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1. Introduction

Semirings, ringoids, algebroids and non-associative algebras play important role in algebra and
among them ordered semirings and lattices as well [1–8]. This is also motivated by idempotent
mathematical physics naturally appearing in quantum mechanics and quantum field theory (see,
for example, [9] and references therein). They also arise from the consideration of algebroids
and ringoids associated with non locally compact groups. Namely, this appears while the
studies of representations of non locally compact groups, quasi-invariant measures on them and
convolution algebras of functions and measures on them [10–13]. The background for this is A.
Weil’s theorem (see [14]) asserting that if a topological group has a quasi-invariant σ-additive non
trivial measure relative to the entire group, then it is locally compact. Therefore, it appears natural
to study inverse mapping systems of non locally compact groups and their dense subgroups. Such
spectra lead to structures of algebroids and ringoids. Investigations of such objects are also important
for making advances in representation theory of non locally compact groups.

In this paper methods of categorial topology are used (see [15–18] and references therein).
This article is devoted to ordered ringoids and semirings with an additional lattice structure.

Their continuous morphisms are investigated in Section 3. Preliminaries are given in Section 2.
Necessary definitions 2.1–2.4 are recalled. For a topological ringoid K and a completely regular
topological space X new ringoids C(X, K) are studied, where C(X, K) consists of all continuous
mappings f : X → K with point-wise algebraic operations. Their ideals, topological directed
structures and idempotent operations are considered in Lemmas 2.6, 2.8, 2.9, 2.12 and Corollary 2.7.
There are also given several examples 2.13–2.18 of objects. One of the main examples between them
is related to cones in algebras of non locally compact groups. Another example is based on ordinals.
Construction of ringoids with the help of inductive limits is also considered.

Structure and properties of these objects are described in Section 3. Definitions of morphisms
of ordered semirings and some their preliminaries are described in Subsection 3.1. An existence of
idempotent K-homogeneous morphisms under definite conditions is proved in Lemma 3.4. A relation
between order preserving weakly additive morphisms and non-expanding morphisms is given in
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Lemma 3.7. An extension of an order preserving weakly additive morphism is considered in
Lemma 3.9.

Then a weak* topology on a family O(X, K) of all order preserving weakly additive morphisms
on a Hausdorff topological space X with values in K is taken. The weak* compactness of O(X, K)
under definite conditions is proved in Theorem 3.10. Further in Proposition 3.11 there is proved that
I(X, K) and Ih(X, K) are closed in O(X, K), where I(X, K) denotes the set of all idempotent K-valued
morphisms, also Ih(X, K) denotes its subset of idempotent homogeneous morphisms.

Categories related to morphisms and ringoids are presented in Subsection 3.2. An existence of
covariant functors, their ranges and continuity of morphisms are studied in Lemmas 3.14, 3.16, 3.21,
3.34 and Propositions 3.15, 3.22. In Propositions 3.24, 3.26 and 3.29 such properties of functors as being
monomorphic and epimorphic are investigated. Supports of functors are studied in Proposition 3.31.
Moreover, in Proposition 3.32 it is proved that definite functors preserve intersections of closed
subsets. Then functors for inverse systems are described in Proposition 3.33. Bi-functors preserving
pre-images are considered in Proposition 3.35. Monads in certain categories are investigated in
Theorem 3.38. Exact sequences in categories are considered in Proposition 3.39.

Lattices associated with actions of groupoids on topological spaces are investigated in
subsection 3.3. Supports of (T, G)-invariant semi-idempotent continuous morphisms are estimated
in Proposition 3.42, where G is a topological groupoid and T is its representation described in
Lemma 3.40. Structures of families of all semi-idempotent continuous morphisms associated with
a groupoid G and a ringoid K are investigated in Proposition 3.43 and Theorems 3.44, 3.45.

The main results are Propositions 3.22, 3.24, 3.29, 3.32, 3.33, 3.35, 3.39, 3.43, Theorems 3.38, 3.44
and 3.45. All main results of this paper are obtained for the first time. The obtained results can
be used for further studies of such objects, their classes and classification. They can be applied to
investigations of non locally compact group algebras also.

2. Ringoids and Lattice Structure

2.1. Preliminaries

To avoid misunderstandings we first present our definitions.
1. Definitions. Let K be a set and let two operations + : K2 → K the addition and× : K2 → K the

multiplication be given so that K is a semigroup (with associative binary operations) or a quasigroup
(with may be non-associative binary operations) relative to + and × with neutral elements e+ =: 0
and e× =: 1 so that a × 0 = 0 × a = 0 for each a ∈ K and either the right distributivity
a(b + c) = ab + ac for every a, b, c ∈ K or the left distributivity (b + c)a = ba + ca for every
a, b, c ∈ K is accomplished, then K is called a semiring or a ringoid respectively with either right or
left distributivity correspondingly. If it is simultaneously right and left distributive, then it is called
simply a semiring or a ringoid respectively.

A semiring K (or a ringoid, or a ring, or a non-associative ring) having also a structure of a
linear space over a field F and such that α(a + b) = αa + αb, 1a = a, α(ab) = (αa)b = a(αb) and
(αβ)a = α(βa) for each α, β ∈ F and a, b ∈ K is called a semialgebra (or an algebroid, or an algebra or
a non-associative algebra correspondingly).

A semiring K (or a semialgebra and so on) supplied with a topology on K (or on K and
F correspondingly) relative to which algebraic operations are continuous is called a topological
semiring (or a topological semialgebra and so forth correspondingly).

A set K with binary operations µ1, ..., µn will also be called an algebraic object. An algebraic
object is commutative relative to an operation µp if µp(a, b) = µp(b, a) for each a, b ∈ K.

An algebraic object K with binary operations µ1, ..., µn is called either directed or linearly ordered
or well-ordered if it is such as a set correspondingly and its binary operations preserve an ordering:
µp(a, b) ≤ µp(c, d) for each p = 1, ..., n and for every a, b, c, d ∈ K so that a ≤ c and b ≤ d when a, b, c, d
belong to the same linearly ordered set Z in K.
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Henceforward, we suppose that the minimal element in an ordered K is zero.
Henceforth, for semialgebras, non-associative algebras or algebroids A speaking about ordering

on them we mean that only their non-negative cones K = {y : y ∈ A, 0 ≤ y} are considered.
For non-negative cones K in semialgebras, non-associative algebras or algebroids only the case over
the real field will be considered.

2. Definition. A (non-associative) topological algebra or a topological ringoid, etc., we call
topologically simple if it does not contain closed ideals different from {0} and K, where K 6= {0}.

3. Definition. We consider a directed set K which satisfies the condition:
(DW) for each linearly ordered subset A in K there exists a well-ordered subset B in K such that

A ⊂ B.
4. Definitions. Let K be a well-ordered (or directed satisfying condition 3(DW)) either semiring

or ringoid (or a non-negative cone in a algebroid over the real field R) such that

(1) sup E ∈ K for each E ∈ T, where T is a family of subsets of K.

If K is a directed topological either semiring or ringoid, we shall suppose that it is supplied with
a topology

(2) τ = τK so that every set

Lb := {y : y ∈ K, y < b or y is not comparable with b} and
Gb := {y : y ∈ K, b < y or y is not comparable with b}

is open relative to it.
That is, if a set Z is linearly ordered in K this topology τK provides the hereditary topology on

Z which is not weaker than the interval topology on Z generated by the base {(a, b)Z : a < b ∈ Z},
where (a, b)Z := {c : c ∈ Z, a < c < b}.

For a completely regular topological space X and a topological semiring (or ringoid) K let
C(X, K) denote a semiring (or a ringoid respectively) of all continuous mappings f : X → K
with the element-wise addition ( f + g)(x) = f (x) + g(x) and the element-wise multiplication
( f g)(x) = f (x)g(x) operations for every f , g ∈ C(X, K) and x ∈ X.

If K is a directed semiring (or a directed ringoid) and X is a linearly ordered set, C+(X, K) (or
C−(X, K)) will denote the set of all monotone non-decreasing (or non-increasing correspondingly)
maps f ∈ C(X, K).

For the space C(X, K) (or C+(X, K) or C−(X, K)) we suppose that

(3) a family T of subsets of K contains the family { f (X) : f ∈ C(X, K)} (or { f (X) : f ∈ C+(X, K)}
or { f (X) : f ∈ C−(X, K)} correspondingly) and K satisfies Condition (1).

5. Remark. For example, the class On of all ordinals has the addition µ1 = +o and the
multiplication µ2 = ×o operations which are generally non-commutative, associative, with unit
elements 0 and 1 respectively, on On the right distributivity is satisfied (see Propositions 4.29–4.31 and
Examples 1–3 in [19]). Relative to the interval topology generated by the base {(a, b) : a < b ∈ On}
the class On is the topological well-ordered semiring, where (a, b) = {c : c ∈ On, a < c < b}.
For each non-void set A in On there exists sup A ∈ On (see [20]).

If K is a linearly ordered non-commutative relative to the addition semiring (or a ringoid), then
the new operation (a, b) 7→ max(a, b) =: a +2 b defines the commutative addition. Then c(a +2 b) =
max(ca, cb) = ca +2 cb and (a +2 b)c = max(ac, bc) = ac +2 bc for every a, b, c ∈ K, that is (T,+2,×)
is left and right distributive.

As an example of a semiring (or a ringoid) K in Definitions 4 one can take K = On or
K = {A : A ∈ On, |A| ≤ b}, where b is a cardinal number such that ℵ0 ≤ b. Each segment
[a, b] := {c : c ∈ On, a ≤ c ≤ b} is compact in On, where a < b ∈ On. Evidently, K = On satisfies
Condition 4(1), since sup E exists for each set E in On (see [20]).

Particularly, if a topological space X is compact and C(X, K) is a semiring (or a ringoid) of
all continuous mappings f : X → K, then a family T contains the family of compact subsets
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{ f (X) : f ∈ C(X, K)}, since a continuous image of a compact space is compact (see Theorem
3.1.10 [21]).

It is possible to modify Definition 4 in the following manner. For a well-ordered K without
Condition 4(1) one can take the family of all continuous bounded functions f : X → K and denote
this family of functions by C(X, K) for the uniformity of the notation.

For a directed K satisfying Condition 3(DW) without Condition 4(1) it is possible to take the
family of all monotone non-decreasing (or non-increasing) bounded functions f : X → K for a linearly
ordered set X and denote this family by C+(X, K) ( C−(X, K) correspondingly) also.

Naturally, C(X, K) has also the structure of the left and right module over the semiring (or the
ringoid correspondingly) K, i.e., a f and f a belong to C(X, K) for each a ∈ K and f ∈ C(X, K). To any
element a ∈ K the constant mapping ga ∈ C(X, K) corresponds such that ga(x) = a for each x ∈ X.
If K is right (or left) distributive, then q( f + h) = q f + qh (or ( f + h)q = f q + hq correspondingly) for
every q, f , h ∈ C(X, K).

The semiring (or the ringoid) C(X, K) will be considered directed:

(1) f ≤ g if and only if f (x) ≤ g(x) for each x ∈ X.

Indeed, if f , h ∈ C(X, K), then a = sup( f (X)) ∈ K and b = sup(h(X)) ∈ K according to
Condition 4(1). Then there exists c ∈ K so that a ≤ c and b ≤ c, consequently, f ≤ gc and h ≤ gc.
Thus for each f , h ∈ C(X, K) there exists q ∈ C(X, K) so that f ≤ q and h ≤ q. From a + b ≤ c + d and
ab ≤ cd for each a ≤ c and b ≤ d in K it follows that f + q ≤ g + h and f q ≤ gh for each f ≤ g and
q ≤ h in C(X, K).

If f ≤ g and f 6= g (i.e. ∃x ∈ X f (x) 6= g(x)), then we put f < g.
For a mapping f ∈ C(X, K) its support supp( f ) is defined as usually

(2) supp( f ) := clX{x : x ∈ X, f (x) 6= 0}, where clX A denotes the closure of A in X when
A ⊂ X.

Henceforth, we consider cases, when
(3) a topology on X is sufficiently fine so that functions separate points in X, i.e., for each x 6= z

in X there exists f in C(X, K)(or C−(X, K) or C+(X, K) correspondingly) such that f (x) 6= f (z).

The latter is always accomplished in the purely algebraic discrete case.

2.2. Directed Ringoids C(X, K) of Mappings

6. Lemma. If E is a closed subspace in a topological space X, then C(X, K|E) :=
{ f : f ∈ C(X, K), supp( f ) ⊂ E} is an ideal in C(X, K).

Proof. If f ∈ C(X, K|E) and g ∈ C(X, K), then f (x)g(x) = 0 and g(x) f (x) = 0 when
f (x) = 0, consequently, supp( f g) and supp(g f ) are contained in E. Moreover, if f , h ∈ C(X, K|E),
then supp( f + h) and supp(h + f ) are contained in E, since f (x) + h(x) = 0 and h(x) + f (x) = 0 for
each x ∈ X \ E, while X \ E is open in X. Thus C(X, K|E) is a semiring (or a ringoid respectively) and
C(X, K|E)C(X, K) ⊆ C(X, K|E) and C(X, K)C(X, K|E) ⊆ C(X, K|E).

7. Corollary. If E is clopen (i.e. closed and open simultaneously) in X, then C(E, K) is an ideal in
C(X, K).

Proof. For a clopen topological subspace E in X one gets C(E, K) isomorphic with C(X, K|E),
since each f ∈ C(E, K) has the zero extension on X \ E.

8. Lemma. For a linearly ordered set X and a directed semiring (ringoid) K there are directed semirings
(or ringoids correspondingly) C+(X, K) and C−(X, K).

