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Abstract: We propose a new method of randomized forecasting (RF-method), which operates with
models described by systems of linear ordinary differential equations with random parameters.
The RF-method is based on entropy-robust estimation of the probability density functions (PDFs)
of model parameters and measurement noises. The entropy-optimal estimator uses a limited
amount of data. The method of randomized forecasting is applied to World population prediction.
Ensembles of entropy-optimal prognostic trajectories of World population and their probability
characteristics are generated. We show potential preferences of the proposed method in comparison
with existing methods.
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1. Introduction

For a studied process, forecasting as a procedure consists of four consecutive stages: modeling
(model design), learning (estimation of model characteristics), testing (of the “learned” model) and
prediction of future development.

Forecasting is based on retrospective data analysis with its subsequent extrapolation to future
periods. Consider the state of a studied process at moment t0, and suppose that the problem is to
forecast further evolution of the process on a time interval T f rc = [t0, T]. Then, it is necessary to operate
existing data on its past dynamics on a time interval Trts = [T−, t0], where T− < t0 (the so-called
retrospective data). Generally, retrospective data and the time interval Trts are divided into two groups,
namely data serving for the estimation of the model’s characteristics (on a time interval Test = [T−, te])
and model testing (on a time interval Ttst = [te, t0]).

There exist at least three forecasting techniques differing in the objectification degree of
constructed forecasts. The first technique, referred to as scenario forecasting [1], proceeds from the
scenario approach whose objectification is replaced by the opinion of an expert group. Actually, it
implements only the stages of modeling and prediction: learning and testing are eliminated owing to
the opinion of experts, who choose an appropriate mathematical model of a studied process and form
value sets (scenarios) of the model parameters. Then, the model with the scenario parameter values
generates forecasting trajectories. As a matter of fact, such a forecasting technique is most widespread
in demographic prediction [2–4]. Note that real retrospective data about a studied process are not
utilized. They are indirectly reflected by the knowledge and experience of invited experts.
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The second technique of forecasting explicitly involves real data for model learning and testing. The
framework of mathematical statistics provides numerous estimation methods for model parameters;
see [5–8]. Here, a major assumption is that the model possesses deterministic parameters, the values
of which are defined using sets of real retrospective data. The latter are treated as a stochastic object
with certain properties (a sample from a universe, normal distribution, etc.). In this case, one may
assign different probabilistic characteristics (variances, confidence intervals, and so on) to the derived
estimates of model parameters.

Sometimes, these characteristics assist in constructing the probabilistic characteristics of
forecasting trajectories. The described technique will be termed probabilistic forecasting (PF) [9–14].
We emphasize that the above hypotheses regarding the stochastic properties of real datasets are
almost impossible to verify, especially under small data arrays. It follows for the low efficiency of
forecasts [15,16].

Finally, the third technique of forecasting proposed in this paper stems from the randomized model
(RM) of a studied process, where model parameters are supposed random. Hence, we characterize
RMs using the probability density functions (PDFs) of their parameters. At the learning stage, the
PDFs of the model parameters are estimated on the basis of real retrospective data.

A randomized model generates an ensemble of forecasting trajectories, where each trajectory
corresponds to a set of random realizations of parameters with the derived estimates of the PDFs.
Computer simulation of such models employs the Monte Carlo method. Below, this technique
will be called randomized forecasting (RF).

As opposed to existing methods [17–19], the proposed method of randomized forecasting is based
on entropy-optimal estimations of PDFs for real datasets. The structure of the randomized dynamic
model, used in this method, is based on ordinary differential equations.

The developed method serves for obtaining randomized predictions of the World population
dynamics. Modeling the World population variations in time and space forms a major problem of
demographic analysis [20–22].

Throughout the paper, we describe the above mentioned dynamics by the exponential model
incorporating several parameters associated with fertility and mortality rates, as well as its change in
time. In the randomized setting, they are assumed random, whereas World population is measured
with random errors. To find the corresponding PDFs, the method involves the retrospective population
data provided by the UN (see UNdata service at https://data.un.org/). In addition, we perform
the comparative analysis of the PF- and RF-based approaches.

2. Randomized Model: Linear Differential Form

Consider a dynamic object having an input f(t) = { f1(t), . . . , fm(t)} and an output
x(t) = {x1(t), . . . , xn(t)}. The components of the input and output vectors can be observed (measured)
on a time interval Trts = [T−, t0].

