1 < |z| < R2}, where R1 ≥ 0 and R2 ≤ ∞. In
2009 and 2011, Cao [26–28] investigated the uniqueness of meromorphic functions on annuli sharing
some values and some sets and obtained an analog of Nevanlinna’s famous five-value theorem.

Theorem 1.5. (see [26], Corollary 3.4). Let f1 and f2 be two transcendental or admissible meromorphic
functions on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let aj (j = 1, 2, . . . , q) be q

distinct complex numbers in C and k j(j = 1, 2, . . . , q) be positive integers or ∞, such that:

k1 ≥ k2 ≥ · · · ≥ kq. (2)
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and
Ekj)

(aj, f1) = Ekj)
(aj, f2), (j = 1, 2, . . . , q). (3)

Then:
(i) if q = 7, then f1(z) ≡ f2(z).
(ii) if q = 6 and k3 ≥ 2, then f1(z) ≡ f2(z).
(iii) if q = 5, k3 ≥ 3 and k5 ≥ 2, then f1(z) ≡ f2(z).
(iv) if q = 5 and k4 ≥ 4, then f1(z) ≡ f2(z).
(v) if q = 5, k3 ≥ 5 and k4 ≥ 3, then f1(z) ≡ f2(z).
(vi) if q = 5, k3 ≥ 6 and k4 ≥ 2, then f1(z) ≡ f2(z).

From Theorem 1.5, we can get the following theorem immediately.

Theorem 1.6. (see [26], Theorem 3.2). Let f1 and f2 be two transcendental or admissible meromorphic functions
on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let aj (j = 1, 2, 3, 4, 5) be five distinct

complex numbers in C. If E(aj, f1) = E(aj, f2) for j = 1, 2, 3, 4, 5, then f1(z) ≡ f2(z).

Remark 1.3. Write E(a, f ) = {z ∈ A : f (z)− a = 0}, where each zero with multiplicity m is counted m
times. If we ignore the multiplicity, then the set is denoted by E(a, f ). We use Ek)(a, f ) to denote the set of zeros
of f − a with multiplicities no greater than k, in which each zero is counted only once.

In this paper, we will further investigate the problem on the five values for meromorphic functions
on annuli. To state our main theorem, we first introduce the following definition.

Definition 1.1. For B ⊂ A and a ∈ C, we denote by NB
0 (r, 1

f−a ) the reduced counting function of those zeros
of f − a on A, which belong to the set B.

Theorem 1.7. Let f and g be two transcendental or admissible meromorphic functions on the annulus A =

{z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let a1, . . . , aq(q ≥ 5) be q distinct complex numbers or ∞.
Suppose that k1 ≥ k2 ≥ · · · ≥ kq, m are positive integers or infinity; 1 ≤ m ≤ q and δj(≥ 0)(j = 1, 2, . . . , q)
are such that:

(1 +
1

km
)

q

∑
j=m

1
1 + k j

+ 3 +
q

∑
j=1

δj < (q−m− 1)(1 +
1

km
) + m. (4)

Let Bj = Ekj)
(aj, f ) \ Ekj)

(aj, g) for j = 1, 2, . . . , q. If:

N
Bj
0 (r,

1
f − aj

) ≤ δjT0(r, f ) (5)

and:

lim inf
r→∞

∑
q
j=1 N

kj)

0 (r, 1
f−aj

)

∑
q
j=1 N

kj)

0 (r, 1
g−aj

)

>
km

(1 + km)∑
q
j=m

kj
1+kj
− 2(1 + km) + (m− 2−∑

q
j=1 δj)km

, (6)

then f (z) ≡ g(z).

From Theorem 1.7, we can get the following consequences.

Corollary 1.1. Let m = 1, kj = ∞ for j = 1, 2, . . . , q and:

γ = lim inf
r→R0

∑
q
j=1 N0(r, 1

f−aj
)

∑
q
j=1 N0(r, 1

g−aj
)
>

1
q− 3

.
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If N
Bj
0 (r, 1

f−aj
) ≤ δjT0(r, f ) where δj(≥ 0) satisfy 0 ≤ ∑

q
j=1 δj < k− 3− 1

γ , then f (z) ≡ g(z).

