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1. Introduction

This paper continues a series of papers [1–3]. The reader is referred especially to [3] for
definitions and facts that are only briefly mentioned here. In addition, the reader is referred to [4]
for a concise exposition of Grassmann–Berezin calculus of anticommuting variables (or to [5] for a
more modern and detailed exposition), and to [6] for a pedagogical introduction to Pachner moves.

In [2], a large family was discovered of Grassmann–Gaussian relations corresponding to Pachner
move 3–3, with pentachoron (4-simplex) weights depending on a single Grassmann variable attached
to each 3-face. In [3], a full parameterization was given for (a Zariski open set of) such relations, in
terms of a 2-cocycle given on both l.h.s. and r.h.s. of the Pachner move. Many questions still remain,
however, to be solved before we arrive at a full-fledged four-dimensional topological quantum field
theory (TQFT) on piecewise-linear manifolds.

In the present paper, we solve one such question and show that the answer is remarkably
nontrivial. It consists in finding the coefficient called ‘const’ in ([3] formula (53)) (as well as ([2],
formula (6)) in a form that would make possible further construction of a manifold invariant.
Namely, the coefficient should be represented as a ratio, const = cr/cl (compare relation Equation (2)
below), of two expressions belonging to the two sides of the move, and each of these must be
multiplicative—have the form of a product over simplices belonging to the corresponding side. This
was the case in an earlier paper [1], see formula (1) and Theorem 1 there, also reproduced in ([2]
Section 6), although the 3–3 relations in these papers must be regarded as degenerate from the
viewpoint of the present paper. This was also the case in ([7], formula (38)) and ([8], formula (12)),
where different but similar relations were considered.

1.1. PL Manifold Invariants and Pachner Moves

In order to construct invariants of piecewise linear (PL) manifolds, it makes sense to construct
algebraic relations corresponding to Pachner moves, see, for instance, ([6], Section 1). Pachner’s
theorem states that a triangulation of a PL manifold can be transformed into any other triangulation
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using a finite sequence of these moves [9], so there is a hope to pass then from such relations to some
quantities characterizing the whole manifold.

More specifically, a popular idea consists in constructing state sum-like invariants. This means the
following: a set X of “states”, also often called “colors”, is introduced for every simplex of some fixed
dimension d (for instance, for edges—simplices of dimension d = 1. Of course, one can also imagine
more complicated cases, where simplices of different dimensions are involved). A coloring is then any
mapping from the set of all d-simplices in triangulation into X. In addition, there is a “Boltzmann
weight” Wu, assigned most often to every simplex u of the maximal dimension and depending on the
colors of d-simplices contained in u. The values of Wu are supposed to lie in some ring, because the
invariant is composed from them using multiplication and addition, as in formula (1) below.

If there is a manifold M with colored boundary ∂M (that is, colors are assigned to all d-simplices
lying in ∂M), then its weight is defined, typically, as the following sum of products, each
corresponding to a coloring of inner d-simplices:

WM = ∑
over all colorings

of inner d-simplices

∏
over all u

Wu (1)

If M is now a result of gluing together two manifolds, M1 and M2, by means of identifying some
(identically triangulated) parts N1 ⊂ ∂M1 and N2 ⊂ ∂M2 of their boundaries, the weight:

WM = ∑
over all colorings

of inner d-simplices
in N1=N2

WM1WM2

has the following obvious property: if we change in any way the triangulation within M1 or/and M2,
but not changing the triangulation of its boundary and not changing its weight, then WM remains
the same.

Pachner moves are elementary re-buildings of small clusters of simplices, not changing the
topology. In a usual notation, move m–n replaces m simplices of maximal dimension with n simplices.
If we have invented the simplex weight such that the cluster weight does not change under all
relevant Pachner moves, then Equation (1) gives a manifold invariant.

Such straightforward scheme may work in four dimensions, see, for instance, [10], where
all pentachora are assigned the same “constant” weight satisfying the fundamental equation ([10]
formula (22)). On the other hand, that “constant” equation may be too restrictive; it may make sense
to consider simplex weights depending on parameters having, e.g., some (co)homological meaning.

In the four-dimensional case, the Pachner moves are 3–3, 2–4 and 1–5. The first of them is usually
regarded as ‘central’, and we will be dealing with it in this paper. Here, we describe this move and
fix notations for the involved vertices and simplices.

Let there be a cluster of three pentachora (4-simplices) 12345, 12346 and 12356 situated around
the 2-face 123. Move 3–3 transforms it into the cluster of three other pentachora, 12456, 13456
and 23456, situated around the 2-face 456. The inner 3-faces (tetrahedra) are 1234, 1235 and 1236 in
the l.h.s., and 1456, 2456 and 3456 in the r.h.s. The boundary of both sides consists of nine tetrahedra.