The relationship between the input and output of the object is described by the linear
nonautonomous system of ordinary differential equations:

dx(t)
dt

= Ax(t) + Bf(t), x(T−) = x0 (1)

where x ∈ Rn; f ∈ Rm, m ≤ n; A = [aij | (i, j) = 1, n] and B = [bik | i = 1, n, k = 1, m] denote matrices
of appropriate dimensions.

The object’s output is observed with inevitable disturbances modeled by a vector noise
ξ̄(t) = {ξ1(t), . . . , ξn(t)}. Therefore, the observed output of the model acquires the form:

v(t) = x(t) + ξ̄(t) (2)

where v(t) ∈ Rn.
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Equations (1) and (2) define a linear dynamical randomized model (LDRM) if:

• the matrix A is a random matrix (with independent random elements or elements with
independent random components) of the interval type:

A = [A : A− ≤ A ≤ A+] (3)

where A−, A+ mean given matrices;
• there exists a probability density function (PDF) P(A), A ∈ A;
• the vector ξ̄ is a random vector (i.e., contains independent random components) of the

interval type:

Ξ = [ξ̄− ≤ ξ̄ ≤ ξ̄+] (4)

• there exists a probability density function (PDF) Q(ξ̄), ξ̄ ∈ Ξ;
• the matrix B possesses fixed known elements.

Under the stated conditions, the LDRM generates an ensemble of random trajectories on the time
interval T = [T−, T].

Let us rewrite the LDRM (2) in the input-output representation using the notion of matrix
exponent [23]:

W(A|t− τ) = exp[A(t− τ)] (5)

The input and output are measured at discrete moments with step h. Hence, on the time interval
Test, we have:

x[T− + ih] = W(A|ih)x0 +

+
∫ T−+ih

T−
W(A|T− + ih, τ) B f(τ)dτ, (6)

i ∈ 0, Nest

here Nest = [(te − T−)/h] and [•] indicates the integer part of •.
The LDRM output Equation (3) observed at discrete moments has the following form:

v[T− + ih] = x[T− + ih] + ξ̄[T− + ih], i = 0, Nest (7)

Let us denote ξ̄(i) = ξ̄[T− + ih], i = 0, Nest. They are random vectors with independent and
interval components. Now, we introduce the block-vector ξ̂ = {ξ̄(0), . . . , ξ̄(Nest)}. As we assume that
these vectors and their components are independent, then the joint PDF is:

Q(ξ̂) =
Nest

∏
i=0

Qi(ξ̄
(i)) =

Nest

∏
i=0

n

∏
j=1

qij(ξ
(i)
j ) (8)

The domain of this function is:

Ξ̂ = Ξ× Ξ · · · × Ξ︸ ︷︷ ︸
(Nest + 1) multipliers

(9)

Here, ξ̄(T−), ξ̄(T− + h), . . . , ξ̄(T− + Nesth) gives a sequence of n-dimensional independent
random vectors of the interval type, associated with corresponding PDFs.
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As soon as the matrix A and the noise vector ξ̂ are random and characterized by the PDFs P(A)

and Q(ξ̄), respectively, so the observed output of the LDRM represents an ensemble V of random
trajectories v[T− + ih], i = 0, Nest.

3. S1
PQ Entropy-Robust Estimation

The first stage of the randomized forecasting (RF) is an estimation of the PDFs of the RMs’
parameters and of the measurement noises. It is a classical problem of the Bayesian approach, and
there exists the classical maximum likelihood method (or maximum relation of likelihood; see [6]) for
its solving.

Let us recall the definition of the function of the relation of likelihood (FRL) in the terms of Section
2. The a priori PDFs P0(A), Q0(ξ̂) and the a posteriori PDFs P(A), Q(ξ̂) are the basic notations of the
FRL. The FRL takes the form:

L(A) = ln
P(A)

P0(A)
, L(ξ̂) = ln

Q(ξ̂)

Q0(ξ̂)
(10)

If the PDFs in these expressions are restored as functions of the parameters, then maximization of
these functions gives “optimal” estimations. The principle of maximization of the FRL takes the form:

Â = arg max
A

L(A) (11)

As a declaration, this principle is fine. However, how is it possible to restore the PDFs P(A) and
P0(A) (also Q(ξ̂) and Q0(ξ̂))? The problem of the restoration of the PDFs remains outside of the FRL.