Proof. The sets C+(X, K) and C−(X, K) are directed according to Condition 5(1) with a partial
ordering inherited from C(X, K). Since a + b ≤ c + d and ab ≤ cd for each a ≤ c and b ≤ d in
K, then f + q ≤ g + h and f q ≤ gh for each f ≤ g and q ≤ h all either in C+(X, K) or C−(X, K).
On the other hand, for each f , h ∈ C(X, K) there exists gc ∈ C(X, K) so that f ≤ gc and h ≤ gc
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(see § 5). If f (x) ≤ f (y) and h(x) ≤ h(y) for f , h ∈ C+(X, K) and each x ≤ y in K, then f (x) + h(x) ≤
f (y) + h(y) and f (x)h(x) ≤ f (y)h(y), consequently, f + h and f h are in C+(X, K). Analogously, if
f , h ∈ C−(X, K), then f + h and f h are in C−(X, K). But a constant mapping gc belongs to C+(X, K)
and C−(X, K). Thus C+(X, K) and C−(X, K) are directed semirings (or ringoids correspondingly).

9. Lemma. If H = HX is a covering of X and τK is a topology on K satisfying Conditions 3(DW)

and 4(1 − 3), then a semiring (or ringoid or a non-negative cone in a algebroid over R) C(X, K) can be
supplied with a topology relative to which it is a topological directed (TD) semiring (or a TD ringoid or a TD
algebroid respectively).

Proof. Take a topology τC on C(X, K) with the base βC formed by the following sets and their
finite intersections:

(1) B1(g, A, V) := { f : f ∈ C(X, K), f (A) ⊂ g + V},
B2(g, A, V) := { f : f ∈ C(X, K), f (A) ⊂ V + g},
B3(g, A, V) := { f : f ∈ C(X, K), f (A) ⊂ gV},
B4(g, A, V) := { f : f ∈ C(X, K), f (A) ⊂ Vg},

where g ∈ C(X, K), A ∈ H, V ∈ τK. Evidently, the addition + = µ1 and the multiplication × = µ2

are continuous relative to this topology, since each U ∈ τC is the union of base sets P ∈ βC. In view of
Section 5 C(X, K) is directed: µp( f , h) ≤ µp(g, u) for each p = 1, 2 and for every f , g, h, u ∈ C(X, K)
so that f ≤ g and h ≤ u when f , g, h, u belong to the same linearly ordered set in C(X, K), since
element-wise these inequalities are satisfied in K, i.e. for f (x), g(x), h(x), u(x) with x ∈ X (see §1).

10. Note. Henceforward, it will be supposed that C(X, K) is supplied with the topology τC
of Lemma 9, while C+(X, K) and C−(X, K) are considered relative to the topology inherited from
C(X, K). Particularly, if X ∈ HX , then it provides the topology of the uniform convergence on C(X, K).

11. Corollary. If the conditions of Lemma 9 are satisfied and H = 2X is the family of all subsets in X and
a topology τK on K is discrete, then τC is the discrete topology on C(X, K).

12. Lemma. Suppose that the conditions of Lemma 9 are satisfied. Then the functions

(1) f ∨ g(x) := max( f (x), g(x)) and
(2) f ∧ g(x) := min( f (x), g(x))

are in C(X, K) (or in C+(X, K) or in C−(X, K)) for every pair of functions f , g ∈ C(X, K) (or in C+(X, K)
or in C−(X, K) correspondingly) satisfying the condition:

(3) for each x ∈ X either f (x) < g(x) or g(x) < f (x) or f (x) = g(x).

Proof. Let f , g ∈ C(X, K) satisfy Condition (3). Then the sets {x : x ∈ X, f (x) ≤ g(x)} and
{x : x ∈ X, f (x) ≤ g(x)} are closed in X, since f and g are continuous functions on X and the
topology τK on K satisfies Condition 4(2). For each closed set E in K the sets

( f ∨ g)−1(E) = [ f−1(E) ∩ {x : x ∈ X, g(x) ≤ f (x)}] ∪ [g−1(E) ∩ {x : x ∈ X, f (x) ≤ g(x)}] and
( f ∧ g)−1(E) = [ f−1(E) ∩ {x : x ∈ X, f (x) ≤ g(x)}] ∪ [g−1(E) ∩ {x : x ∈ X, g(x) ≤ f (x)}]

are closed in X, consequently, the mappings f ∨ g and f ∧ g are continuous. If f , g ∈ C+(X, K) and
x < y ∈ X, then f (x) ≤ f (y) and g(x) ≤ g(y). If f (x) ≤ g(x) and g(y) ≤ f (y), then ( f ∨ g)(x) =

g(x) ≤ g(y) ≤ f (y) = ( f ∨ g)(y) and ( f ∧ g)(x) = f (x) ≤ g(x) ≤ g(y) = ( f ∧ g)(y). If f (x) ≤ g(x)
and f (y) ≤ g(y), then ( f ∨ g)(x) = g(x) ≤ g(y) = ( f ∨ g)(y) and ( f ∧ g)(x) = f (x) ≤ f (y) =

( f ∧ g)(y). Therefore, ( f ∨ g)(x) ≤ ( f ∨ g)(y) and ( f ∧ g)(x) ≤ ( f ∧ g)(y) for each x < y ∈ X.
Thus f ∨ g and f ∧ g ∈ C+(X, K). Analogously if f , g ∈ C−(X, K), then f ∨ g and f ∧ g ∈ C−(X, K).

Relative to the topology of §9 on C(X, K) operations ∨ and ∧ are continuous on C(X, K),
C+(X, K) and C−(X, K).

2.3. Examples of Directed Ringoids

13. Example. Ringoids and ordinals. The class On of all ordinals has the addition µ1 = +o and
the multiplication µ2 = ×o operations which are generally non-commutative, associative, with unit
elements 0 and 1 respectively, on On the right distributivity is satisfied (see Propositions 4.29–4.31
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and Examples 1–3 in [19,22]). Relative to the interval topology generated by the base {(a, b) :
a < b ∈ On} the class On is the topological well-ordered semiring, where (a, b) = {c : c ∈ On,
a < c < b}. For each non-void set A in On there exists sup A ∈ On (see [20]).

14. Example. Construction of ringoids with the help of inductive limits. Let J be a directed set
of the cardinality card(J) ≥ ℵ0 such that for each l, k ∈ J there exists j ∈ J with l ≤ j and k ≤ j (see
also §I.3 [21]), and let φ : J → J be a monotone decreasing map, Gj ⊆ [0, ∞), let also pk

j : Gk → Gj
be an embedding for each k ≤ j ∈ J. There is considered Gj as a ringoid with the addition, the
multiplication, with neutral elements 0j = 0 by addition and 1j = 1 by multiplication and the linear
ordering xj < yj inherited from [0, ∞) = {t : t ∈ R, 0 ≤ t < ∞} for each j ∈ J. Put G0 = lim{Gj, pk

j , J}
to be the inductive limit of the direct mapping system so that G is the quotient (

⊕
j Gj)/Ξ of the

direct sum
⊕

j Gj by the equivalence relation Ξ caused by mappings pk
j . Then consider G := {x : x ∈

G0, supj∈J xj < ∞}, where xj = pj(x), pj : G → Gj notates the projection.

Then we define g +1 h := {vj : vj = gj + hj∀j ∈ J} and g ×1 h := {wj : wj = gj pk
j (hk)∀j ∈

J with k = φ(j)} for all g, h ∈ G, where gj = pj(g) for each j ∈ J. Let also x <1 y in G if and
only if xj < yj for each j ∈ J. Certainly for each x, y ∈ G there exists z ∈ G so that x ≤1 z and
y ≤1 z, for example, zj = max(xj, yj) for each j ∈ J. Therefore we get that if x <1 y and u <1 z
in G, then x +1 u <1 y +1 z and x ×1 u <1 y ×1 z. We supply G with a topology τb inherited from
the inductive limit topology on G0, where [0, ∞) is supplied with the standard metric of R and Gj
has the topology inherited from [0, ∞). Then we deduce that U(xj, b, j) + U(zj, b, j) ⊂ U(xj + zj, 2b, j)
and U(xj, b, j)U(zk, b, k) ⊂ U(xj pk

j (zk), b(1 + xj + zk), j) for every x, z ∈ G and b > 0 and j ∈ J
with k = φ(j), where U(xj, b, j) := {yj : yj ∈ Gj, xj − b < yj < xj + b}. Since supj∈J xj < ∞ for
each x ∈ G, then the addition and the multiplication in G are continuous. Thus (G,+1,×1,<1, τb) is
the topological directed ringoid with the left and the right distributivity in which the multiplication
×1 is non-associative, since φ(j) < j for each j ∈ J. It is worth to note that each set of the form
S(x) := {y : y ∈ G, either x < y or x is incomparable with y} is open in (G, τb), where x ∈ G.

15. Example. The case of Gj ⊆ [0, ∞)ω for each j ∈ J, where ω is a directed set, can be considered
analogously to Example 14, taking the lexicographic ordering on the Cartesian product M := ω × J
and considering M instead of J.

16. Example. On G from Example 14 one can take also x +2 y := {vj : vj = max(xj, yj)∀j ∈ J}
and x×2 y := {wj : wj = min(xj, yk)∀j ∈ J with k = φ(j)}. Then (G,+2,×2,<1, τb) is a topological
non-associative ringoid with the left and right distributivity.

17. Example. Ringoids associated with families of measures. Let Gj be a Boolean algebra on a
set Hj and let pk

j : Gk → Gj be an embedding for each j ∈ J with k = φ(j) so that mj(pk
j (Ck)) ≤ mk(Ck)

for each Ck ∈ Gk, where J and φ are as in subsection 14. Suppose that on each Boolean algebra Gj
there is a probability (finitely additive) measure mj : Gj → [0, 1] so that Gj is metrizable by the
metric dj(Aj, Bj) := mj(Aj 4 Bj), where Aj 4 Bj := (Aj \ Bj) ∪ (Bj \ Aj). Otherwise it is possible to
consider the quotient algebra Gj/Ξj, where AjΞjBj if and only if dj(Aj, Bj) = 0. Put A + B := {C :
Cj = Aj ∪ Bj∀j ∈ J} and A × B := {C : Cj = Aj ∩ pk

j (Bk)∀j ∈ J with k = φ(j)}, where A, B ∈ G,

Aj, Bj ∈ Gj, G = lim{Gj, pk
j , J} is the inductive limit of Boolean algebras, Aj = pj(A), pj : G → Gj

denotes the projection.
Consider on G the inductive limit topology τb, where Gj is supplied with the metric dj for each

j ∈ J. Naturally it is possible to put A ≤ B in G if and only if Aj ⊆ Bj for each j ∈ J. Then the
inequalities

mj((Aj ∪ Cj)4 (Bj ∪ Dj)) ≤ mj((Aj4 Bj) ∪ (Cj4 Dj)) ≤ mj(Aj4 Bj) + mj(Cj4 Dj) and
mj((Aj ∩ pk

j (Ck))4 (Bj ∩ pk
j (Dk))) ≤ mj(Aj 4 Bj) + mj(pk

j (Ck)4 pk
j (Dk)) ≤ mj(Aj 4 Bj) +

mk(Ck4 Dk)

are fulfilled for each Aj, Bj ∈ Gj and Ck, Dk ∈ Gk. Therefore (G,+,×,<, τb) is the topological ringoid
with the left and right distributivity and the non-associative multiplication.
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Instead of measures it is possible more generally to consider submeasures mj, that is possessing
the subadditivity property: mj(Cj) ≤ mj(Aj) + mj(Bj) for each Aj, Bj, Cj ∈ Gj satisfying the inclusion
Cj ⊂ Aj ∪ Bj.

18. Example. Ringoids induced by spectra of non locally compact groups. Let {Gj, pk
j , J} be

a family of topological non locally compact groups Gj, where J is a directed set, pk
j : Gk → Gj is a

continuous injective homomorphism for each j < k in J. Let also φ : J → J be an increasing map and
let mj : Bj → [0, 1] be a Radon probability σ-additive measure on the Borel σ-algebra Bj of Gj such
that mj is left quasi-invariant relative to pk

j (Gk) for each j ∈ J with k = φ(j). That is there exists the
Radon-Nikodym derivative (i.e., the left quasi-invariance factor) dm(v, g) := mv(dg)/m(dg) for each
m = mj, where v ∈ Gk, g ∈ Gj, mv(A) := m((pk

j (v))
−1 A) for each A ∈ A f (Gj, mj), where A f (Gj, mj)

denotes a σ-algebra which is the completion of Bj by mj-null sets.
It is assumed that a uniformity τGj on Gj is such that τGj |Gk ⊂ τGk and (Gj, τGj) is complete for

each j ∈ J with k = φ(j). Suppose also that there exists an open base of neighborhoods of ek ∈ Gk
such that their closures in Gj are compact.

It is known that such systems exist for loop groups and groups of diffeomorphisms and
Banach-Lie groups.

Then Lp
Gk
(Gj, mj, R) for 1 ≤ p ≤ ∞ denotes the Banach space of all mj-measurable functions

f : Gj → R such that f h(g) ∈ Lp(Gj, mj, R) for each h ∈ Gk and

‖ f ‖Lp
Gk

(Gj ,mj ,R) := sup
h∈Gk

‖ f h‖Lp(Gj ,mj ,R) < ∞,

where f h(g) := f ((pk
j (h))

−1g) for each g ∈ Gj and h ∈ Gk, j ∈ J with k = φ(j). Next we consider
the space

L∞(L1
Gk
(Gj, mj, R) : j ∈ J, k = φ(j)) := { f = ( f j : j ∈ J); f j ∈ L1

Gk
(Gj, mj, R) for each j ∈ J;

‖ f ‖∞ := supj∈J ‖ f j‖L1
Gk

(Gj)
< ∞, where k = φ(j)}.

There exists the non-associative normed algebra E := L∞(L1
Gk
(Gj, mj, R) : j ∈ J, k = φ(j))

supplied with the multiplication
f ?̃u = w such that

wj(gj) = ( fk?̃uj)(gj) =
∫

Gk

fk(tk)uj(pk
j (tk)gj)mk(dtk)

for every f , u ∈ E and g ∈ G = ∏α∈J Gα, where k = φ(j), j ∈ J, gj ∈ Gj (see [11–13,23]).
Now we take the positive cone
F := { f : f ∈ E , ∀j ∈ J f j(gj) ≥ 0 for mj − almost all gj ∈ Gj} in E and put
f + h = {( f + h)j(gj) = f j(gj) + hj(gj) ∀j ∈ J ∀gj ∈ Gj},
f × h = f ?̃h for each f , h ∈ F and define
u ≤ f in F if and only if uj(gj) ≤ f j(gj) for each j ∈ J and mj-almost all gj ∈ Gj.