Note that we have listed in the previous paragraph exactly all simplices in which the l.h.s. of
move 3–3 differs from its r.h.s. The boundary of both sides is, of course, the same, and consists of nine
tetrahedra.
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1.2. Discrete Field Theory

Our relation corresponding to Pachner move 3–3, or its algebraic realization, that will hopefully
lead to a very interesting and new TQFT on PL manifolds, is

cl

∫∫∫
W12345W12346W12356 dx1234 dx1235 dx1236

= cr

∫∫∫
W12456W13456W23456 dx1456 dx2456 dx3456 (2)

This relation has already appeared in (practically) this general form in [1–3]. The integrals
in Equation (2) are Berezin integrals [4,5] in Grassmann (anticommuting) variables, and Wijklm are
Grassmann–Gaussian pentachoron weights explained below; xt are Grassmann variables living on
tetrahedra t. Thus, the summation over all colorings in Equation (1) has been replaced in Equation (2)
by integration in anticommuting variables. The basic reasons behind this are as follows:

• Although it is generally believed that anything “fermionic”, like a theory with anticommuting
variables, has its “bosonic” parallel—a theory with usual commuting variables, there seems
to be no “bosonic” theory as yet with nonconstant relations similar to our relation (2), where,
let us recall, the weight parameters are determined by a 2-cocycle. In addition, it was exactly
anticommuting variables that appeared naturally in the author’s work, although it took quite a
while to understand that they are actually hidden behind such formulas as in the short notes [11,
12],

• Grassmann integration is quite a natural operation, it actually leads to finite summation; the
basic difference from Equation (1) can be interpreted as “grading”: minus signs are inserted in a
proper way. Note that, already in 1988, Atiyah in his fundamental paper “Topological quantum
field theory” [13] mentioned such a possibility. Here is the exact quotation: “the vector spaces
Z(Σ) may be mod 2 graded with appropriate signs then inserted”, see ([13] p. 181).

As formula (2) contains factors cl and cr, it is important, in order to obtain a manifold invariant,
to have them expressed in a form multiplicative over simplices. Consider, heuristically, a simplified
problem, where a manifold invariant is written in the form analogous to Equation (1), although now
it must include some factor c:

c
∫
· · ·

∫
∏

u
Wu ∏

inner
tetrahedra t

dxt (3)

and it is very desirable to have an explicit expression for c. Now let cl and cr have a multiplicative
form, for instance, such as we actually find in this paper, see formulas (60) and (61):

∏(some values belonging to inner tetrahedra)∏(some values belonging to pentachora)

∏(some values belonging to inner 2-faces)
(4)

Then, one can readily see that invariant Equation (3) works for moves 3–3 with c having the same
form (4).

Remark 1. The actual invariant of all Pachner moves will include some more factors in the integrand
compared with its “light” version Equation (3), as can be seen, for example, from paper [7], where
similar but simpler invariants are considered. The multiplicative form retains, of course, its full
importance (compare, for instance, ([7], formula (43))). The work on the extension of our present
formulas to all Pachner moves is now in progress.

1.3. The Results of This Paper and How They Are Explained

The results are explicit formulas for everything in Equation (2)—that is, Grassmann
weights Wijklm and coefficients cl and cr—in terms of a 2-cocycle ω introduced in [3] (where not
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everything was calculated explicitly. In particular, only the existence of the mentioned coefficients
was shown, see ([3] Theorem 9)). As all formulas are algebraic, the author might have presented
just these formulas, saying: and now the validity of Equation (2) can be checked using computer
algebra. The formulas look, however, rather intricate, so we follow another way, focusing on the
actual author’s reasonings.

2. Explicit Formulas for Matrix Elements

In this Section, as well as in the next Sections 3 and 4, we work within a single pentachoron
u = 12345. The changes to be made for other u are quite simple and will be explained later.

Convention 1. We denote triangles (2-simplices) by the letter s, tetrahedra (3-simplices) by t, and
pentachora (4-simplices)—by u. As for edges (1-simplices), we tend to use the letter b for them, while
vertices (0-simplices) are i, j, k, . . . .

Convention 2. We also write the simplices by their vertices, e.g., s = ijk or, as we have written above,
u = 12345. The vertices are thus given by their numbers, and in writing so, we assume by default
that the vertices are ordered: i < j < k, etc. If, however, we need a triangle whose order of vertices in
unknown or unessential, we write s as {ijk}, as in Lemma 1 below.

2.1. Edge Operators

Our Grassmann–Gaussian pentachoron weight is

Wu =W12345 = exp
(
−1

2
xTFx

)
where

x =
(

x2345 x1345 x1245 x1235 x1234

)T
(5)

is the column of Grassmann variables corresponding to the 3-faces t ⊂ u, and F—a 5 × 5
antisymmetric matrix.