Let us consider the functional of the likelihood relation (FuRL) in the following form:

L[P(A)] =
∫
A

P(A) ln
P(A)

P0(A)
dA, L[Q(ξ̂)] =

∫
Ξ̂

Q(ξ̂) ln
Q(ξ̂)

Q0(ξ̂)
dξ̂ (12)

From Equation (12), we can see that the FuRL is the mathematical expectation of the FRL. On the
other side, the FuRL is the opposite generalized information Boltzmann entropy (Kullback–Leibler
distance) [24,25], that is:

HA[P(A)] = −L[P(A)], H[Q(ξ̂)] = −L[Q(ξ̂)] (13)

According to [26], maximization of entropy functions gives the best robust solution under high
uncertainty. This idea with the addition of real data balance conditions forms the basis of the S1

PQ
entropy-robust estimation method [27].

The S1
PQ entropy-robust estimation can be reformulated as a problem of functional nonlinear

programming [28,29]:

−H[P(A), Q(ξ̄)] =
∫
A

P(A) ln P(A) dA +

+
∫

Ξ̄
Q(ξ̂) ln Q(ξ̂) d ξ̂ ⇒ min (14)

subject to the constraints imposed on:

- the class of (normalized) PDFs: ∫
A

P(A) d A = 1∫
Ξ̂

Q(ξ̂) d ξ̂ = 1 (15)
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- the balance between the first moment vector of the observed output v[T− + ih] = v(i) in the
LDRM Equation (7) and the real data vector y[T− + ih] = y(i):

M{v(i)} = v̄(i)[P(A), Q(ξ̂)] =
∫
A

u(i)(A)P(A)dA +

+
∫

Ξ̂
ξ̄(i)Q(ξ̂)dξ̂ = y(i), i ∈ 0, Nest (16)

where:

u(i)(A) = W(A|ih)x0 +
∫ T−+ih

T−
W(A|T− + ih− τ) B f(τ)dτ (17)

S1
PQ entropy-robust estimation uses the first moment vector of the output LDRM. It is possible to

use moments of higher order. This depends on measurable real data. If they represent the k-moment,
then the balance condition can be formulated in the following form:(

M{vk}
)1/k

= y (18)

where v(k) is a vector of k-moment components. In this case, we will have Sk
PQ

entropy-robust estimation.
The problem Equations (14)–(17) are related to the Lyapunov problem [28,29] where the goal

functional and constraints are of an integral type. Here, we will use the necessary condition of equality
to zero of the integral equation: ∫

X
h(x) g(x)dx = 0 (19)

where the function h(x) is continuous and is equal to zero on the boundary of the set X (the class C̃);
the function g(x) is differentiable (the class D). Then, this equality will be valid for any function h(x)
with the mentioned properties if:

g(x) = 0, ∀x ∈ X (20)

Now, we return to the problem Equations (14)–(17) and introduce the Lagrange functional:

L[P(A), Q(ξ̂)] = −H[P(A), Q(ξ̂)] + λ

(∫
A

P(A) d A− 1
)
+ µ

(∫
Ξ̂

Q(ξ̂) d ξ̂ − 1
)
+

+
Nest

∑
i=0
〈θ̄(i), m(i)[P(A), Q(ξ̂)]〉 (21)

where:

m(i)[P(A), Q(ξ̂)] = v̄(i)[P(A), Q(ξ̂)]− y(i) (22)

Sign 〈•, •〉 denotes a scalar product.
As the solution of the problem Equations (14)–(17) is searched in the class of differentiable

functions, then the Gato derivation can be used for determination of the variation of Lagrange
functional Equation (21).
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Let us denote the solution of the problem Equations (14)–(17) as P∗(A) and Q∗(ξ̂). Furthermore,
introduce the functions φ(A) ∈ C̃, ψ(ξ̂) ∈ D and two scalar variables α, β to present the functions
P(A), Q(ξ̂) in the following form:

P(A) = P∗(A) + αφ(A), Q(ξ̂) = Q∗(ξ̂) + βψ(ξ̂) (23)

Functions P∗(A), Q∗(ξ̂), as a solutions of the problem Equations (14)–(17), are fixed. The
optimality conditions for the problem Equations (14)–(17) take the form:

dL
dα

∣∣∣∣
α=β=0

= 0,
dL
dβ

∣∣∣∣
α=β=0

= 0 (24)

The application of these conditions leads to the following systems of integral equations:

∫
A

φ(A)

(
ln P(A) + 1 + λ +

Nest

∑
i=0
〈θ̂(i), u(i)(A)〉

)
dA = 0

∫
Ξ̂

ψ(ξ̂)