If we take q = 5 and E(aj, f ) ⊆ E(aj, g), then Bj = ∅ for j = 1, 2, . . . , 5. Therefore, if we choose
δj = 0 for j = 1, 2, . . . , 5 and take any constant γ, such that 0 ≤ 2− 1

γ in Corollary 1.1; we can get that
f ≡ g. Especially, if q = 5 and E(aj, f ) = E(aj, g), then γ = 1 and δj = 0 for j = 1, 2, . . . , 5. We can
obtain f ≡ g. Therefore, Corollary 1.1 is an improvement of Theorem 1.6.

Corollary 1.2. Let f and g be two transcendental or admissible meromorphic functions on the annulus A = {z :
1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a1, . . . , aq(q ≥ 5) be q distinct complex numbers or ∞. Suppose

that k1, k2, · · · , kq are positive integers or infinity with k1 ≥ k2 ≥ · · · ≥ kq, if Ekj)
(aj, f ) ⊆ Ekj)

(aj, g) and:

q

∑
j=2

k j

1 + k j
− k1

γ(1 + k1)
− 2 > 0,

where γ is stated as in Corollary 1.1; then, f (z) ≡ g(z).

Corollary 1.3. Under the assumptions of Corollary 1.2, if Ekj)
(aj, f ) = Ekj)

(aj, g) and:

q

∑
j=2

k j

1 + k j
− k1

1 + k1
− 2 > 0,

then we have f (z) ≡ g(z).

Corollary 1.4. Let f and g be two transcendental or admissible meromorphic functions on the annulus A = {z :
1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a1, . . . , aq(q ≥ 5) be q distinct complex numbers or ∞. Suppose

that k1, k2, · · · , kq are positive integers or infinity with k1 ≥ k2 ≥ · · · ≥ kq, if Ekj)
(aj, f ) ⊆ Ekj)

(aj, g) and:

q

∑
j=m

k j

1 + k j
− 2 +

(m− 2− 1
γ )km

1 + km
> 0, (7)

where γ is stated as in Corollary 1.1; then, f (z) ≡ g(z).

Remark 1.4. If Ekj)
(aj, f ) = Ekj)

(aj, g) and taking m = 3 in Corollary 1.4, thus Equation (5) becomes:

q

∑
j=3

k j

1 + k j
> 2.

Then, we can get Theorem 1.5 easily. Hence, Theorem 1.7 is an improvement of Theorem 1.5.

Remark 1.5. Throughout our article, we can see that our theorem and corollaries also hold for transcendental
meromorphic function in the whole complex plane, which are also extensions of some results given by Nevanlinna,
Yi and Cao [3,5,26].

2. Preliminaries and Some Lemmas

Next, we will introduce the basic notations and conclusion about meromorphic functions
on annuli.

For a meromorphic function f on whole plane C, the classical notations of the Nevanlinna theory
are denoted as follows:

N(r, f ) =
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r,

m(r, f ) =
1

2π

∫ 2π

0
log+ | f (reiθ)|dθ, T(r, f ) = N(r, f ) + m(r, f ),
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where log+ x = max{log x, 0}, and n(t, f ) is the counting function of poles of the function f in
{z : |z| ≤ t}.

Let f be a meromorphic function on the annulus A = {z : 1
R0

< |z| < R0}, where 1 < r < R0 ≤
+∞; the notations of the Nevanlinna theory on annuli will be introduced as follows. Let:

N1(r, f ) =
∫ 1

1
r

n1(t, f )
t

dt, N2(r, f ) =
∫ r

1

n2(t, f )
t

dt,

m0(r, f ) = m(r, f ) + m(
1
r

, f )− 2m(1, f ), N0(r, f ) = N1(r, f ) + N2(r, f ),

where n1(t, f ) and n2(t, f ) are the counting functions of poles of the function f in {z : t < |z| ≤ 1} and
{z : 1 < |z| ≤ t}, respectively. Similarly, for a ∈ C, we have:

N0(r,
1

f − a
) = N1(r,

1
f − a

) + N2(r,
1

f − a
)