We are going to recall the construction of matrix F from [3]. Moreover, we will write down some
specific explicit expressions for the entries of F that do not appear in [3]. On the other hand, we will
skip some details for which the reader is referred to [3].

Our starting point is a 2-cocycle ω: it takes complex values ωs = ωijk on triangles s = ijk ⊂ u
such that:

ωjkl −ωikl + ωijl −ωijk = 0 (6)

Then, there are edge operators db for the ten edges b = ij ⊂ u that make the bridge between ω and
matrix F. Edge operators have the following properties:

• They belong to the 10-dimensional space of operators:

d = ∑
t⊂u

(βt∂t + γtxt) (7)

where xt means left multiplication by this Grassmann variable; ∂t = ∂/∂xt; and βt and γt are
arbitrary complex coefficients,

• More specifically, the sum (7) for a given db runs only over such three tetrahedra t that t ⊃ b,
• Each of the edge operators annihilates the pentachoron weight:

dbWu = 0
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• They are antisymmetric with respect to changing the edge orientation:

dij = −dji (8)

• They obey the following linear relations for each vertex i ∈ u:

∑
j∈u
j 6=i

dij = 0 (9)

• In addition, there is one more linear relation:

∑
b⊂u

νbdb = 0 (10)

where ν is any 1-cocycle such that ω makes its coboundary:

ω = δν, i.e., ωijk = νjk − νik + νij (11)

• They form a maximal (5-dimensional) isotropic subspace in the (10-dimensional) space of all
operators of the form (7), where the scalar product is, by definition, the anticommutator:

〈d′, d′′〉 = [d′, d′′]+ = d′d′′ + d′′d′

2.2. Partial Scalar Products of Edge Operators

Due to the form (7), we have t-components

db|t = βt∂t + γtxt

of edge operators, and the (vanishing) scalar product of two edge operators is a sum over tetrahedra:

0 = 〈db1 , db2〉 = ∑
t⊂u
〈db1 , db2〉t

where 〈db1 , db2〉t—we call it the partial scalar product of db1 and db2 with respect to tetrahedron t—is by
definition the same as 〈db1 |t, db2 |t〉.

Lemma 1. Choose a tetrahedron t ⊂ u and a triangle {ijk} ⊂ t (see Convention 2 for this notation). Then the
partial scalar product 〈dij, dik〉t remains the same under any permutation of i, j, k.

Proof. Let us prove, for instance, that

〈d12, d13〉1234 = 〈d21, d23〉1234 (12)

Setting i = 3 in Equation (9) and taking its t-component, we have (keeping in mind also Equation (8)):

− d13|1234 − d23|1234 + d34|1234 = 0 (13)

We want to take the scalar product of Equation (13) with d12. As 1234 is the only tetrahedron common
for the edges 12 and 34, and all edge operators are orthogonal to each other, we get:

〈d12, d34〉1234 = 〈d12, d34〉 = 0 (14)

So, the mentioned scalar product, together with Equation (14), gives Equation (12) at once.
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Lemma 2. For a tetrahedron t ⊂ u, construct the expression

ωs〈db1 , db2〉t (15)

Here tetrahedron t is considered as oriented, s is any of its 2-faces with the induced orientation, and b1, b2 ⊂ s
are two edges sharing the same initial vertex (thus also oriented). Then, the expression (15) does not depend on
a specific choice of s, b1 and b2, and thus pertains solely to t.

Proof. Let us prove, for instance, that

−ω123〈d12, d13〉1234 = ω124〈d12, d14〉1234 (16)

(the minus sign accounts for opposite orientations of 123 and 124). A small exercise shows that the
following linear relation is a consequence of Equation (10):

−ω123d13|1234 −ω124d14|1234 + ω234d34|1234 = 0

Multiplying this scalarly by d12 and using once again orthogonality Equation (14), we get
Equation (16).

Lemma 3. Expression (15) also remains the same for all tetrahedra t forming the boundary of pentachoron u,
if these tetrahedra are oriented consistently (as parts of the boundary ∂u).

Proof. It is enough to consider the situation where s is the common 2-face of two tetrahedra t, t′ ⊂ u,
and show that

〈db1 , db2〉t = −〈db1 , db2〉t′ (17)

Indeed, as the orientation of s as part of ∂t is different from its orientation as part of ∂t′, there are two
values ωs differing in sign, and Equation (17) will yield at once that Equation (15) is the same for t
and t′.

To prove (17), we note that t and t′ are the only tetrahedra containing both b1 and b2, so

0 = 〈db1 , db2〉 = 〈db1 , db2〉t + 〈db1 , db2〉t′

Convention 3. We normalize edge operators in such way that quantity (15) becomes unity.