Therefore, wj(gj) ≥ 0 for every f , u ∈ F, j ∈ J and mj-almost all gj ∈ Gj, where w = f × u,
since mk is the probability measure, fk(tk) ≥ 0 and uj(pk

j (tk)gj) ≥ 0 for mk-almost all tk ∈ Gk and
mj-almost all gj ∈ Gj correspondingly. Thus f × u ∈ F for each f , u ∈ F.

If f , h, q, u ∈ F and f ≤ q, h ≤ u, then f j(gj) + hj(gj) ≤ qj(gj) + uj(gj) and

( fk?̃hj)(gj) =
∫

Gk

fk(tk)hj(pk
j (tk)gj)mk(dtk)

≤
∫

Gk

qk(tk)uj(pk
j (tk)gj)mk(dtk) = (qk?̃uj)(gj)
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for mj-almost all gj ∈ Gj and hence f + h ≤ q + u and f × h ≤ q× u. Then we infer that

(( fk + hk)?̃uj)(gj) =
∫

Gk

( fk(tk) + hk(tk))uj(pk
j (tk)gj)mk(dtk)

=
∫

Gk

fk(tk)uj(pk
j (tk)gj)mk(dtk) +

∫
Gk

hk(tk)uj(pk
j (tk)gj)mk(dtk)

= ( fk?̃uj)(gj) + (hk?̃uj)(gj)

for every f , h, u ∈ E and g ∈ G = ∏i∈J Gi, where k = φ(j), j ∈ J, πj(g) = gj ∈ Gj, πj : G → Gj
is the projection, consequently, ( f + h)× u = ( f × u) + (h× u). Analogously it can be verified that
u× ( f + h) = (u× f ) + (u× h) for every f , h, u ∈ E .

For each f , h ∈ F there exists an element u ∈ F so that f ≤ u and h ≤ u, for example, either
u = f + h or u given by the formula uj(gj) = max( f j(gj), hj(gj)) for each j ∈ J and mj-almost all
gj ∈ Gj.

Take on F the topology τn inherited from the norm topology on E . This implies that (F,+,×,<
, τn) is the directed topological non-associative ringoid with the left and right distributivity.

There is the decomposition f = f+ − f− for each f ∈ E , where f+ ∈ F and f− ∈ F, f+j (gj) :=
max( f j(gj), 0) for each j ∈ J and gj ∈ Gj.

If f and h in F are incomparable, there exist j, l ∈ J (may be either j = l or j 6= l) such that
mj(A+

j ) > 0 and ml(A−l ) > 0, where

A+
j = A+

j ( f , h) := {gj : gj ∈ Gj, f j(gj) > hj(gj)} and

A−l = A−l ( f , h) := {gl : gl ∈ Gl , fl(gl) < hl(gl)}. Then for
0 < b < min(mj(A+

j ), ml(A−l ))min(1, ‖( f j − hj)|A+
j
‖L1(A+

j )
, ‖( fl − hl)|A−l ‖L1(A−l ))/4

each element v in the ball B(F, h, b) := {q : q ∈ F, ‖q − h‖E < b} is incomparable with f , since
‖qj‖L1(Gj)

≤ ‖qj‖L1
Gk

(Gj)
for each q ∈ E and j ∈ J, while mj is the probability measure for each j ∈ J.

On the other hand, if v < u in F, there exists l ∈ J so that ml(A−l (v, u)) > 0 and vj(gj) ≤ uj(gj) for
mj-almost all gj ∈ Gj for each j ∈ J. Therefore, for 0 < b prescribed by the inequality given above and
each q ∈ B(F, h, b) the inequality q ≤ f is impossible, consequently, either q is incomparable with f
or f < q. Thus each set of the form S( f ) := {h : h ∈ F, either f < h or f is incomparable with h} is
open in (F, τn), where f ∈ F.

19. Note. Certainly relative to the discrete topology the aforementioned ringoids are also
topological ringoids. Other examples can be constructed from these using the theorems and the
propositions presented above.

3. Skew Morphisms of Ordered Semirings and Ringoids

3.1. Morphisms and Their Properties

1. Notation. Let×2 denote the mapping on [K×C(X, K)]∪ [C(X, K)×K] with values in C(X, K)
such that

(1) c×2 f := gc + f =: gc ×2 f and f ×2 c := f + gc =: f ×2 gc for each c ∈ K and f ∈ C(X, K),
where gc(x) := c for each x ∈ X, whilst the sum is taken element-wise ( f + g)(x) = f (x) + g(x) for
every f , g ∈ C(X, K) and x ∈ X.

2. Definition. We call a mapping ν on C(X, K) (or C+(X, K) or C−(X, K)) with values in K an
idempotent (K-valued) morphism if it satisfies for each f , g, gc ∈ C(X, K) (or in C+(X, K) or C−(X, K)
correspondingly) the following five conditions

(1) ν(gc) = c;
(2) ν(c×2 f ) = c + ν( f ) =: c×2 ν( f ) and
(3) ν( f ×2 c) = ν( f ) + c =: ν( f )×2 c;
(4) ν( f ∨ g) = ν( f ) ∨ ν(g) when f , g satisfy Condition 2.12(3) and
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(5) ν( f ∧ g) = ν( f ) ∧ ν(g) if f , g satisfy Condition 2.12(3),
where a ∨ b = max(a, b) and a ∧ b = min(a, b) for each a, b ∈ K when either a < b or a = b or b < a.

A mapping (morphism) ν on C(X, K) (or C+(X, K) or C−(X, K)) with values in K we call order
preserving (non-decreasing), if

(6) ν( f ) ≤ ν(g) for each f ≤ g
in C(X, K) (or C+(X, K) or C−(X, K) respectively), i.e., when f (x) ≤ g(x) for each x ∈ X.

A morphism ν will be called K-homogeneous on C(X, K) (or C+(X, K) or C−(X, K)) if
(7) ν(b f ) = bν( f ) and
(8) ν( f b) = ν( f )b

for each f in C(X, K) (or C+(X, K) or C−(X, K) correspondingly) and b ∈ K.
3. Remark. If a morphism satisfies Condition 2(4), then it is order preserving.
The evaluation at a point morphism δx defined by the formula:
(1) δx f = f (x)

is the idempotent K-homogeneous morphism on C(X, K), where x is a marked point in X.
If morphisms ν1, ..., νn are idempotent and the multiplication in K is distributive, then for each

constants
(2) c1 > 0, ..., cn > 0 in K with
(3) c1 + ... + cn = 1 morphisms
(4) c1ν1 + ... + cnνn and
(5) ν1c1 + ... + νncn

are idempotent. Moreover, if the multiplication in K is commutative, associative and distributive and
constants satisfy Conditions (2, 3) and morphisms ν1, ..., νn are K-homogeneous, then morphisms of
the form (4, 5) are also K-homogeneous.

The considered here theory is different from the usual real field R, since R has neither an infimum
nor a supremum, i.e. it is not well-ordered and satisfy neither 2.3(DW) nor 2.4(1).

4. Lemma. Suppose that either

(1) K is well-ordered and satisfies Conditions 2.4(1− 3) or
(2) X is linearly ordered and K is directed and satisfies Conditions 2.3(DW) and 2.4(1− 3). Then there

exists an idempotent K-homogeneous morphism ν on C(X, K) in case (1), on C+(X, K) and C−(X, K) in case
(2). Moreover, if K ⊂ On and K is infinite, X is not a singleton, ℵ0 ≤ |K|, |X| > 1, then ν has not the form
either 3(4) or 3(5) with the evaluation at a point morphisms ν1, ..., νn relative to the standard addition in On.

Proof. Suppose that ν is an order preserving morphism on C(X, K) (or C+(X, K) or C−(X, K)).
If f , g in C(X, K) (or C+(X, K) or C−(X, K) respectively) satisfy Condition 2.12(3), then in accordance
with Lemma 2.12 there exists f ∨ g and f ∧ g in the corresponding C(X, K) (or C+(X, K) or C−(X, K)).
Since f ∨ g ≥ f and f ∨ g ≥ g and f ∧ g ≤ f and f ∧ g ≤ g and the morphism ν is order preserving,
then ν( f ) ∨ ν(g) ≤ ν( f ∨ g) and ν( f ∧ g) ≤ ν( f ) ∧ ν(g).

Let also E be a subset in X, we put

(3) ν( f ) = νE( f ) = supx∈E f (x).
This morphism exists due Conditions 2.4(1, 3), since in both cases (1) and (2) of this lemma, the
image f (E) is linearly ordered and is contained in K.

From the fact that the addition preserves ordering on K (see §2.1) it follows that Properties
(1 − 3, 7, 8) are satisfied for the morphism ν given by Formula (3). If f ≤ g on X, then for each
a ∈ f (E) there exists b ∈ g(E) so that a ≤ b, consequently, ν( f ) ≤ ν(g), i.e., 2(6) is fulfilled.

We consider any pair of functions f , g in C(X, K) (or C+(X, K) or C−(X, K)) satisfying Condition
8(3). In case (2) a topological space X is linearly ordered, in case (1) K is well-ordered, hence f (X),
g(X), f (E) and g(E) are linearly ordered in K. Then for each a ∈ f (E)∪ g(E) there exist b ∈ ( f ∨ g)(E)
so that a ≤ b, while for each c ∈ ( f ∨ g)(E) there exists d ∈ f (E)∪ g(E) so that c ≤ d, hence ν( f ∨ g) =
ν( f ) ∨ ν(g). Moreover, for each a ∈ f (E) ∪ g(E) there exists b ∈ ( f ∧ g)(E) so that b ≤ a and for each
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c ∈ ( f ∧ g)(E) there exists d ∈ f (E) ∪ g(E) so that d ≤ c, consequently, ν( f ∧ g) = ν( f ) ∧ ν(g).
Thus Properties 2(4, 5) are satisfied as well.

If E is chosen such that there exists U ∈ HX with E ⊂ U, then this morphism ν is continuous on
C(X, K), C+(X, K) and C−(X, K) (see §§2.3, 2.4, 2.9 and 2.10 also).

If a set X is not a singleton, |X| > 1, and K ⊂ On is infinite, ℵ0 ≤ |K|, then taking a set E in
X different from a singleton, |E| > 1, we get that the morphism given by Formula (3) can not be
presented with the help of evaluation at a point morphisms ν1 = δx1 , ..., νn = δxn by Formula either
3(4) or 3(5) relative to the standard addition in On, since functions f in C(X, K) (or C+(X, K) or
C−(X, K)) separate points in X (see Remark 2.5(3)).

5. Remark. Relative to the idempotent addition x ∨ y = max(x, y) the morphism νE given by
4(3) has the form νE( f ) = ∨x∈Eδx( f ).

Let I(X, K) denote the set of all idempotent K-valued morphisms, while Ih(X, K) denotes its
subset of idempotent homogeneous morphisms.

A set F of all continuous K-valued morphisms on C(X, K) is supplied with the weak* topology
having the base consisting of the sets

(1) < µ; g1, ..., gn; b >1:= {ν : ν ∈ F, ∀j = 1, ..., n ν(gj) < µ(gj) + b};
< µ; g1, ..., gn; b >2:= {ν : ν ∈ F, ∀j = 1, ..., n µ(gj) < ν(gj) + b};
< µ; g1, ..., gn; b >3:= {ν : ν ∈ F, ∀j = 1, ..., n ν(gj) < b + µ(gj)};
< µ; g1, ..., gn; b >4:= {ν : ν ∈ F, ∀j = 1, ..., n µ(gj) < b + ν(gj)}

and their finite intersections, where 0 < b ∈ K, g1, ..., gn ∈ C(X, K), µ ∈ F.
6. Definitions. A morphism ν : C(X, K) → K is called weakly additive, if it satisfies

Conditions 2(2, 3);
normalized at c ∈ K, if Formula 2(1) is fulfilled;
(1) non-expanding if ν( f ) ≤ ν(h) + c when f ≤ h + gc and ν( f ) ≤ c + ν(h) when f ≤ gc + h for

any f , h ∈ C(X, K) and c ∈ K,
where ν may be non-linear or discontinuous as well.
The family of all order preserving weakly additive morphisms on a Hausdorff topological space

X with values in K will be denoted by O(X, K).
If E ⊂ C(X, K) satisfies the conditions: g0 ∈ E, g + b and b + g ∈ E for each g ∈ E and b ∈ K,

then E is called an A-subset.
7. Lemma. If ν : C(X, K) → K is an order preserving weakly additive morphism, then it is

non-expanding.
Proof. Suppose that f , h ∈ C(X, K) and b ∈ K are such that f (x) ≤ (h(x) + c) or f (x) ≤

(c+ h(x)) for each x ∈ X, then 2(2, 3, 6) imply that ν( f ) ≤ (ν(h)+ c) or ν( f ) ≤ (c+ ν(h)) respectively.
Thus the morphism ν is non-expanding.

8. Corollary. Suppose that a topological ringoid K is well-ordered, satisfies 1(1) and with the interval
topology, X ∈ H, C(X, K) is supplied with the topology of §2.9. Then any order preserving weakly additive
morphism ν : C(X, K)→ K is continuous.

Proof. This follows from Lemma 7 and §§2.3, 2.4, since each subset { f : f ≤ g} and { f : g ≤ f }
is closed in C(X, K) in the topology of §2.9, where g ∈ C(X, K).

9. Lemma. Suppose that A is an A-subset (a left or right submodule over K) in C(X, K) and ν : A→ K
is an order preserving weakly additive morphism (left or right K-homogeneous with left or right distributive
ringoid K correspondingly). Then there exists an order preserving weakly additive morphism µ : C(X, K)→ K
such that its restriction on A coincides with ν.