=
∫ 1

1
r

n1(t, 1
f−a )

t
dt +

∫ r

1

n2(t, 1
f−a )

t
dt

in which each zero of the function f − a is counted only once. In addition, we use nk)
1 (t, 1

f−a ) (or

n(k
1 (t, 1

f−a )) to denote the counting function of poles of the function 1
f−a with multiplicities ≤ k (or > k)

in {z : t < |z| ≤ 1}, each point counted only once. Similarly, we have the notations Nk)
1 (t, f ), N(k

1 (t, f ),

Nk)
2 (t, f ), N(k

2 (t, f ), Nk)
0 (t, f ), N(k

0 (t, f ).
The Nevanlinna characteristic of f on the annulus A is defined by:

T0(r, f ) = m0(r, f ) + N0(r, f ). (8)

For a nonconstant meromorphic function f on the annulus A = {z : 1
R0

< |z| < R0}, where
1 < r < R0 ≤ +∞, the following properties will be used in this paper (see [18]):

(i) T0(r, f ) = T0

(
r,

1
f

)
,

(ii) max{T0(r, f1 · f2), T0(r,
f1

f2
), T0(r, f1 + f2)} ≤ T0(r, f1) + T0(r, f2) + O(1),

(iii) T0(r,
1

f − a
) = T0(r, f ) + O(1), f or every f ixed a ∈ C,

where (iii) can be called the first fundamental theorem on annuli.
In 2005, the lemma on the logarithmic derivative on the the annulus A was obtained by

Khrystiyanyn and Kondratyuk [19].

Lemma 2.1. (see [19], the lemma on the logarithmic derivative). Let f be a nonconstant meromorphic function
on the annulus A = {z : 1

R0
< |z| < R0}, where R0 ≤ +∞, and let λ > 0. Then:

m0

(
r,

f ′

f

)
= S1(r, f ),

where (i) in the case R0 = +∞,
S1(r, ∗) = O(log(rT0(r, ∗))) (9)

for r ∈ (1,+∞), except for the set4r, such that
∫
4r

rλ−1dr < +∞;
(ii) if R0 < +∞, then:

S1(r, ∗) = O(log(
T0(r, ∗)
R0 − r

)) (10)
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for r ∈ (1, R0), except for the set4′r, such that
∫
4′r

dr
(R0−r)λ−1 < +∞.

Definition 2.1. Let f (z) be a non-constant meromorphic function on the annulus A = {z : 1
R0

< |z| < R0},
where 1 < R0 ≤ +∞. The function f is called a transcendental or admissible meromorphic function on the
annulus A provided that:

lim sup
r→∞

T0(r, f )
log r

= ∞, 1 < r < R0 = +∞ (11)

or:

lim sup
r→R0

T0(r, f )
− log(R0 − r)

= ∞, 1 < r < R0 < +∞, (12)

respectively.

Then, for a transcendental or admissible meromorphic function on the annulus A, S1(r, f ) =

o(T0(r, f )) holds for all 1 < r < R0, except for the set 4r or the set 4′r mentioned in Lemma 2.1,
respectively.

The following lemma plays an important role in the proof process of Theorem 1.6, which was
given by Cao, Yi and Xu [26].

Lemma 2.2. ([26], Theorem 2.3) (The second fundamental theorem). Let f be a nonconstant
meromorphic function on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a1,

a2, . . ., aq be q distinct complex numbers in the extended complex plane C. Then:

(q− 2)T0(r, f ) <
q

∑
j=1

N0(r,
1

f − aj
) + S1(r, f ), (13)

where S1(r, f ) is stated as in Lemma 2.1.

Lemma 2.3. (see [26]). Let f be a nonconstant meromorphic function on the annulus A = {z : 1
R0

< |z| <
R0}, where 1 < R < R0 ≤ +∞. Let a be an arbitrary complex number and k be a positive integer. Then:

(i) N0(R,
1

f − a
) ≤ k

k + 1
Nk)

0 (R,
1

f − a
) +

1
k + 1

N0(R,
1

f − a
),

(ii) N0(R,
1

f − a
) ≤ k

k + 1
Nk)

0 (R,
1

f − a
) +

1
k + 1

T0(R, f ) + O(1).
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3. The Proof of Theorem 1.7

Proof of Theorem 1.7. Suppose that f 6≡ g. Then, by Lemma 2.2 and Lemma 2.3, for any integer
m(1 ≤ m ≤ q), we have:

(q− 2)T0(r, f ) ≤
q

∑
j=1

N0(r,
1

f − aj
) + S1(r, f )

=
q

∑
j=1

{
N

kj)

0 (r,
1

f − aj
) + N

(kj+1
0 (r,

1
f − aj

)

}
+ S1(r, f )

≤
q

∑
j=1

{
N

kj)

0 (r,
1

f − aj
) +

1
1 + k j

N
(kj+1
0 (r,

1
f − aj

)

}
+ S1(r, f )

≤
q

∑
j=1

{
k j

1 + k j
N

kj)

0 (r,
1

f − aj
) +

1
1 + k j

N0(r,
1

f − aj
)

}
+ S1(r, f )

≤
q

∑
j=1

k j

1 + k j
N

kj)

0 (r,
1

f − aj
) +

(
q

∑
j=1

1
1 + k j

)
T0(r, f ) + S1(r, f )

≤
m−1

∑
j=1

(
k j

1 + k j
− km

1 + km

)
N

kj)

0 (r,
1

f − aj
) +

(
q

∑
j=1

1
1 + k j

)
T0(r, f )

+
q

∑
j=1

km

1 + km
N

kj)

0 (r,
1

f − aj
) + S1(r, f )

≤
q

∑
j=1

km

1 + km
N

kj)

0 (r,
1

f − aj
)

+

(
m− 1− (m− 1)km

1 + km
+

q

∑
j=m

1
1 + k j

)
T0(r, f ) + S1(r, f ).

that is, (
q

∑
j=m

k j

1 + k j
− 2 +

(m− 1)km

1 + km

)
T0(r, f ) ≤

q

∑
j=1

km

1 + km
N

kj)

0 (r,
1

f − aj
) + S1(r, f ). (14)

(
q

∑
j=m

k j

1 + k j
− 2 +

(m− 1)km

1 + km

)
T0(r, g) ≤

q

∑
j=1

km

1 + km
N

kj)

0 (r,
1

g− aj
) + S1(r, g). (15)

Since Bj = Ekj)
(aj, f ) \ Ekj)

(aj, g), let Dj = Ekj)
(aj, f ) \ Bj for j = 1, 2, . . . , q. Thus, it follows from

Equation (3) that:

q

∑
j=1

N
kj)

0 (r,
1

f − aj
) =

q

∑
j=1

N
Bj
0 (r,

1
f − aj

) +
q

∑
j=1

N
Dj
0 (r,

1
f − aj

)

≤
q

∑
j=1

δjT0(r, f ) + N0(r,
1

f − g
)

≤
(

1 +
q

∑
j=1

δj

)
T0(r, f ) + T0(r, g) + O(1),
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and since f , g are transcendental or admissible, it follows from Equations (5) and (6) that:(
q

∑
j=m

k j

1 + k j
− 2 +

(m− 1)km

1 + km
+ o(1)

)
q

∑
j=1

N
kj)

0 (r,
1

f − aj
)

≤
(

1 +
q

∑
j=1

δj

)
q

∑
j=1

km

1 + km
N

kj)

0 (r,
1

f − aj
) + (1 + o(1))

q

∑
j=1

km

1 + km
N

kj)

0 (r,
1

g− aj
), (16)

as r → R0.
Since:

1 ≥ k1

k1 + 1
≥ k2

k2 + 1
≥ · · · ≥

kq

kq + 1
≥ 1

2
, (17)

it follows from Equation (7) that:{
q

∑
j=m

k j

1 + k j
− 2 +

(m− 1)km

1 + km
− km

1 + km

(
1 +

q

∑
j=1

δj

)
+ o(1)

}
q

∑
j=1

N
kj)

0 (r,
1

f − aj
)

≤(1 + o(1))
km

1 + km

q

∑
j=1

N
kj)

0 (r,
1

g− aj
),

which implies:

lim inf
r→R0

∑
q
j=1 N

kj)

0 (r, 1
f−aj

)

∑
q
j=1 N

kj)

0 (r, 1
g−aj

)
≤

km
1+km

∑
q
j=m

kj
1+kj
− 2 + (m− 2−∑

q
j=1 δj)

km
1+km

.

This is a contradiction to Equation (4). Thus, we have f (z) ≡ g(z).
Therefore, we complete the proof of Theorem 1.7.
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