Here is the matrix of scalar products 〈da, db〉1234 calculated according to Convention 3. The rows
(resp. columns) correspond to edge a (resp. b) taking values in lexicographic order: 12, 13, 14, 23,
24, 34: 

ω−1
124−ω−1

123 ω−1
123 −ω−1

124 −ω−1
123 ω−1

124 0

ω−1
123 −ω−1

134−ω−1
123 ω−1

134 ω−1
123 0 −ω−1

134

−ω−1
124 ω−1

134 ω−1
124−ω−1

134 0 −ω−1
124 ω−1

134

−ω−1
123 ω−1

123 0 ω−1
234−ω−1

123 −ω−1
234 ω−1

234

ω−1
124 0 −ω−1

124 −ω−1
234 ω−1

124+ω−1
234 −ω−1

234

0 −ω−1
134 ω−1

134 ω−1
234 −ω−1

234 ω−1
234−ω−1

134.


(18)

Remark 2. To calculate diagonal elements in matrix (18) is an easy exercise using linear relations
similar to Equation (13).
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Remark 3. As for tetrahedron 1235, we must not only replace ‘4’ by ‘5’ in matrix (18), but also change
all signs—due to its different orientation! Similarly, analogues of matrix (18) for other tetrahedra can
be calculated.

2.3. Superisotropic Operators and Matrix F

Superisotropic operators are such operators of the form (7) that annihilate the weight Wu and
whose each t-component is isotropic, i.e., either γt = 0 or βt = 0. The rows of matrix F correspond
to superisotropic operators in the following sense: every component of the column

p+ Fx (19)

where x is given by Equation (5) and p, similarly, by

p =
(

∂2345 ∂1345 ∂1245 ∂1235 ∂1234

)T

is superisotropic.
We recall ([3] Subsection 4.2) how superisotropic operators proportional to entries of the

column (19) are constructed in terms of edge operators. They all are linear combinations written
as

g = ∑
1≤i<j≤5

αijdij, αij ∈ C (20)

First, we choose and fix one of two square roots of each ωs:

qs
def
=
√

ωs

Second, we define “initial” αij as
αb = ∏

s⊃b
or s∩b=∅

qs (21)

Example 1. As the 2-faces s ⊂ 12345 containing edge 12 are 123, 124 and 125, and the only 2-face not
intersecting with 12 is 345, such “initial” α12 is

α12 = q123q124q125q345

Finally, the operator proportional to the i-th entry in the column (19), and thus corresponding to
the tetrahedron t not containing the vertex i, is obtained by the following change of signs:

αb remains the same if b ⊂ t, else αb 7→ −αb (22)

We want to identify the entries in the column (19) with the operators given by
Equations (20)–(22). Such identifications are determined to within a renormalization xt 7→ x′t = λtxt

of Grassmann variables, implying also ∂i 7→ ∂′i = (1/λi)∂i.

Remark 4. This renormalization leads to multiplying matrix F from both sides by the diagonal matrix
diag(λ−1

2345, . . . , λ−1
1234).

To fix the mentioned arbitrariness, we choose a distinguished edge a in every tetrahedron t and
assume that the restriction of da onto t has a unit coefficient before ∂t:

da|t = ∂t + γxt
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As 〈∂t, xt〉 = 1, this implies

γ =
1
2
〈da, da〉t

Convention 4. In this paper, the distinguished edge a in any tetrahedron t will always be the
lexicographically first one, for example, a = 12 in tetrahedron t = 1234.

We now denote g(t) the superisotropic operator defined according to Equations (20)–(22). If such

operator contains a summand γxt′ , then γ = 〈g(t), da〉t′ , and if it contains β∂t, then β = 2
〈g(t), da〉t
〈da, da〉t

.

Hence, the matrix element Ftt′ = γ/β (because the coefficient at ∂t must be set to unity, according
to Equation (19)), i.e.,

Ftt′ =
〈g(t), da〉t′ 〈da, da〉t

2〈g(t), da〉t
(23)

The scalar products are calculated according to Equation (18) and Remark 3.

Example 2. Here is a typical matrix element:

F12 = F2345,1345 = −
(q2

235 − q2
234)

2q134q135q234q235
·

f (n)12

f (d)12

(24)

where

f (n)12 = q124q134q235q345 − q125q135q234q345 + q123q2
135q245

− q123q2
134q245 − q124q135q145q235 + q125q134q145q234 (25)

and

f (d)12 = q125q134q235q345 − q124q135q234q345 − q124q135q235q245

+ q125q134q234q245 + q123q145q2
235 − q123q145q2

234 (26)

3. Divisors of Matrix Elements

The central part of the present work consisted in finding a nice description for poles and zeros
of matrix elements Ftt′ of the typical form (24). The point is, of course, that the quantities ωijk = q2

ijk
make a cocycle, so there are dependencies

q2
jkl − q2

ikl + q2
ijl − q2

ijk = 0 (27)

for all tetrahedra ijkl.