Proof. One can consider the set F of all pairs (B, µ) so that B is an A-subset (a left or right
submodule over K respectively), A ⊆ B ⊆ C(X, K), µ is an order preserving weakly additive
morphism on B the restriction of which on A coincides with ν. The set F is partially ordered:
(B1, µ1) ≤ (B2, µ2) if B1 ⊆ B2 and µ2 is an extension of µ1. In accordance with Zorn’s lemma a
maximal element (E, µ) in F exists.
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If E 6= C(X, K), there exists g ∈ C(X, K) \ E. Let E− := { f : f ∈ E, f ≤ g} and E+ :=
{ f : f ∈ E, g ≤ f }, then µ(h) ≤ µ(q) for each h ∈ E− and q ∈ E+, consequently, an element b ∈ K
exists such that µ(E−) ≤ b ≤ µ(E+) due to Conditions 2.3(DW) and 2.4(1) imposed on K. Then
we put F = E ∪ {g + gc, gc + g : c ∈ K} ( F is a minimal left or right module over K containing E
and g correspondingly). Then one can put µ(g + gc) = b + c and µ(gc + g) = c + b. Moreover, one
gets µ(d(g + gc)) = dµ(g) + dc or µ((g + gc)d) = µ(g)d + cd for each d ∈ K correspondingly for
each c ∈ K. Then µ is an order preserving weakly additive morphism (left or right homogeneous
correspondingly) on F. This contradicts the maximality of A.

10. Theorem. If a ringoid K is well-ordered and satisfies 1(1), with the interval topology and K is locally
compact, X ∈ HX . Then O(X, K) is compact relative to the weak* topology.

Proof. In view of Lemma 8 each ν ∈ O(X, K) is continuous. The set O(X, K) is supplied with
the weak* topology (see §5).

For each ν ∈ O(X, K) one has ν(gc) = ν(gc + g0) = c, since gc + g0 = gc and ν(gc + g0) =

c + 0. On the other hand, for each g ∈ C(X, K) due to Condition 2.4(1) a supremum exists, ‖g‖ :=
supx∈X g(x) ∈ K. Each segment [a, b] in K is closed, bounded and hence compact relative to the
interval topology. Therefore, O(X, K) is contained in the Tychonoff product S = ∏{[0, ‖g‖] : g ∈
C(X, K)}, since g ≤ h and hence ν(g) ≤ ν(h) when h(x) = ‖g‖ for each x ∈ X. This product is
compact as the Tychonoff product of compact topological spaces by Theorem 3.2.13 [21]. It remains to
prove, that O(X, K) is closed in S, since a closed subspace of a compact topological space is compact
(see Theorem 3.1.2 [21]).

Each compact Hausdorff space has a uniformity compatible with its topology (see Theorems 3.19
and 8.1.20 [21]). To each element y ∈ S a morphism y : C(X, K) → K corresponds, since [0, ‖g‖] ⊂ K
for each g ∈ C(X, K). If νn ∈ O(X, K) is a net converging to q in S, then Properties 2(2, 3, 6) for each
νn imply Properties 2(2, 3, 6) for q, since each segment [a, b] in K is compact and hence complete as
the uniform space due to Theorem 8.3.15 [21], where a < b ∈ K. Therefore, limn = q ∈ O(X, K)
according to Lemma 7 and Corollary 8. Thus O(X, K) is complete as the uniform space by Theorem
8.3.20 [21] and hence closed in S in accordance with Theorem 8.3.6 [21].

11. Proposition. In the topological space O(X, K) the subsets I(X, K) and Ih(X, K) are closed.
Proof. From the definitions above it follows that Ih(X, K) ⊂ I(X, K) ⊂ O(X, K). If νk is a net in

I(X, K) (or in Ih(X, K)) converging to a morphism µ ∈ O(X, K) relative to the weak* topology (see
also §1.6 [21]), then µ satisfies Conditions 2(1− 5) (or to 2(1− 5, 7, 8) respectively). Thus I(X, K) and
Ih(X, K) are closed in O(X, K).

12. Corollary. If the conditions of Theorem 10 are satisfied, then the topological spaces I(X, K) and
Ih(X, K) are compact.

3.2. Categories of Semirings, Ringoids and Morphisms

13. Definition. If topological spaces X and Y are given and f : X → Y is a continuous mapping,
then it induces the mapping O( f ) : O(X, K) → O(Y, K) according to the formula: (O( f )(ν))(g) =

ν(g( f )) for each g ∈ C(Y, K) and ν ∈ O(X, K).
By I( f ) will be denoted the restriction of O( f ) onto I(X, K).
A T1 topological space will be called K-completely regular (or K Tychonoff space), if for each

closed subset F in X and each point x ∈ X \ F a continuous function h : X → K exists such that
h(x) = 0 and h(F) = {c}, i.e. h is constant on F, where c 6= 0.

Let RK denote a category such that a family Ob(RK) of its objects consists of all K-regular
topological spaces, a set of morphisms Mor(X, Y) consists of all continuous mappings f : X → Y
for every X, Y ∈ Ob(RK), i.e. RK is a subcategory in the category of topological spaces. We denote
by OK a category with objects Ob(OK) = {O(X, K) : X ∈ Ob(RK)} and families of morphisms
Mor(O(X, K),O(Y, K)).
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14. Lemma. (1). There exists a covariant functor O in the category RK. (2). Moreover, if a topological
ringoid K is well-ordered, satisfies 2.4(1) and with the interval topology, when f ∈ Mor(X, Y), X ∈ HX ,
Y ∈ HY, X, Y ∈ Ob(RK), then O( f ) is continuous.

Proof. (1). If X, Y ∈ Ob(RK) and f ∈ Mor(X, Y), g ≤ h in C(Y, K), then g ◦ f ≤ h ◦ f in C(X, K),
consequently, (O( f )(ν))(g) = ν(g ◦ f ) ≤ ν(h ◦ f ) = (O( f )(ν))(h) for each ν ∈ O(X, K). If c ∈ K,
gc ∈ C(Y, K), then gc ◦ f ∈ C(X, K), (O( f )(ν))(gc + h) = ν(gc ◦ f + h ◦ f ) = c + ν(h ◦ f ) = c +
(O( f )(ν))(h) and (O( f )(ν))(h + gc) = ν(h ◦ f + gc ◦ f ) = ν(h ◦ f ) + c = (O( f )(ν))(h) + c for each
h ∈ C(Y, K). If 1X ∈ Mor(X, X), 1X(x) = x for each x ∈ X, then 1X ◦ q = q for each q ∈ Mor(Y, X)

and t ◦ 1X = t for each t ∈ Mor(X, Y). On the other hand, (O(1X)(ν))(g) = ν(g ◦ 1X) = ν(g) for
each g ∈ C(X, K), i.e., O(1X) = 1O(X). Evidently, (O( f ◦ s)(ν))(g) = ν(g ◦ f ◦ s) = (O(s)(ν)(g ◦ f ) =
((O( f ) ◦ O(s))(ν))(g).

(2). If νj is a net converging to ν in O(X, K) relative to the weak* topology, then
limj(O( f )(νj))(g) = limj νj(g ◦ f ) = ν(g ◦ f ) = (O( f )(ν))(g) for each f ∈ Mor(X, Y) and
g ∈ C(Y, K), sinceO(X, K) andO(Y, K) are weakly* compact according to Theorem 10, consequently,
O is continuous from O(X, K) to O(Y, K).

15. Proposition. If f ∈ Mor(X, Y) for X, Y ∈ Ob(RK), then
O( f )(I(X, K)) ⊆ I(Y, K).
Proof. If g, h ∈ C(Y, K) are such that g ∨ h or g ∧ h exists and f : X → Y is a continuous

mapping, then
(O( f )(ν))(g ∨ h) = ν(g ◦ f ∨ h ◦ f ) = ν(g ◦ f ) ∨ ν(h ◦ f ) = (O( f )(ν))(g) ∨ (O( f )(ν))(h) or
(O( f )(ν))(g ∧ h) = ν(g ◦ f ∧ h ◦ f ) = ν(g ◦ f ) ∧ ν(h ◦ f ) = (O( f )(ν))(g) ∧ (O( f )(ν))(h).

Then for each element c ∈ K one gets
(O( f )(ν))(gc ×2 h) = ν(gc ◦ f ×2 h ◦ f ) = ν(gc ◦ f )×2 ν(h ◦ f ) = c×2 (O( f )(ν))(h) and
(O( f )(ν))(h×2 gc) = ν(h ◦ f ×2 gc ◦ f ) = ν(h ◦ f )×2 ν(gc ◦ f ) = (O( f )(ν))(h)×2 c.
16. Definitions. A covariant functor F : RK → RK will be called epimorphic (monomorphic)

if it preserves epimorphisms (monomorphisms). If φ : A ↪→ X is an embedding, then F(A) will be
identified with F(φ)(F(A)).

If for each f ∈ Mor(X, Y) and each closed subset A in Y, the equality (F( f )−1)(F(A)) =

F( f−1(A)) is satisfied, then a covariant functor F is called preimage-preserving. When F(
⋂

j∈J Xj) =⋂
j∈J F(Xj) for each family {Xj : j ∈ J} of closed subsets in X ∈ Ob(RK) the monomorphic functor F

is called intersection-preserving.
If a functor F preserves inverse mapping system limits, it is called continuous.
A functor F is said to be weight-preserving when w(X) = w(F(X)) for each X ∈ Ob(RK), where

w(X) denotes the topological weight of X ∈ Ob(RK).
A functor is said to be semi-normal when it is continuous, monomorphic, epimorphic, preserves

weights, intersections, preimages and the empty space.
If a functor is continuous, monomorphic, epimorphic, preserves weights, intersections and the

empty space, then it is called weakly semi-normal.
17. Lemma. Let Y be a normal topological space, let also A and B be nonintersecting closed subsets in Y,

where T is a well-ordered set supplied with the interval topology. Suppose also that c1 < c2 ∈ T are such that
for each a, b ∈ T with c1 ≤ a < b ≤ c2 an element d ∈ T exists such that a < d < b (i.e. a segment [c1, c2] is
without gaps). Then a continuous function f : Y → T exists such that f (A) = {c1} and f (B) = {c2}.

Proof. Consider the segment [c1, c2] in T. There exists a set E dense in [c1, c2] such that

(1) |E| = d([c1, c2]), inf E = c1, sup E = c2,
where d(X) denotes the density of a topological space X, |E| denotes the cardinality of E. There exist
open subsets U and V in X such that

(2) A ⊂ U, B ⊂ V, U ∩V = ∅.
We define open subsets Vt in X such that
(3) clXVt ⊂ Vs for each t < s ∈ E,
(4) A ⊂ Vc1 , B ⊂ X \Vc2 ,
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where clXG denotes the closure of a set G in X.
Sets Vt will be defined by the transfinite induction. For this one can put Vc1 = U and Vc2 = X \ B.

Therefore, A ⊂ Vc1 ⊂ X \V = clX(X \V) ⊂ Vc2 , consequently, clXVc1 ⊂ Vc2 . In view of the Zermelo
theorem there exists an ordinal P such that |P| = |E|, a bijective surjective mapping θ : P → E
exists such that inf P = 0, 1 ∈ P, θ(0) = c1 and θ(1) = c2. Suppose that Vtj satisfying Condition
(3) are constructed for j = 1, ..., n, j ∈ P. There exist elements an = inf{tj : j ≤ n, tj < tn+1} and
bn = sup{tj : j ≤ n, tj < tn+1}. Therefore, clXVan ⊂ Vbn . From the normality of X it follows that open
sets U and V exist such that clXVan ⊂ U, X \Vbn ⊂ V and U ∩V = ∅, consequently, U ⊂ X \V ⊂ Vbn

and hence clXU ⊂ clX(X \V) = X \V ⊂ Vbn . Then one puts Vtn+1 = U. This means that there exists a
countable infinite sequence Vtj for j ∈ ω0 ⊆ P satisfying Conditions (3, 4). If {tj : j ∈ ω0} is not dense
in [c1, c2] the process continues. Suppose that α is an ordinal such that ω0 ⊆ α ⊂ P, Vtj is defined for
each j ∈ α. If the set {tj : j ∈ α} is not dense in [c1, c2], there exists a segment

(5) [a, b] ⊂ [c1, c2] such that [a, b] ∩ {tj : j ∈ α} = ∅. We put L =
⋃

tj<a;j∈α Vtj and
M =

⋂
b<tj ;j∈α Vtj . From (3, 4) it follows that the set L is open in X and L ⊂ M. On the other hand,

(6) Vtl ⊂ L ⊂ clX L ⊂ clX M ⊂ clXVtj ⊂ Vtk for every l, j, k ∈ α such that tl < a and b < tj < tk. If
(7) clX L is not contained in IntX M this segment [a, b] is skipped, where IntX M is an interior of

M in X. If clX L ⊂ IntX M one can put Va = L and Vb = IntX M. Then the process continues for [a, b].
The family F = {(Vj : j ∈ α) : α ⊂ P} is ordered by inclusion: (Vj : j ∈ α) ≤ (Wk : k ∈ β) if and

only if a bijective monotonously increasing mapping θ : α → β exists such that Vj = Wθ(j) for each
j ∈ α. If a subfamily {(Vj : j ∈ α) : αk ⊂ P, k ∈ Λ} is linearly ordered, then its union is in F . In view
of the Kuratowski-Zorn lemma there exists a maximal element (Vj : j ∈ α1) in F for some ordinal
α1 ⊂ P such that conditions (3, 4) are satisfied.

Put f (x) = inf{t : x ∈ Vt} for x ∈ Vc2 and f (x) = c2 when x ∈ X \Vc2 . Therefore, f (x) ∈ [c1, c2]

for each x ∈ X, f (A) ⊂ {c1} and f (B) ⊂ {c2}. Since [c1, c2] is supplied with the interval topology
it is sufficient to prove that f−1([c1, a)) and f−1((b, c2]) are open in [c1, c2] for each c1 < a ≤ c2 and
c1 ≤ b < c2. From (3, 4), also from (6, 7) when (5) is fulfilled, and the definition of f it follows that
f−1([c1, a)) =

⋃{Vtj : tj < a, j ∈ α1} and f−1((b, c2]) =
⋃{X \ clXVtj : b < tj, j ∈ α1} are open

in [c1, c2].
18. Lemma. If X is well-ordered and E is a segment [a, b] in X, while K satisfies Condition 2.3(DW),

then each f ∈ C+(E, K) has a continuous extension g ∈ C+(X, K).
Proof. Since f (E) =: A is linearly ordered in K, then by 2.3(DW) there exists a well ordered

subset B in K such that A ⊂ B. So putting g(x) = inf A for each x < a in X, whilst g(x) = sup A for
each b < x in X one gets the continuous extension g ∈ C+(X, K) of f , that is g|E(y) = f (y) for each
y ∈ E, since inf A and sup A exist in K due to 2.3(DW) and 2.4(1).