3.1. Variables aij and Their Relation to “Initial” αij

Recall that we are working within one pentachoron 12345. It has ten 2-faces, as well as ten edges.
This fact, together with the accumulated experience (compare [3] formula (50)), suggests the idea to
introduce a 1-chain aik such that ωijk is written as a product of its three values, namely:

ωijk = aijaikajk (28)

Given all ωijk, the aij are found from the system of equations which become linear after taking
logarithms and are easily solved. Interestingly, the result is, up to an overall factor, our old alphas
from formula (21):

aij = p · αij (29)
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where

p =

 ∏
over all 2-faces ijk

of pentachoron 12345

ωijk


−1/6

.

The cocycle relations are now written (instead of Equation (27)) as

aklajlajk − aklailaik + ajlailaij − ajkaikaij = 0 (30)

Remark 5. We do not permute the indices of aij in this paper, but if needed, the natural idea is to
assume that

aij = −aji

3.2. Matrix Elements in Terms of aij

Matrix elements Ftt′ can now be calculated in terms of aij. To be exact, here is what we do: set
αij = aij/p according to Equation (29); the value of p is not of great importance because it will soon
cancel out. Then, apply formula (23) with g(t) expressed using Equations (20) and (22); the scalar
products are, of course, calculated according to Equation (18), Remark 3, and Equation (28). The
following two examples show what we get.

Example 3.

F12 =
a25a35 − a24a34

2a13a14a15a34a35

· a15a34a35 − a14a34a35 + a14a15a35 − a13a15a35 − a14a15a34 + a13a14a34

a25a34a35 − a24a34a35 − a24a25a35 + a23a25a35 + a24a25a34 − a23a24a34
(31)

Example 4.

F21 = − a15a35 − a14a34

2a23a24a25a34a35

· a25a34a35 − a24a34a35 + a24a25a35 − a23a25a35 − a24a25a34 + a23a24a34

a15a34a35 − a14a34a35 − a14a15a35 + a13a15a35 + a14a15a34 − a13a14a34
(32)

Of course,
F12 = −F21 (33)

even if it is not immediately obvious from Equations (31) and (32). We will shed some light on this by
studying the poles and zeros of these expressions.

3.3. The Variety of Zeros of the Main Factor in the Denominator of a Matrix Element as Function of
Six Variables

The main factor in the denominator of Equation (31) is

a25a34a35 − a24a34a35 − a24a25a35 + a23a25a35 + a24a25a34 − a23a24a34 (34)

and its pleasing feature is that it depends on the six variables aij belonging to just one
tetrahedron 2345. There is just one dependence between these aij:

a34a35a45 − a24a25a45 + a23a25a35 − a23a24a34 (35)
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Lemma 4. The primary decomposition of the affine algebraic variety determined by Equations (31) and (35),
and lying in the affine space of six variables a23, . . . , a45, consists of the four irreducible components given by
the following primary ideals, which are also already prime:

(a25 + a34, a24 + a35) (36)

(a35, a24) (37)

(a34, a25) (38)

and

(a24a25a34 − a24a25a35 − a24a34a35 + a25a34a35 + a24a25a45 − a34a35a45,

a23a25a34 − a23a25a35 + a23a25a45 − a23a34a45 + a25a34a45 − a34a35a45,

a23a24a35 − a23a25a35 − a23a24a45 + a24a25a45 + a23a35a45 − a24a35a45,

a23a24a34 − a23a25a35 + a24a25a45 − a34a35a45) (39)

Proof. Direct calculation using Singular computer algebra system.

Remark 6. The reader may notice that some more computer calculations of primary decompositions
might have been helpful in the process of doing this work. They are, however, more difficult, and the
calculation in Lemma 4 is typical of what the available computer capabilities allowed us to do—and
this proved to be enough for achieving the goal of this work.

While there is no problem understanding the structure of components (36)–(38), the
component (39) deserves the following lemma.

Lemma 5. The affine algebraic variety determined by the ideal (39), and lying in the space of six variables
a23, . . . , a45, admits the following trigonometric parameterization:

aij = c · tan(xi − xj) (40)

It is thus rational, because parameterization Equation (40) becomes rational if re-written in terms of c and
tangents of three independent differences of xi.

Proof. It is enough to substitute Equation (40) into each of the four generators of the prime ideal (39),
and check that all of them vanish.

3.4. Divisor of a Matrix Element: Almost Full Description, Excluding Only Subvarieties aij = 0

We consider the affine algebraic varietyM in the space of ten variables a12, . . . , a45, defined by
the relations (30) for all tetrahedra ijkl ⊂ u = 12345. Then, we consider its Zariski open subspaceM′

defined as follows:

M′ = (M minus all subvarieties where some aij = 0) (41)

Remark 7. The goal of this paper consists in finding the expressions (60) and (61) below, for example,
by guess. It looks hardly possible to guess these expressions if based on nothing, while studying
divisors on M′ has proved to provide a good basis for the correct guess, as we will see. So, we
content ourself withM′. Nevertheless, studying divisors on the wholeM might be also of interest,
because, for instance, divisors (37) and (38) lie exactly inM\M′.

In M′, we introduce the following subvarieties of codimension 1, denoted as D with indices
because we think of them as Weil divisors:
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• Du: this is the subvariety given by the old formulas (40), but now ten of them: 1 ≤ i ≤ j ≤ 5,
• (Du)K: choose now subset K ⊂ {1, 2, 3, 4, 5}, and define (Du)K by the same formulas (40) except

that we change the signs of those aij whose exactly one subscript i or j is in K. We write also
(Du)1, (Du)12, etc. instead of (Du){1}, (Du){1,2}, etc.,

• D−t : for a tetrahedron t = ijkl ⊂ u, let b = ij be the distinguished edge. Then D−t is given by
the following equations (compare to (36)):

D−t :

{
aik = −ajl

ajk = −ail
(42)

• D+
t , similarly:

D+
t :

{
aik = ajl

ajk = ail
(43)

Lemma 6. For a tetrahedron t = ijkl and its distinguished edge ij, the sum D−t + D+
t gives, onM′, exactly

the zero divisor of
σt

aij
= ajkaik − ajlail (compare with the first factor in the numerator of either Equation (31)

or (32)!), where we denoted
σt = ωijk −ωijl (44)

Proof. Due to the cocycle relation (6),

(σt = 0 on M′)⇔ (aikajk − ailajl = 0 and aikail − ajkajl = 0)

and the r.h.s. clearly gives Equation (42) or Equation (43).

Lemma 7. For every triangle s = ijk, introduce the quantity

ψs = ajk − aik + aij

Trigonometric parameterization (40) specifies, on the subset where all aij 6= 0, the variety that can be given by
the system of equations of the following form:

ψs

ωs
is the same for all s

This applies to the case where the indices in Equation (40) take four (like in Lemma 5) as well as five values
(or, in fact, any number of them).

Proof. Direct calculation.

Theorem 8. (i) The pole divisor of matrix element (31), restricted toM′, is Du.
(ii) The zero divisor of (31), restricted toM′, is (Du)12 + D+

2345 + D+
1345 (the last two are defined in (43)).

Proof. First, note that the component (36) of the divisor of function (34) cancels out with the first
factor in the numerator of (31), that is,

a25a35 − a24a34 (45)

and what remains of the zero divisor of (45) after this canceling is D+
2345, according to Lemma 6.

For item (i), this means that, on the pole variety of (31), all the expressions ψs/ωs are the same
for s ⊂ 2345. In addition, analyzing (32) similarly (and taking into account (33)), we arrive at the
conclusion that the same are also ψs/ωs for s ⊂ 1345. It is not hard to deduce now (through a small
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calculation) that ψs/ωs are the same for the whole pentachoron 12345, including s = 123, 124 and 125. So,
item (i) is proved.

For item (ii), we first notice that the main factor in the numerator of F12 (resp. F21) is the same
(up to an overall sign) as the main factor in the denominator of F21 (resp. F12) except that the sign is
changed of all aij with i = 1 (resp. i = 2). For F12, this means that D+

1345 appears as a component of
zero divisor, in analogy with (36), while the first paragraph of this proof means that D+

2345 is also there.
The rest, namely (Du)12, appears in full analogy with Du in the previous paragraph. So, item (ii) is
also proved.

Remark 8. Theorem 8 speaks about a specific matrix element and divisors. It applies, however, to all
similar objects, with obvious changes.

4. Function ϕ12345

On our subvarietyM′ ⊂ M (41), we can express all aij in terms of qijk according to (29), where
the factor p never vanishes and can be ignored as long as we are considering the zero or pole varieties
of expressions homogeneous in variables aij.

Remark 9. All functions of aij or qijk in this paper are homogeneous.

Remark 10. In addition, the fact that p is multivalued makes no obstacle in our way.

Convention 5. We will denote, taking some liberty, that part of the variety of variables qijk, 1 ≤ i <
j < k ≤ 5, where all qijk 6= 0, by the same letterM′ as the similar variety in variables aij. It is implied
of course that the qijk obey the cocycle relations (27). In addition, we will use the old notations like
(Du)K and D±t for codimension one subvarieties inM′ that are like in Section 3.4 except that we made
the substitution (29) in their defining equations.