19. Definition. It will be said that a pair (X, K) of a topological space X and a ringoid K
has property (CE) if for each closed subset E in X and each continuous function f : E → K, i.e.,
f ∈ C(E, K) or f ∈ C+(E, K) or f ∈ C−(E, K), there exists a continuous extension g : X → K, i.e.,
g|E = f so that g ∈ C(X, K) or g ∈ C+(X, K) or g ∈ C−(X, K) respectively.

Henceforward, it will be supposed that a pair (X, K) has property (CE).
20. Definitions. If Hausdorff topological spaces X and Y are given and f : X → Y is a

continuous mapping, K1, K2 are ordered topological ringoids (or may be particularly semirings) with
an order-preserving continuous algebraic homomorphism u : K1 → K2 then it induces the mapping
O( f , u) : O(X, K1)→ O(Y, K2) according to the formula:

(1) (O( f , u)(ν))(g) = u[ν(g1( f ))] for each g1 ∈ C(Y, K1) and ν ∈ O(X, K1), where u ◦ g1 =

g ∈ C(Y, K2), g1 ∈ C(Y, K1), (O( f , u)(ν)) is defined on ( f̂ , û)(C(X, K1)) = {t : t ∈ C(Y, K2); ∀x ∈
X t(x) = u(h ◦ f (x)), h ∈ C(Y, K1)}.

By I( f , u) will be denoted the restriction ofO( f , u) onto I(X, K). The shorter notationsO( f ) and
I( f ) are used when K is fixed, i.e. u = id. When X = Y and f = id we write simply O2(u) and I2(u)
respectively omitting f = id.
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Let S denote a category such that a family Ob(S) of its objects consists of all topological spaces,
a family of morphisms Mor(X, Y) consists of all continuous mappings f : X → Y for every X,
Y ∈ Ob(S).

Let K be the category objects of which Ob(K) are all ordered topological ringoids
satisfying Conditions 2.3 and 2.4, Mor(A, B) consists of all order-preserving continuous algebraic
homomorphisms for each A, B ∈ K. Then by Kw we denote its subcategory of well-ordered ringoids
and their order-preserving algebraic continuous homomorphisms.

We denote by OK a category with the families of objects Ob(OK) = {O(X, K) : X ∈ Ob(S),
K ∈ Ob(Kw)} and morphisms Mor(O(X, K1),O(Y, K2)) for every X, Y ∈ Ob(S) and K1, K2 ∈
Ob(Kw). Furthermore, IK stands for a category with families of objects Ob(IK) = {I(X, K) :
X ∈ Ob(S), K ∈ Ob(Kw)} and morphisms Mor(I(X, K1), I(Y, K2)) for every X, Y ∈ Ob(S) and
K1, K2 ∈ Ob(K).

By Sl will be denoted a category objects of which are linearly ordered topological spaces,
while Mor(X, Y) consists of all monotone nondecreasing continuous mappings f : X → Y, that is
f (x) ≤ f (y) for each x ≤ y ∈ X, where X, Y ∈ Ob(Sl). Then we putOl( f , u) : Ol(X, K1)→ Ol(Y, K2)

for each X, Y ∈ Ob(Sl) and f ∈ Mor(X, Y), K1, K2 ∈ Ob(K), u ∈ Mor(K1, K2) according to
the formula:

(2) (Ol( f , u)(ν))(g) = u[ν(g1( f ))] for each g1 ∈ C+(Y, K1) and u ◦ g1 = g ∈ C(Y, K2)

and ν ∈ Ol(X, K1), where (Ol( f , u)(ν)) is defined on ( f̂ , û)(C+(X, K1)) := {t : t ∈ C+(Y, K2);
∀x ∈ X t(x) = u(h ◦ f (x)), h ∈ C+(Y, K1)}. Then the category OlK with families of objects
Ob(OlK) = {Ol(X, K) : X ∈ Ob(Sl), K ∈ Ob(K)} and morphisms Mor(Ol(X, K1),Ol(Y, K2)) and
the category IlK with Ob(IlK) = {Il(X, K) : X ∈ Ob(Sl), K ∈ Ob(K)} and Mor(Il(X, K1), Il(Y, K2))

are defined.
Subcategories of left homogeneous continuous morphisms we denote byOhK,Ol,hK, IhK, Il,hK

correspondingly. These morphisms are taken on subcategoriesKw,l inK orKl inK of left distributive
topological ringoids.

21. Lemma. There exist covariant functors O, Oh and Ol , Ol,h in the categories S and Sl respectively.
Proof. Suppose that X, Y ∈ Ob(S) and f ∈ Mor(X, Y), while g ≤ h in C(Y, K), where

K ∈ Ob(Kw) (or in Kw,l) is marked, then g ◦ f ≤ h ◦ f in C(X, Y). Therefore one gets (O( f )(ν))(g) =
ν(g ◦ f ) ≤ ν(h ◦ f ) = (O( f )(ν))(h) for each ν ∈ O(X, K). Now if c ∈ K, gc ∈ C(Y, K), then
gc ◦ f ∈ C(X, K), but also the equalities are fulfilled (O( f )(ν))(gc + h) = ν(gc ◦ f + h ◦ f ) = c + ν(h ◦
f ) = c + (O( f )(ν))(h) and (O( f )(ν))(h + gc) = ν(h ◦ f + gc ◦ f ) = ν(h ◦ f ) + c = (O( f )(ν))(h) + c
for each h ∈ C(Y, K). Then for 1X ∈ Mor(X, X), that is 1X(x) = x for each x ∈ X, one deduces
1X ◦ q = q for each q ∈ Mor(Y, X) and t ◦ 1X = t for each t ∈ Mor(X, Y). On the other hand,
(O(1X)(ν))(g) = ν(g ◦ 1X) = ν(g) for each g ∈ C(X, K), i.e. O(1X) = 1O(X). But at the same time,
the equalities are valid: (O( f ◦ s)(ν))(g) = ν(g ◦ f ◦ s) = (O(s)(ν)(g ◦ f ) = ((O( f ) ◦ O(s))(ν))(g),
since the composition of continuous mappings is continuous.

Moreover, if ν ∈ Oh(X, K), then (O( f )(ν))(bg) = ν(bg ◦ f ) = bν(g ◦ f ) = (b(O( f )(ν))(g).
Furthermore, for the categories Ol (or Ol,h) the proof is analogous with X, Y ∈ Ob(Sl), C+(X, K) and
C+(Y, K), where K ∈ Ob(K) (or K ∈ Ob(Kl)) is marked.

22. Proposition. Suppose that f ∈ Mor(X, Y) for X, Y ∈ Ob(S) or in Ob(Sl). Then
O( f )(I(X, K)) ⊆ I(Y, K) and Oh( f )(Ih(X, K)) ⊆ Ih(Y, K) for K ∈ Ob(Kw,l) or Ol( f )(Ih(X, K)) ⊆

Il(Y, K) or Ol,h( f )(Il,h(X, K)) ⊆ Il,h(Y, K) for K ∈ Ob(K) or K ∈ Ob(Kl) correspondingly.
Proof. If g, h ∈ C(Y, K) are such that g ∨ h or g ∧ h exists (see Condition (3) in Lemma 2.12) and

f : X → Y is a continuous mapping, ν ∈ I(X, K) (or Il(X, K)), then we infer that
(O( f )(ν))(g ∨ h) = ν(g ◦ f ∨ h ◦ f ) = ν(g ◦ f ) ∨ ν(h ◦ f ) = (O( f )(ν))(g) ∨ (O( f )(ν))(h) or
(O( f )(ν))(g ∧ h) = ν(g ◦ f ∧ h ◦ f ) = ν(g ◦ f ) ∧ ν(h ◦ f ) = (O( f )(ν))(g) ∧ (O( f )(ν))(h).

Furthermore, for each c ∈ K we deduce that
(O( f )(ν))(gc ×2 h) = ν(gc ◦ f ×2 h ◦ f ) = ν(gc ◦ f )×2 ν(h ◦ f ) = c×2 (O( f )(ν))(h) and
(O( f )(ν))(h×2 gc) = ν(h ◦ f ×2 gc ◦ f ) = ν(h ◦ f )×2 ν(gc ◦ f ) = (O( f )(ν))(h)×2 c.
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Then for ν ∈ Ih(X, K) (or Il,h(X, K)) one gets (O( f )(ν))(bg) = ν(bg ◦ f ) = bν(g ◦ f ) =

(b(O( f )(ν)))(g).
23. Definitions. A covariant functor F : S → S will be called epimorphic (monomorphic) if it

preserves continuous epimorphisms (monomorphisms). If φ : A ↪→ X is a continuous embedding,
then F(A) will be identified with F(φ)(F(A)).

If for each f ∈ Mor(X, Y) and each closed subset A in Y, the equality (F( f )−1)(F(A)) =

F( f−1(A)) is satisfied, then a covariant functor F is called preimage-preserving. In the case
F(

⋂
j∈J Xj) =

⋂
j∈J F(Xj) for each family {Xj : j ∈ J} of closed subsets in X ∈ Ob(S) (or in Ob(Sl)),

the monomorphic functor F is called intersection-preserving.
If a functor F preserves inverse mapping system limits, it is called continuous.
A functor is said to be semi-normal when it is monomorphic, epimorphic, also preserves

intersections, preimages and the empty space.
If a functor is monomorphic, epimorphic, also preserves intersections and the empty space, then

it is called weakly semi-normal.
24. Proposition. The functor O (or Oh, Ol , Ol,h) is monomorphic.
Proof. Let X, Y ∈ Ob(S) (or in Ob(Sl) respectively) with a continuous embedding s : X ↪→ Y

(order-preserving respectively). Then we suppose that ν1 6= ν2 ∈ O(X, K) (or in Oh(X, K),
Ol(X, K), Ol,h(X, K) correspondingly). This means that a mapping g ∈ C(X, K) (or in C+(X, K)
correspondingly) exists such that ν1(g) 6= ν2(g). A function u ∈ C(Y, K) (or in C+(Y, K) respectively)
exists such that u ◦ s = g, hence (O(s)(νk)))(u) = νk(u ◦ s) = νk(g). Thus O(s)(ν1) 6= O(s)(ν2) (or
Oh(ν1) 6= Oh(ν2), Ol(ν1) 6= Ol(ν2), Ol,h(ν1) 6= Ol,h(ν2) correspondingly).

25. Corollary. The functors I, Ih, Il and Il,h are monomorphic.
Proof. This follows from Proposition 24 and Definitions 20.
26. Proposition. The functors O, Oh, Ol and Ol,h are epimorphic, when X ∈ HX (see §14 also).
Proof. Let f : X → Y be a continuous surjective mapping, ν ∈ O(Y, K) (or inOh(Y, K),Ol(Y, K),

Ol,h(Y, K) respectively). The set L of all continuous mappings g ◦ f : X → K with g ∈ C(Y, K) (or
in C+(Y, K) correspondingly) is the A-subset according to Definitions 6 or the left module over K in
C(X, K) (or in C+(X, K)). Then we put µ(g ◦ f ) = ν(g). This continuous morphism has an extension
from L to a continuous morphism µ ∈ O(X, K) (or inOh(X, K),Ol(X, K),Ol,h(X, K) correspondingly)
due to Lemmas 9, 14 and Corollary 8.

27. Lemma. Let L be a submodule over K of C(X, K) or C+(X, K) relative to the operations ∨, ∧, ×2

and containing all constant mappings gc : X → K, where c ∈ K. Let also ν : L → K be an idempotent (left
homogeneous) continuous morphism. For each f ∈ C(X, K) \ L or C+(X, K) \ L there exists an idempotent
(left homogeneous) continuous extension µM of ν on a minimal closed submodule M containing L and f .

Proof. For each g ∈ M we put
(1) µM(g) = ν(g) = inf{ν(h) : g ≤ h, h ∈ L}.

This implies that ν(g1) ≤ ν(g2) for each g1 ≤ g2 ∈ M. Then
ν(gc ×2 g) = inf{ν(h) : h ∈ L, gc ×2 g ≤ h} =
inf{ν(gc ×2 q) : q ∈ L, gc ×2 g ≤ gc ×2 q} = c×2 inf{ν(q) : q ∈ L, g ≤ q} = c×2 ν(g) and
ν(g×2 gc) = inf{ν(h) : h ∈ L, g×2 gc ≤ h} = inf{ν(q×2 gc) : q ∈ L, q×2 gc ≥ g×2 gc}
= inf{ν(q) : q ∈ L, q ≥ g} ×2 c = ν(g)×2 c.
On the other hand for each g1, g2 ∈ M one gets
ν(g1) ∨ ν(g2) = inf{ν(g) : g ∈ L, g1 ≤ g} ∨ inf{ν(q) : q ∈ L, g2 ≤ q}

= inf{ν(g) ∨ ν(q) : g, q ∈ L, g1 ≤ g, g2 ≤ q} ≥ inf{ν(g ∨ q) : g, q ∈ L, g1 ∨ g2 ≤ g ∨ q} = ν(g1 ∨ g2).
From the inequalities gk ≤ g1 ∨ g2 for k = 1 and k = 2 it follows, that ν(gk) ≤ ν(g1 ∨ g2),

consequently, ν(g1) ∨ ν(g2) = ν(g1 ∨ g2). Then
ν(g1) ∧ ν(g2) = inf{ν(g) : g ∈ L, g1 ≤ g} ∧ inf{ν(q) : q ∈ L, g2 ≤ q}

= inf{ν(g) ∧ ν(q) : g, q ∈ L, g1 ≤ g, g2 ≤ q} ≤ inf{ν(g ∧ q) : g, q ∈ L, g1 ∧ g2 ≤ g ∧ q} = ν(g1 ∧ g2).
But ν(gk) ≥ ν(g1 ∧ g2), since gk ≥ g1 ∧ g2 for k = 1 and k = 2, consequently, ν(g1) ∧ ν(g2) =

ν(g1 ∧ g2). If ν is left homogeneous, then inf{ν(bh) : bh ≥ bg, h ∈ L} = inf{ν(bh) : h ≥ g, h ∈
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L} = b inf{ν(h) : h ≥ g, h ∈ L} for each b ∈ K, consequently, ν is left homogeneous on M. If ν is
continuous and gk is a net in M converging to g ∈ M (see §2.9), then ν(g) = inf{ν(h) : g ≤ h, h ∈
L} = limk inf{ν(h) : gk ≤ h, h ∈ L} = limk ν(gk).

28. Lemma. If suppositions of Lemma 27 are satisfied, then there exists an idempotent (left homogeneous)
continuous morphism λ on C(X, K) or C+(X, K) respectively such that λ|L = ν.

Proof. The family of all extensions (M, µM) of ν on closed submodules M of C(X, K) or
C+(X, K) respectively is partially ordered by inclusion: (M, µM) ≤ (N, µN) if and only if M ⊂ N
and νN |M = νM. In view of the Kuratowski-Zorn lemma [20] there exists the maximal closed
submodule P in C(X, K) or C+(X, K) correspondingly and an idempotent extension νP of ν on P.
If P 6= C(X, K) or C+(X, K) correspondingly by Lemma 27 this morphism νP could be extended on
a module L containing P and some g ∈ C(X, K) \ P or in C(X, K)+ \ P respectively. This contradicts
the maximality of (P, νP). Thus P = C(X, K) or C+(X, K) correspondingly.

29. Proposition. The functors I, Il and Ih, Il,h are epimorphic.
Proof. Let a continuous mapping f : X → Y be epimorphic. We consider the set L of all

continuous mappings g ◦ f : X → K such that g ∈ C(Y, K) or C+(Y, K). Then L is a submodule
of C(X, K) or C+(X, K) relative to the operations ∨, ∧, ×2 and L contains all constant mappings
gc : X → K, where c ∈ K. Then we put µ(g ◦ f ) = ν(g) for ν ∈ I(X, K) or in Il(X, K), Ih(X, K) or
Il,h(X, K). In view of Lemma 28 there is a continuous extension of µ from L onto C(Y, K) or C+(Y, K)
such that µ ∈ I(Y, K) or in Il(Y, K), Ih(Y, K) or Il,h(Y, K) correspondingly.

30. Definition. It is said that ν ∈ O(X, K) (or ν ∈ Ol(X, K)) is supported on a closed subset E in
X, if ν( f ) = 0 for each f ∈ C(X, K) or in C+(X, K) such that f |E ≡ 0. A support of ν is the intersection
of all closed subsets in X on which ν is supported.

31. Proposition. Let ν ∈ O(X, K) or in Ol(X, K). Then ν is supported on E ⊂ X if and only if
ν( f ) = ν(g) for each f , g ∈ C(X, K) or in C+(X, K) correspondingly such that f |E ≡ g|E. Moreover, E is a
support of ν if and only if ν is supported on E and for each proper closed subset F in E, i.e. F ⊂ E with F 6= E,
there are f , h ∈ C(X, K) or in C+(X, K) respectively with f |F ≡ h|F such that ν( f ) 6= ν(h).

Proof. Consider ν ∈ O(X, K) such that ν( f ) = ν(g) for each functions f , g : X → K with
f |E = g|E. A continuous morphism ν induces a continuous morphism λ ∈ O(E, K) such that
λ(h) = ν(h) for each h ∈ C(X, K) with h|X\E = 0. Denote by id the identity embedding of a closed
subset E into X. Each function t : E→ K has an extension on X with values in K by Condition 19(CE).
Then O(id)(λ) = ν, since ν(g0) = 0 and hence ν(s) = 0 for each s ∈ C(X, K) such that s|E ≡ 0.

If ν ∈ O(X, K) and ν is supported on E, then by Definition 30 there exists a morphism
λ ∈ O(E, K) such that O(id)(λ) = ν. Therefore the equalities are valid: ν( f ) = λ( f |E) = λ(g|E) =

ν(g) for each functions f , g ∈ C(X, K) such that f |E = g|E.
If E is a support of ν, then by the definition this implies that ν is supported on E. Suppose that

F ⊂ E, F 6= E and for each f , g ∈ C(X, K) with f |F ≡ g|F the equality ν( f ) = ν(g) is satisfied, then a
support of ν is contained in F, hence E is not a support of ν. This is the contradiction, hence there are
f , g ∈ C(X, K) with f |F ≡ g|F such that ν( f ) 6= ν(g).

If ν is supported on E and for each proper closed subset F in E there are f , h ∈ C(X, K) with
f |F ≡ h|F such that ν( f ) 6= ν(h), then ν is not supported on any such proper closed subset F,
consequently, each closed subset G in X on which ν is supported contains E, i.e. E ⊂ G. Thus E
is the support of ν.

32. Proposition. The functors O, I, Ol , Il , Ol,h, Il,h preserve intersections of closed subsets.
Proof. If E is a closed subset in X, then there is the natural embedding C(E, K) ↪→ C(X, K)

(or C+(E, K) ↪→ C+(X, K), when X ∈ Ob(Sl)) due to Condition 19(CE). Therefore, O(E ∩ F, K) ⊂
O(E, K)∩O(F, K) (orOl(E∩ F, K) ⊂ Ol(E, K)∩Ol(F, K) respectively). For any closed subsets E and
F in X and each functions f , g ∈ C(X, K) (or C+(X, K)) with f |E∩F ≡ g|E∩F there exists a function
h ∈ C(X, K) (or C+(X, K)) such that h|E = f and h|F = g due to 19(CE). Therefore ν( f ) = ν(h) and
ν(g) = ν(h) for each ν ∈ O(E, K) ∩O(F, K) (or in Ol(E, K) ∩Ol(F, K)). In view of Proposition 31 the
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functors O and Ol preserve intersections of closed subsets. This implies that the functors I, Il , Ol,h
and Il,h also have this property.

33. Proposition. Let {Xb; pb
a; V} =: P be an inverse system of topological spaces Xb, where V is a

directed set, pb
a : Xb → Xa is a continuous mapping for each a ≤ b ∈ V, pb : X = lim P → Xb is a

continuous projection. Then the mappings

(1) s = (O(pb) : b ∈ V) : O(X, K)→ O(P, K) and sh = (Oh(pb) : b ∈ V) : Oh(X, K)→ Oh(P, K)
(2) t = (I(pb) : b ∈ V) : I(X, K)→ I(P, K) and th = (Ih(pb) : b ∈ V) : Ih(X, K)→ Ih(P, K)

are bijective and surjective continuous algebraic homomorphisms. Moreover, if Xb ∈ Ob(Sl) and pb
a is

order-preserving for each a < b ∈ V, then the mappings
(3) sl = (Ol(pb) : b ∈ V) : Ol(X, K) → Ol(P, K) and sl,h = (Ol,h(pb) : b ∈ V) : Ol,h(X, K) →

Ol,h(P, K)
(4) tl = (Il(pb) : b ∈ V) : Il(X, K)→ Il(P, K) and tl,h = (Il,h(pb) : b ∈ V) : Il,h(X, K)→ Il,h(P, K)

also are bijective and surjective continuous algebraic homomorphisms.

Proof. We consider the inverse system O(P) = (O(Xa);O(pa
b); V} and its limit space

Y = limO(P). Then O(pb
a)O(pb) = O(pa) for each a ≤ b ∈ V, since pb

a ◦ pb = pa.
Let q : O(X, K) → Y denote the limit map of the inverse mapping system q = lim{O(pa);O(pa

b); V}
(see also §2.5 [21]).

A continuous morphism ν is inO(X, K) if and only ifO(pa)(ν) ∈ O(Xa, K) for each a ∈ V, since

(5) f ∈ C(X, K) if and only if f = lim{ fb; pb
a; V} and

(6) O(pa)(ν)( fa) = ν( fa ◦ pa) = νa( fa), where νa ∈ O(Xa, K), fb ∈ C(Xb, K), fb = fa ◦ pb
a for

each a ≤ b ∈ V, pb
b = id, f (x) = { fa ◦ pa(x) : a ∈ V} ∈ θ(K) for each x = {xa : a ∈ V} ∈ X, where

{xa : a ∈ V} is a thread of P such that xa ∈ Xa, pb
a(xb) = xa for each a ≤ b ∈ V, θ : K → KX is an

order-preserving continuous algebraic embedding, θ(K) is isomorphic with K.

If ν, λ ∈ O(X, K) are two different continuous morphisms, then this means that a continuous
function f ∈ C(X, K) exists such that ν1( f ) 6= ν2( f ). This is equivalent to the following: there
exists a ∈ V such that (O(pa)(ν))( f ) 6= (O(pa)(λ))( f ). Thus the mappings s and analogously t are
surjective and bijective.

On the other hand,

(7) νb( fb ∨ gb) = νb( fb) ∨ νb(gb) and
(8) νb( fb ∧ gb) = νb( fb) ∧ νb(gb) for each b ∈ V and each νb ∈ I(Xb, K) and every fb, gb ∈

C(Xb, K) such that either fb(x) < gb(x) or fb(x) = gb(x) or gb(x) < fb(x) for each x ∈ Xb, also
(9) νb(gc ×2 fb) = c×2 νb( fb) and
(10) νb( fb ×2 gc) = νb( fb) ×2 c for each c ∈ K and fb ∈ C(Xb, K). Taking the inverse limit in

Equalities (5− 10) gives the corresponding equalities for ν ∈ I(X, K), where ν = lim{νa; I(pb
a); V},

hence t is the continuous algebraic homomorphism due to Theorem 2.5.8 [21].

Analogously s preserves Properties (9, 10), that is λ = lim{λa;O(pb
a); V} is weakly additive,

where λb ∈ O(Xb, K) for each b ∈ V. Suppose that f ≤ g ∈ C(X, K), then fb ≤ gb for each b ∈ V due
to (5). From λb( fb) ≤ λb(gb) for each b ∈ V, the inverse limit decomposition λ = lim{λb;O(pb

a); V}
and Formula (6) it follows that λ is order-preserving.

If Xb ∈ Ob(Sl) for each b ∈ V, then a topological space X is linearly ordered: x = {xb : b ∈ V} ≤
y = {yb : b ∈ V} if and only if xb ≤ yb for each b ∈ V, where x, y ∈ X are threads of the inverse system
P such that pb

a(xb) = xa for each a ≤ b ∈ V. Since pb
a is order-preserving for each a ≤ b ∈ V and each

fb is non-decreasing, then f is nondecreasing and hence f ∈ C+(X, K) for each f = lim{ fb; pb
a; V},

where fb ∈ C+(Xb, K) and fb = fa ◦ pb
a for each a ≤ b ∈ V and x ∈ X, f (x) = { fa ◦ pa(x) : a ∈ V}.

Moreover, ν ∈ Oh(X, K) is left homogeneous if and only if θ(pa)(ν) is left homogeneous for each
b ∈ V, since (Oh(pa)(ν))( fa) = ν( fa ◦ pa) = νa( fa). Applying Lemma 2.5.9 [21] one gets properties
of mappings in Formulas (3, 4).
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34. Lemma. There exist covariant functors O2, I2, and Ol,2, Il,2 and Oh,2, Ih,2 and Ol,h,2, Il,h,2 in the
categories Kw and K and Kw,l and Kl respectively.

Proof. If K1, K2, K3 ∈ Ob(Kw), u ∈ Mor(K1, K2), v ∈ Mor(K2, K3), ν ∈ I(X, K1),
then (I2(vu)(ν))( f ) = v ◦ u ◦ ν( f1) = [I2(v)(I2(u)(ν))]( f ) for each f1 ∈ C(X, K1) such that
f (x) = v ◦ u ◦ f1(x) for each x ∈ X, where X ∈ Ob(S). That is I2(vu) = I2(v)I2(u). On the other
hand, the equality I2(id) = 1 is fulfilled.

If f (x) ≤ g(x), then u( f (x)) ≤ u(g(x)), where x ∈ X, f , g ∈ C(X, K1). Therefore, if a mapping
either f ∨ g or f ∧ g exists in C(X, K1), then u( f ∨ g) = u( f ) ∨ u(g) or u( f ∧ g) = u( f ) ∧ u(g) in
C(X, K2) respectively. If f , g ∈ C(X, K1), then u( f (x) + g(x)) = u( f (x)) + u(g(x)) for each x ∈ X,
particularly, this is valid for f = gc or g = gc, where c ∈ K1. Therefore, u(gc ×2 g) = gu(c) ×2 u(g)
and u(g×2 gc) = u(g)×2 gu(c). To each νn ∈ O(X, Kn) and u ∈ Mor(Kn, Kn+1) there corresponds a
morphism u ◦ νn on ( ˆid, û)(C(X, Kn)), ( ˆid, û)(C(X, Kn)) ↪→ C(X, Kn+1) (see §20). If u : Kn → Kn+1 is
not an epimorphism, the image ( ˆid, û)(C(X, Kn)) is a proper submodule over u(Kn) in C(X, Kn+1).

If Kn, Kn+1 ∈ Ob(K) and X ∈ Ob(Sl), u ∈ Mor(Kn, Kn+1), then û : C+(X, Kn) → C+(X, Kn+1)

is a continuous homomorphism. If Kn, Kn+1 ∈ Ob(Kl) and X ∈ Ob(Sl) (or Kn, Kn+1 ∈ Ob(Kw,l) and
X ∈ Ob(S)) and ν ∈ Oh(X, Kn) or in Ih(X, Kn), u ∈ Mor(Kn, Kn+1), then u ◦ ν ∈ Oh(X, Kn+1) or in
Ih(X, Kn+1) respectively.