For every 3-face t of pentachoron 12345, we define expression f (t) as the biggest factor in the
denominator of type (24), namely:

f (2345) = q125q134q235q345 − q124q135q234q345 − q124q135q235q245

+q125q134q234q245 + q123q145q2
235 − q123q145q2

234 (46)

f (1345) = q124q134q235q345 − q125q135q234q345 − q123q2
135q245

+q123q2
134q245 + q124q135q145q235 − q125q134q145q234 (47)

f (1245) = q123q2
125q345 − q123q2

124q345 − q124q134q235q245

+q125q135q234q245 − q125q134q145q235 + q124q135q145q234 (48)

f (1235) = q124q2
125q345 − q2

123q124q345 − q123q134q235q245

−q125q134q135q245 + q125q145q234q235 + q123q135q145q234 (49)

f (1234) = q2
124q125q345 − q2

123q125q345 − q123q135q234q245

−q124q134q135q245 + q124q145q234q235 + q123q134q145q235 (50)

Remark 11. The overall sign of any of expressions (46)–(50) is not now of big importance.

In addition, for every subset K ⊂ {i, j, k, l} consider function f (t)K made from (46)–(50) as follows:
change the signs at those qijk having an odd number of subscripts (one or all three of i, j and k) is in K.
In the next Lemma 9 we go through the 3-faces of 12345 in their natural order, and write down the
zero divisors of some interesting functions onM′.
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Lemma 9. • f (2345) has zero divisor Du + (Du)1 + D−2345,
• f (1345)

1 has zero divisor (Du)1 + (Du)12 + D+
1345,

• f (1245)
12 has zero divisor (Du)12 + (Du)123 + D−1245,

• f (1235)
123 has zero divisor (Du)123 + (Du)1234 + D+

1235,
• f (1234)

1234 = f (1234) has zero divisor (Du)1234 + (Du)12345 + D−1234 = (Du)5 + Du + D−1234.
Thus, onM′, the function

f (2345) f (1245)
12 f (1234)

f (1345)
1 f (1235)

123

(51)

has the divisor (zeros with sign plus, poles with sign minus)

2Du + D−2345 − D+
1345 + D−1245 − D+

1235 + D−1234 (52)

Proof. The formulas for divisors of the first five functions make a simple variations on the theme
of Lemma 4, where, of course, Convention 5 must be also taken into account. Then, (52) follows by
adding/subtracting relevant divisors.

Motivated by Lemma 6, we divide the expression (51) by

σ2345σ1245σ1234 = (ω234 −ω235)(ω124 −ω125)(ω123 −ω124)

Theorem 10. The divisor of the so obtained expression

ϕ12345 =
f (2345) f (1245)

12 f (1234)

σ2345σ1245σ1234 f (1345)
1 f (1235)

123

(53)

considered as a function onM′, is
2Du − ∑

t⊂u
D+

t (54)

Proof. This follows from (52) and Lemma 6.

Divisor (54) is thus symmetric under all permutations of 3-faces t of pentachoron u. This suggests
the idea that function ϕ12345 may also remain the same, to within a possible sign change, under any
permutation of vertices 1, . . . , 5. Basically, this idea turns out to be right, but we do not go into details
here; these details include, in particular, choosing the right signs of qijk =

√
ωijk after we have changed

the sign of ωijk itself due to permuting its indices.

5. The Poles and Zeros of the Coefficient in 3–3 Relation, and Its Explicit Form

We now pass from the single pentachoron 12345 to Pachner move 3–3, where six pentachora
are involved.

The l.h.s. and r.h.s. of move 3–3 are triangulated manifolds with boundary. We can orient the
pentachora in both these manifolds consistently, and also so that these orientations induce the same
orientation on the boundary ∂(l.h.s.) = ∂(r.h.s.). For one such orientation (of two), the signs in
the following table show whether this consistent orientation of a pentachoron coincides with the
orientation given by the natural order of its vertices:

left-hand side right-hand side
12345 12346 12356 12456 13456 23456
+ − + + − +

(55)

We do now all calculations in terms of variables qijk and not aij. This is due to the following
important remark.
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Remark 12. Variables aij depend on a pentachoron (i.e., two aij for the same edge ij, but calculated
within two different pentachora containing this edge, are different), while qijk do not.

5.1. Matrix Elements for All Six Pentachora Involved in Move 3–3

In Section 2, we explained how to calculate matrix F elements for pentachoron 12345. For any
pentachoron ijklm (recall that i < · · · < m, according to Convention 2), the obvious substitution
1 7→ i, . . . , 5 7→ m must be made. Besides this, the sign of matrix element must be changed for
the pentachora marked with minus sign in table (55), as we are going to explain in (the proof of)
Lemma 11, where we study the way how our normalization of edge operators, given by Convention 3,
propagates from one pentachoron to another.