This and the definitions above imply that O2(u) : O(X, K1) → O(X, K2), I2(u) : I(X, K1) →
I(X, K2) andOl,2(u), Il,2(u) andOh,2(u), Ih,2(u) andOl,h,2(u), Il,h,2(u) are the homomorphisms. Thus
we deduce thatO2 : Kw → OK andOl,2 : K → OlK, I2 : Kw → IK and Il,2 : K → IlK,Oh,2 : Kw,l →
OhK, Ih,2 : Kw,l → IhK, Ol,h,2 : Kl → Ol,hK and Il,h,2 : Kl → Il,hK are the covariant functors on
the categories Kw, K, Kw,l and Kl correspondingly with values in the categories of skew idempotent
continuous morphisms, when a set X ∈ Ob(S) or in Ob(Sl) correspondingly is marked.

35. Proposition. The bi-functors I on S × Kw, Il on Sl × K, Ih on S × Kw,l and Il,h on Sl × Kl
preserve pre-images.

Proof. In view of Proposition 24 and Lemma 34 I, Il , Ih and Il,h are the covariant bi-functors, i.e.,
the functors in S or Sl and the functors in Kw or K or Kw,l or Kl correspondingly as well. For any
functor F the inclusion F( f−1(B)) ⊂ (F( f ))−1(F(B)) is satisfied, where, for example, B is closed in
Y ∈ Ob(S).

Suppose the contrary that I does not preserve pre-images. This means that there exist X, Y ∈
Ob(S) and K1, K2 ∈ Ob(Kw) or X, Y ∈ Ob(Sl) and K1, K2 ∈ Ob(K), f ∈ Mor(X, Y), u ∈ Mor(K1, K2),
A ⊂ X and B ⊂ Y, where B is closed and hence A is closed when A = F−1(B), ν ∈ I(X, K1) such
that I( f , u)(ν) ∈ I(B, K2) but ν /∈ I( f−1(B), u−1(K2)) (or ν ∈ Il(X, K1), Il( f , u)(ν) ∈ Il(B, K2) and
ν /∈ Il( f−1(B), u−1(K2)) respectively). One can choose two functions g, h ∈ C(X, K1) such that

(1) g|A = h|A,
(2) 0 < c1 = u[infx∈X g(x)], 0 < c2 = u[infx∈X h(x)] and
(3) u[ν(g)] 6= u[ν(h)].

There exist functions s, t ∈ C(X, K1) such that

(4) s|A = g|A and t|A = h|A, while
(5) s|X\A = t|X\A and
(6) s(x) ≤ g(x) and s(x) ≤ h(x) for each x ∈ X \ A, where g, h satisfy Conditions (1− 3) due to

property 19(CE). There are also functions q, r ∈ C(X, K1) such that
(7) q|X\A = g|X\A and r|X\A = h|X\A with
(8) q(x) = r(x) and q(x) ≤ c for each x ∈ A, where
(9) c ∈ K1, c < infx∈X g(x), c < infx∈X h(x) such that u(c) < c1 and u(c) < c2.
Evidently, c1 ≤ u[ν(g)] and c2 ≤ u[ν(h)]. Then
(10) ν(g) = ν(s ∨ q) = ν(s) ∨ ν(q) and
(11) ν(h) = ν(t ∨ r) = ν(t) ∨ ν(r) and u[ν(q)] 6= u[ν(r)].
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On the other hand, there are functions q1, r1 ∈ C(Y, K2), q2, r2 ∈ C(Y, K1) such that q2 ◦ f = q,
r2 ◦ f = r, u ◦ q2 = q1, u ◦ r2 = r1 and q2|B = r2|B. Therefore, from Properties (7− 10) it follows that

(12) (I( f , u)(ν))(q1) = u[ν(q)] ≤ u(c) and (I( f , u)(ν))(r1) = u[ν(r)] ≤ u(c). The condition
s = t on A and on X \ A imply that

(13) ν(s) = ν(t). Therefore,
(14) u(ν(g)) = u(ν(s)) ∨ u(ν(q)) and u(ν(h)) = u(ν(t)) ∨ u(ν(r)), which follows from

(10, 11). But Formulas (4 − 6, 12 − 14) contradict the inequality u[ν(g)] 6= u[ν(h)], since u is the
order-preserving continuous algebraic homomorphism from K1 into K2. Thus the bi-functors I and Il
preserve pre-images. The proof in other cases is analogous.

36. Corollary. If ν ∈ I(X, K) or ν ∈ Il(X, K), f ∈ Mor(X, Y), u ∈ Mor(K1, K2), where
X, Y ∈ Ob(S) and K1, K2 ∈ Ob(Kw) or X, Y ∈ Ob(Sl) and K1, K2 ∈ Ob(K), then supp(I( f , u)(ν)) =

f (supp(u[ν])) or
supp(Il( f , u)(ν)) = f (supp(u[ν])) correspondingly.
37. Definitions. Suppose that Q is a category and F, G are two functors in Q. Suppose also that a

transformation p : F → G is defined for each X ∈ Q, that is a continuous mapping pX : F(X)→ G(X)

is given. If pY ◦ F( f ) = G( f ) ◦ pX for each mapping f ∈ Mor(X, Y) and every objects X, Y ∈ Ob(Q),
then the transformation p = {pX : X ∈ Ob(Q)} is called natural.

If T : Q→ Q is an endofunctor in a category Q and there are natural transformations the identity
η : 1Q → T and the multiplication ψ : T2 → T satisfying the relations ψ ◦ Tη = ψ ◦ ηT = 1T and
ψ ◦ ψT = ψ ◦ Tψ, then one says that the triple T := (T, η, ψ) is a monad.

38. Theorem. There are monads in the categories S ×Kw, Sl ×K, S ×Kw,l and Sl ×Kl .
Proof. Let ḡ(ν) := ν(g) for g ∈ C(X, K) and ν ∈ I(X, K), where X ∈ Ob(S) and K ∈ Ob(Kw).

Therefore, this induces the morphism ḡ : I(X, K)→ K. Then

gb ×2 g(ν) = ν(gb ×2 g) = b×2 ν(g) = b×2 ḡ(ν) and

g×2 gb(ν) = ν(g×2 gb) = ν(g)×2 b = g(ν)×2 b,

where gb(x) = b for each x ∈ X, that is

(1) g×2 gb = ḡ×2 gb and (1′) gb ×2 g = gb ×2 ḡ
for each g ∈ C(X, K) and b ∈ K.

Then we get g ∨ h(ν) = ν(g∨ h) = ν(g)∨ ν(h) = ḡ(ν)∨ h̄(ν) = (ḡ∨ h̄)(ν). Moreover, we deduce
that g ∧ h(ν) = ν(g ∧ h) = ν(g) ∧ ν(h) = ḡ(ν) ∧ h̄(ν) = (ḡ ∧ h̄)(ν). Thus we get the equalities

(2) g ∨ h = ḡ ∨ h̄ and (2′) g ∧ h = ḡ ∧ h̄.

If additionally ν is left homogeneous and K ∈ Ob(Kw,l), then bg = ν(bg) = bν(g) = bḡ(ν).
Therefore, we infer that bg = bḡ for every b ∈ K and g ∈ C(X, K).

For λ ∈ I(I(X, K), K) we put ξX,K(λ)(g) = λ(ḡ) for each g ∈ C(X, K). Then ξX,K(λ)(gb) =

λ(gb) = λ(qb) = b, where qb : I(X, K) → K denotes the constant mapping qb(y) = b for each
y ∈ I(X, K). From Formulas (1, 1′) it follows that

ξX,K(λ)(gb ×2 g) = λ(gb ×2 g) = λ(b×2 ḡ) = b×2 λ(ḡ) = b×2 ξX,K(λ)(g) and

ξX,K(λ)(g×2 gb) = λ(g×2 gb) = λ(ḡ×2 gb) = λ(ḡ)×2 b = ξX,K(λ)(g)×2 b.

On the other hand, from Formulas (2, 2′) we get that

ξX,K(ν)(g ∨ h) = ν(g ∨ h) = ν(ḡ ∨ h̄) = ν(ḡ) ∨ ν(h̄) = ξX,K(ν)(g) ∨ ξX,K(ν)(h) and

ξX,K(ν)(g ∧ h) = ν(g ∧ h) = ν(ḡ ∧ h̄) = ν(ḡ) ∧ ν(h̄) = ξX,K(ν)(g) ∧ ξX,K(ν)(h)

for each b ∈ K, g, h ∈ C(X, K). Thus ξX,K : I(I(X, K), K)→ I(X, K).
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If λ ∈ Ih(Ih(X, K), K) for some K ∈ Ob(Kw,l), then ξX,K(λ)(bg) = λ(bg) = λ(bḡ) = bλ(ḡ),
hence ξX,K : Ih(Ih(X, K), K) → Ih(X, K). Analogously the mapping ξX,K : O(O(X, K), K) → O(X, K)
is defined for each X ∈ Ob(S) and K ∈ Kw, also ξX,K : Ol(Ol(X, K), K) → Ol(X, K), ξX,K :
Il(Il(X, K), K) → Il(X, K) for each X ∈ Ob(Sl) and K ∈ K, ξX,K : Ih(Ih(X, K), K) → Ih(X, K) for
X ∈ Ob(S) and K ∈ Kw,l , ξX,K : Il,h(Il,h(X, K), K) → Il,h(X, K) for X ∈ Ob(Sl) and K ∈ Kl . One also
puts η : IdQ → O or η : IdQ → I for Q = S ×Kw, also η : IdQ → Ol or η : IdQ → Il for Q = Sl ×K
correspondingly.

Next we verify that the transformations η and ξ are natural for each f ∈ Mor(X × K1, Y × K2),
i.e. f = (s, u), s ∈ Mor(X, Y), u ∈ Mor(K1, K2):

η(Y,K2)
◦ O((s, u)) = O(idY, idK2)) ◦ O((s, u))

= O((s, u)) = O((s, u)) ◦ O(idX , idK1)) = O((s, u)) ◦ η(X,K1)
,

ξ(Y,K2)
◦ O((s, u))[O2(X, K1)] = ξ(Y,K2)

(O(s̄, ū)[O(X, K1)])

= O((s, u)) ◦ η(X,K1)
[O2(X, K1)]),

where Om+1(X, K) := O(Om(X, K), K) for each natural number m (see also §20 and Proposition 35).
For each ν ∈ O(X, K) and g ∈ C(X, K) one gets

ξX,K ◦ η(O(X,K),K)(ν)(g) = η(O(X,K),K)(ν)(ḡ) = ḡ(ν) = ν(g) and

ξX,K ◦ O(η(X,K))(ν)(g) = (O(η(X,K)(ν))(ḡ) = ν(ḡ ◦ η(X,K)) = ν(g).

Let now τ ∈ O3(X, K) and g ∈ C(X, K), then

ξ(X,K) ◦ ξO(X,K)(τ)(g) = (ξO(X,K)(τ))(ḡ) = τ( ¯̄g) and

ξ(X,K) ◦ O(ξ(X,K))(τ)(g) = (O(ξ(X,K))(τ))(ḡ) = τ(ḡ ◦ ξ(X,K)) = τ( ¯̄g),

where ¯̄g ∈ C(O2(X, K), K) is prescribed by the formula ( ¯̄g)(ν) = ν(ḡ) for each ν ∈ O2(X, K).
Thus O := (O, η, ξ) is the monad. Since I is the restriction of the functor O, the triple I := (I, η, ξ)

is the monad in the category S × Kw as well. Analogously Ol := (Ol , η, ξ) and Il := (Il , η, ξ) form
the monads in the category Sl ×K; Oh = (Oh, η, ξ) and Ih = (Ih, η, ξ) are the monads in S × Kw,l ;
Ol,h = (Ol,h, η, ξ) and Il,h = (Il,h, η, ξ) are the monads in Sl ×Kl .

39. Proposition. If a sequence

(1) ...→ Kn → Kn+1 → Kn+2 → ... in Kw (or in K) is exact, then sequences
(2) ...→ O2(X, Kn)→ O2(X, Kn+1)→ O2(X, Kn+2)→ ... and
(3) ... → I2(X, Kn) → I2(X, Kn+1) → I2(X, Kn+2) → ... are exact (analogously for Ol,2 and Il,2

correspondingly).

Proof. A sequence
... → Kn → Kn+1 → Kn+2 → ... is exact means that sn(Kn) = ker(sn+1) for each n, where

sn : Kn → Kn+1 is an order-preserving continuous algebraic homomorphism, ker(sn+1) = s−1
n+1(0).

Each continuous homomorphism sn induces the continuous homomorphism sn : C(X, Kn) →
C(X, Kn+1) point-wise (sn( f ))(x) = sn( f (x)) for each x ∈ X. Therefore, we get that sn( f ∨ g) =

sn( f ) ∨ sn(g) or sn( f ∧ g) = sn( f ) ∧ sn(g), when f ∨ g or f ∧ g exists, where f , g ∈ C(X, Kn).
Moreover, the equalities (sn( f + g))(x) = sn( f (x) + g(x)) = sn( f (x)) + sn(g(x)) = [sn( f ) +
sn(g)](x) and [sn( f g)](x) = sn( f (x)g(x)) = sn( f (x))sn(g(x)) = [(sn( f ))(sn(g))](x) are fulfilled,
consequently, sn(C(X, Kn)) = s−1

n+1(0), since fn+2 ∈ C(X, Kn+2) is zero if and only if fn+2(x) = 0 for
each x ∈ X. Thus the sequence

...→ C(X, Kn)→ C(X, Kn+1)→ C(X, Kn+2)→ ... is exact.



Mathematics 2016, 4, 17 21 of 24

Then a continuous morphism λn+2 ∈ O(X, Kn+2) is zero on sn+1(C(X, Kn+1)) if and only
if λn+2( fn+2) = 0 for each fn+2 ∈ sn+1(C(X, Kn+1)). Therefore, sn+1(λn+1) = 0 = λn+2 on
sn+1[sn(C(X, Kn))] if and only if λn+1( fn+1) ∈ sn(Kn) for each fn+1 ∈ sn(C(X, Kn)). At the same
time we have that sn+1[sn(C(X, Kn))] ⊂ sn+1(C(X, Kn+1)), consequently, O2(sn) = kerO2(sn+1).
Thus the sequences (2, 3) are exact, analogously for other functors I2, Ol,2 and I2,l .

3.3. Lattices Associated with Actions of Groupoids on Topological Spaces

40. Lemma. Let G be a topological groupoid with a unit acting on a topological space X such that to each
element g ∈ G a continuous mapping vg : X → X corresponds having the properties

(1) vgvh = vgh for each g, h ∈ G and
(2) ve = id, where e ∈ G is the unit element, id(x) = x for each x ∈ X. If K is a topological ringoid with

the associative sub-ringoid L, L ⊃ {0, 1}, such that
(3) a(bc) = (ab)c for each a, b ∈ L and c ∈ K, a continuous mapping ρ : G2 → L \ {0} satisfies the

cocycle condition
(4) ρ(g, x)ρ(h, vgx) = ρ(gh, x) and
(5) ρ(e, x) = 1 ∈ K for each g, h ∈ G and x ∈ X, then
(6) Tg f (x) := ρ(g, x)v̂g f (x) is a representation of G by continuous in the g ∈ G variable mappings

Tg of C(X, K) into C(X, K), when f is marked, where f ∈ C(X, K), v̂g f (x) := f (vg(x)) for each g ∈ G
and x ∈ X.

Proof. For each g, h ∈ G one has Tg(Th f (x)) = ρ(g, x)v̂g[ρ(h, x)v̂h f (x)] = ρ(gh, x)v̂gh f (x) =

Tgh f (x), hence TgTh = Tgh. Moreover, Te f = f , since ve = id and ρ(e, x) = 1, i.e., Te = I is the unit
operator on C(X, K). Mappings Tg f (x) are continuous in the g ∈ G variable as compositions and
products of continuous mappings.

The continuous mappings Tg are (may be) generally non-linear relative to K. If K is commutative,
distributive and associative, then Tg are K-linear on C(X, K).

41. Definition. A continuous morphism ν on C(X, K) or C+(X, K) we call semi-idempotent, if it
satisfies the property:

(1) ν(g + f ) = ν(g) + ν( f ) for each f , g ∈ C(X, K) or C+(X, K) respectively, where (g + f )(x) =
g(x) + f (x) for each x ∈ X.

Suppose that G is a topological groupoid with the unit continuously acting on a topological
space X and satisfying Conditions 40(1, 2). A continuous morphism λ on C(X, K) or C+(X, K) we
call (T, G)-invariant if

(2) T̂gλ = λ, where (T̂gλ)( f ) := λ(Tg f ) for each g ∈ G and f in C(X, K) or
C+(X, K) correspondingly.

Let S+(G, K) denote the family of all semi-idempotent continuous morphisms, when K is
commutative and associative relative to the addition for (G, K), let also S∨(G, K) (or S∧(G, K))
denote the family of all continuous morphisms satisfying Conditions 2(4) (or 2(5) correspondingly)
for general K. Denote by H+(G, K) (or H∨(G, K) or H∧(G, K)) the family of all G-invariant
semi-idempotent (or in S∨(G, K) or in S∧(G, K) correspondingly) continuous morphisms for (X, K),
when X = G as a topological space. We supply these families with the operations of the addition

(3) ν( f ) +i λ( f ) =: (ν +i λ)( f ) in Sj(G, K) for i = 1, 2, 3 and j = +,∨,∧ respectively and the
multiplication being the convolution of continuous morphisms

(4) (ν ∗ λ)( f ) = ν(λ(Tg f )) in Sj(G, K), where g ∈ G, j ∈ {+,∨,∧}.
Then we put Hh(G, K), Sh(G, K), H∨,h(G, K), S∨,h(G, K), H∧,h(G, K) and S∧,h(G, K) for the

subsets of all left homogeneous morphisms in H+(G, K), S+(G, K), H∨(G, K), S∨(G, K), H∧(G, K),
S∧(G, K) correspondingly.
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42. Proposition. If ν is a (T, G)-invariant semi-idempotent continuous morphism, then its support is
contained in

⋂∞
n=1 Tn(X), where

T(A) :=
⋃

g∈G
supp(ρ(g, x)v̂g(χA(x)))

for a closed subset A in X. Moreover, if K has not divisors of zero a support of ν is G-invariant and contained
in

⋂∞
n=1 Pn(X), where

P(X) =
⋃

g∈G
vg(X).

Proof. If ν( f ) 6= 0, then ν(Tg f ) 6= 0 for each g ∈ G, when a continuous morphism ν is
(T, G)-invariant. On the other hand, if supp( f ) ⊂ supp(ν), then supp(ρ(g, x)v̂g f (x)) ⊂ supp(ν)
for each g ∈ G. At the same time,

⋃
g∈G supp(Tg f ) ⊂ ⋃

g∈G supp(v̂g f ), since ρ(g, x) ∈ L \ {0} for each
g ∈ G and x ∈ X. If f = χsupp(ν), then supp(ν) ⊂ T(supp(ν)) ⊂ T(X), hence by induction we deduce
that supp(ν) ⊂ Tn(X) for each natural number n, where χA is the characteristic function of a set A,
so that χA(x) = 1 for each x ∈ A while χA(x) = 0 for each x /∈ A.

If K has not divisors of zero, then supp(T̂gν) = v̂gsupp(ν) ⊂ supp(ν) for each element g ∈ G,
hence

⋃
g∈G v̂gsupp(ν) = supp(ν), since e ∈ G and νe = id. That is supp(ν) is G-invariant. Since

supp(ν) ⊂ X, then supp(ν) ⊂ P(X) and by induction supp(ν) ⊂ Pn(X) for each natural number n.
43. Proposition. If G is a topological groupoid with a unit or a topological monoid, then S+(G, K),

S∨(G, K) and S∧(G, K) for general Tg and K (or Sh(G, K), Sh,∨(G, K) and Sh,∧(G, K) for Tg ≡ v̂g or when
K is commutative and associative relative to the multiplication) supplied with the convolution 41(4) as the
multiplication operation are topological groupoids with a unit or monoids correspondingly.

Proof. Certainly, the definitions above imply the inclusion Sh(G, K) ⊂ S+(G, K).
If ν, λ ∈ Ih(G, K), then (ν ∗ λ)(b f ) = ν(λ(Tg(b f ))) = ν(bλ(Tg f )) = b((ν ∗ λ)( f )), when either
Tg ≡ v̂g for each g ∈ G or K is commutative and associative relative to the multiplication. We mention
that the evaluation morphism δe at e belongs to Sh(G, K) and has the property ν ∗ δe = δe ∗ ν = ν for
each ν ∈ S(G, K), where e is a unit element in G, δx f = f (x) for each f ∈ C(X, K) and x ∈ X. Thus δe

is the neutral element in S(G, K).
For a topological monoid G one has v̂s(v̂u f (x)) = f (s(ux)) = f ((su)x) = v̂su f (x) for each

f ∈ C(G, K) and s, u, x ∈ G so that f ((su)x) is a function continuous in the variables s, u and x in G.
Since ν and λ are continuous on C(G, K), then ν ∗ λ is continuous on C(G, K).

If G is a topological monoid, then (ν ∗ (λ ∗ φ))( f ) = νu((λ ∗ φ)(Tu f )) = νu(λs(φ(TsTu f )) =

νu(λs(φ(Tsu f ))) = (ν ∗ λ)su(φ(Tsu f )) = [(ν ∗ λ) ∗ φ]( f ) for every f ∈ C(G, K) and u, s ∈ G and
ν, λ, φ ∈ Sj(G, K), where νu(h) means that a continuous morphism ν on a function h acts by the
variable u ∈ G, consequently, ν ∗ (λ ∗ φ) = (ν ∗ λ) ∗ φ. Thus the family Sj(G, K) is associative, when
G is associative, where j ∈ {+,∨,∧, h, (h,∨), (h,∧)} for the corresponding Tg and K.

From §§2.3, 2.4, 2.9 and 5 it follows that the mapping (ν, λ) 7→ ν ∗ λ is continuous.
44. Theorem. If G is a topological groupoid with a unit or a topological monoid, then S+(G, K) (for

K commutative and associative relative to +), S∨(G, K) and S∧(G, K) for general Tg (or S∨,h(G, K) and
S∧,h(G, K) for either Tg ≡ v̂g or when K is commutative and associative relative to the multiplication) are
topological ringoids or semirings correspondingly.

Proof. If f , g ∈ C(X, K) or in C+(X, K) and f ∨ g or f ∧ g exists (see Condition (3) in Lemma 2.12),
ν, λ are continuous morphisms satisfying Condition either 2(4) or 2(5) respectively, then

(1) (ν +i λ)( f +i g) = ν( f +i g) +i λ( f +i g) = (ν( f ) +i ν(g)) +i (λ( f ) +i λ(g)) = (ν( f ) +i
λ( f )) +i (ν(g) +i λ(g)) = (ν +i λ)( f ) +i (ν +i λ)(g)
for i = 1, 2, 3, where +1 = +, +2 = ∨, +3 = ∧. That is, the continuous morphism ν +i λ satisfies
Property 41(1) for i = 1 or 2(4) for i = 2 or 2(5) when i = 3 correspondingly. If additionally ν and λ

are left homogeneous, then
(2) (ν +i λ)(b f ) = ν(b f ) +i λ(b f ) = bν( f ) +i bλ( f ) = b(ν +i λ)( f ) for each b ∈ K.
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On the other hand, we deduce that
((ν1 +i ν2) ∗ λ)( f ) = (ν1 +i ν2)(λ(Tg f )) = ν1(λ(Tg f )) +i ν2(λ(Tg f ))
= (ν1 ∗ λ)( f ) +i (ν2 ∗ λ)( f ) and
(λ ∗ (ν1 +i ν2))( f ) = λ((ν1 +i ν2)(Tg f )) = λ(ν1(Tg f )) +i λ(ν2(Tg f ))
= (λ ∗ ν1)( f ) +i (λ ∗ ν2)( f )

for each ν1, ν2, λ ∈ Sj(G, K) and f ∈ C(G, K) or in C+(G, K) correspondingly, for i = 1, 2, 3 and
i = i(j) respectively, where +1 = +, +2 = ∨ and +3 = ∧. Thus, the right and left distributive rules
are satisfied:

(3) (ν1 +i ν2) ∗ λ = ν1 ∗ λ +i ν2 ∗ λ and
(4) λ ∗ (ν1 +i ν2) = λ ∗ ν1 +i λ ∗ ν2

for i = 1, 2, 3 respectively. From the definitions of these operations and Proposition 43 their
continuity follows.

Therefore, Formulas (1 − 4) and Proposition 43 imply that S+(G, K), S∨(G, K),
S∧(G, K), S∨,h(G, K) and S∧,h(G, K) are left and right distributive topological ringoids or
semirings correspondingly.

45. Theorem. If G is a topological groupoid with a unit, X = G as a topological space (see §41), then
Hj(G, K) is a closed ideal in Sj(G, K), where j = + (for K commutative and associative relative to +) or j = ∨
or j = ∧ or j = (∨, h) or j = (∧, h) with ρ(u, x) ≡ 1; j = (∨, h) or j = (∧, h) for commutative and
associative K relative to the multiplication with general Tu.

Proof. We mention that T̂g(b1λ1 +i b2λ2)( f ) = b1λ1(Tg f ) +i b2λ2(Tg f ), where the operation
denoted by the addition +i is either + or ∨ or ∧ for i = 1 or i = 2 or i = 3 correspondingly (and
also below in this section), consequently, b1λ1 +i b2λ2 ∈ Hj(G, K) for each λ1, λ2 ∈ Hj(G, K) and
b1, b2 ∈ K, i = i(j).

In Formula 41(4) after the action of a morphism λ on a continuous function Tg f (x) in the variable
x one gets that λ(Tg f ) =: h(g) is a continuous function in the variable g and ν is acting on this
function, i.e. (ν ∗ λ)( f ) = ν(h(x)), where x, g ∈ G. This implies that

ν ∗ (λ( f +i t)) = ν ∗ (λ( f ) +i λ(t)) = ν(λ(Tg f ) +i λ(Tgt))
= ν(λ(Tg f )) +i ν(λ(Tgt)) = (ν ∗ λ)( f ) +i (ν ∗ λ)(t) for i = 1, 2, 3,

consequently, the convolution operation maps from Sj(G, K)2 into Sj(G, K).
The property being G-invariant provides closed subsets in Sj(G, K), since if a net of continuous

mappings gk converges to a continuous mapping g an each gk is G-invariant, then g = limk gk is
G-invariant as well.

If λ ∈ Hj(G, K) and ν ∈ Sj(G, K), then
(T̂s(ν ∗ λ))( f ) = T̂s(νu(λx(Tu f (x)))) = νu(λx(Ts(Tu f (x)))
= νu(λx(Tu f (x)))) = (ν ∗ λ)( f ) and
(T̂s(λ ∗ ν))( f ) = T̂s(λu(νx(Tu f (x)))) = λu(νx(Ts(Tu f (x))))
= λu(Ts(νx(Tu f (x)))) = (λ ∗ ν)( f ),

since λu(Tsg(u)) = λu(g(u)) = λ(g), particularly with g(x) = Tu f (x) or g(u) = νx(Tu f (x))
correspondingly, whilst Ts ≡ v̂s in the cases j = + or j = ∨ or j = ∧ with ρ ≡ 1, or for general
Tu f (x) = ρ(u, x)v̂s f (x) in the cases of homogeneous continuous morphisms j = (∨, h) or j = (∧, h)
(see §43 also), hence ν ∗ λ, λ ∗ ν ∈ Hj(G, K). Therefore, the latter formula and Theorem 44 imply that

(ν +i Hj(G, K)) ∗ Hj(G, K) ⊂ (ν ∗ Hj(G, K)) +i (Hj(G, K) ∗ Hj(G, K))
⊂ Hj(G, K) +i Hj(G, K) ⊂ Hj(G, K) and
Hj(G, K) ∗ (ν +i Hj(G, K)) ⊂ (Hj(G, K) ∗ ν) +i (Hj(G, K) ∗ Hj(G, K))
⊂ Hj(G, K) +i Hj(G, K) ⊂ Hj(G, K)

for each ν ∈ Sj(G, K) and +i corresponding to j, that is Hj(G, K) is the right and left closed ideal in
Sj(G, K).
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4. Conclusions

Skew continuous morphisms of ordered ringoids, semirings, algebroids and non-associative
algebras can be used for studies of their structures and representations.
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