Lemma 11. Expression (15) can be normalized to unity for a whole oriented triangulated manifold.

Proof. Let tetrahedron t be the common 3-face of two pentachora, t = u1 ∩ u2. Let a ⊂ t be its edge,
and d(u1)

a and d(u1)
a —the corresponding edge operators in our two pentachora. Then,

if d(u1)
a |t = βt∂t + γtxt

then d(u2)
a |t = βt∂t − γtxt

(56)

see ([3] formulas (58)).
We see now that, on passing to a neighboring pentachoron, first, the orientation of t changes

(and this affects the orientation of s in(15)!), and second—partial scalar products of edge operators
also change their signs because of (56). Hence, the quantity (15) remains the same, as before in
Lemmas 1, 2 and 3. This means that it pertains to the whole triangulated manifold, if it is orientable
and connected. Hence, we can normalize all edge operators globally so that quantity (15) stays always
equal to unity.

In addition, it is clear from (23) that, indeed, changing the sign of partial scalar products implies
changing the sign of matrix elements.

5.2. Components in the l.h.s. and r.h.s., Their Poles and Zeros

Triple integrals in (2) are polynomials in Grassmann variables, and their coefficients are
proportional. A typical coefficient, namely one at x1245 (the Grassmann variable corresponding to
tetrahedron 1245), is

L = F1234,1236F1235,1245 − F1235,1236F1234,1245 (57)

in the l.h.s., and
R = F1456,3456F2456,1245 − F2456,3456F1456,1245 (58)

in the r.h.s.

Remark 13. Two tetrahedra in the subscripts of a matrix element in (57) or (58) clearly determine the
relevant pentachoron.

Our goal is now to guess the form of cl and cr. As we can then check the correctness of our guess
with a direct computer calculation, informal reasoning will be quite enough for us at this moment.

So, we analyze poles and zeros of L, R, and other similar Grassmann polynomial coefficients, in
order to invent such cl and cr that will compensate these poles and zeros. First, we do so assuming
that no one of values qijk vanish, that is, within the ‘global analogue’ of setM′ (41). The poles of at
least one component in the l.h.s. are relevant, while the zeros must be common for all components;
similarly for r.h.s. We see this way that the poles are situated on divisors Du (see Section 3.4) for all
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pentachora in the relevant side of Pachner move, while the zeros are situated on divisors D+
t of all

inner tetrahedra, again in the relevant side of Pachner move.

5.3. Fitting the Divisors, and the Formulas for cl and cr

The above analysis of poles and zeros of triple Berezin integrals in (2), when confronted with the
divisor (54) of function ϕ12345, suggests that square roots of such functions may be the key ingredient of
our cl and cr. So, we introduce, in analogy with ϕ12345, quantities ϕu for each pentachoron u (simply
making relevant subscript substitutions).

Now, we look at what may happen where some qijk do vanish. Motivated by the products of qijk
factored out in the denominators of expressions like (24), we introduce the quantities

$t = qijkqijl (59)

for tetrahedra t = ijkl. These $t are expected to compensate the poles appearing where the mentioned
denominators vanish.

Remark 14. Note that 2-faces ijk and ijl in (59) both contain the distinguished edge ij ⊂ t, see
Section 2.3.

What remains is a bit more guessing, trying, scrutinizing formulas, and we arrive at the following
theorem:

Theorem 12. For the 3–3 relation (2) to hold, it is enough to set its left-hand-side coefficient to

cl = $1234 $1235 $1236
√

ϕ12345
√

ϕ12346
√

ϕ12356 / q123 (60)

and its right-hand-side coefficient to

cr = $1456 $2456 $3456
√

ϕ12456
√

ϕ13456
√

ϕ23456 / q456 (61)

Proof. As the proportionality of Grassmann polynomials in the two sides in (2) has been already
established in [3], it is enough to compare the coefficients in the l.h.s. and r.h.s. at any one specific
monomial. For instance, it is enough to show that

cl L = crR (62)

where L and R are given by (57) and (58). Now, we note that both sides in (62) are functions
of the values ωijk of our cocycle ω, obtained using arithmetic operations (addition, subtraction,
multiplication and division) and also taking square roots—but nothing more involved. The
values ωijk are not independent, but we can pass to independent variables νij, see (11). Of the
fifteen νij, 1 ≤ i < j ≤ 6, five can be set to zero without loss of generality, e.g., all those with
i = 1.

Expressing everything in (62) in terms of the ten remaining νij and using some computer algebra,
we see that (62) indeed holds.

A small miracle in formulas (60) and (61) is the denominators q123 and q456, appearing because
exactly such a value factors out in a non-obvious way in the numerator of L or R during the reduction
to common denominator.
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