(
ln Q(ξ̂) + 1 + µ +

Nest

∑
i=0
〈θ̄(i), ξ̄(i)〉

)
dξ̂ = 0 (25)

According to Equations (19) and (20), we obtain the following equations, which are
necessary optimality conditions (necessary conditions of Lagrangian-stationarity) for the problem
Equations (14)–(17):

ln P(A) + 1 + λ +
Nest

∑
i=0
〈θ̂(i), u(i)(A)〉 = 0

ln Q(ξ̂) + 1 + µ +
Nest

∑
i=0
〈θ̄(i), ξ̄(i)〉 = 0 (26)

The solution of the problem Equations (14)–(17) takes the form:

P∗(A) =
exp

(
−∑Nest

i=0 〈θ̄
(i), u(i)(A)〉

)
R
(
θ̄(0), . . . , θ̄(Nest)

)
Q∗(ξ̂) =

exp
(
−∑Nest

i=0 〈θ̄
(i), ξ̄(i)〉

)
Q
(
θ̄(0), . . . , θ̄(Nest)

) (27)

where:

R
(

θ̄(0), . . . , θ̄(Nest)
)

=
∫
A

exp

(
−

Nest

∑
i=0
〈θ̄(i), u(i)(A)〉

)
dA (28)

Q
(

θ̄(0), . . . , θ̄(Nest)
)

=
∫

Ξ̂
exp

(
−

Nest

∑
i=0
〈θ̄(i), ξ̄(i)〉

)
dξ̄(0) · · · dξ̄(Nest)

The vectors of Lagrange multipliers are determined from the following equations:

U(θ̄(0), . . . , θ̄(Nest)) =
∫
A

u(i)(A)
exp

(
−∑Nest

i=0 〈θ̄
(i), u(i)(A)〉

)
R
(
θ̄(0), . . . , θ̄(Nest)

) dA + (29)

+
∫

Ξ̂
ξ̄(i)

exp
(
−∑Nest

i=0 〈θ̄
(i), ξ̄(i)〉

)
Q
(
θ̄(0), . . . , θ̄(Nest)

) dξ̄(0) · · · dξ̄(Nest) − y(i) = 0, i ∈ [0, Nest]



Mathematics 2016, 4, 16 7 of 16

Calculation of the vectors θ̂∗ = {θ̄(0)∗ , . . . , θ̄
(Nest)
∗ } is turned into a search for the global minimum

of the residual function:
J(θ̂) = ‖U(θ̂)‖L2 (30)

A global optimization algorithm is based on the simple Monte Carlo trials proposed in [30].
However, as soon as the L2 metric is a convex function, one of the traditional gradient-based local
optimization methods can be used for its solving.

4. Randomized Forecast Implementation

We comprehend a randomized forecast as an ensemble of trajectories on a forecasting interval
T f rc = [t0, T], which has to be generated using the model Equations (6) and (7) with the random matrix
A and noise ξ̄ described by the PDFs P∗(A) and Q∗(ξ̄), respectively; see formulas Equations (27)
and (28). The matrices A and the vector noise ξ̄ belong to the parallelepipeds A from Equation (3) and
Ξ from Equation (4), respectively.

Let us study the generation problem of random matrices with the PDF Equation (27). First,
we transform a matrix into a vector through concatenation of its rows. This procedure yields a
vector a of length m = n2. Additionally, the domain of random matrices becomes an m-dimensional
parallelepiped:

A = [a− ≤ a ≤ a+] (31)

where the vectors a− and a+ result from the row concatenation of the matrices A− and A+, respectively.
Lets consider a transformation of a vector a into a vector q belonging to the m-dimensional unit

nonnegative cube Q:

a = (a+ − a−)q + a−, Q = {q : 0 ≤ q ≤ 1} (32)

Therefore, the entropy-optimal PDF undergoes the following chain of transformations:

P∗(A)⇒ P(a)⇒ P(q) (33)

Therefore, it is necessary to generate random vectors q ∈ Q with PDFs P(q). The generation was
implemented by the acceptance-rejection algorithm [24].

5. Application of the RF Method for World Population Prediction

5.1. The World Population Prediction Problem

The state of an isolated population is characterized by its size E(t) on a calendar time interval
T = [T−, t0]. Population size varies under the impact of fertility and mortality processes, since
World population is an isolated system. Within the framework of the linear population dynamics
model, fertility and mortality are described by corresponding rates, whereas the flows of newborns
and decedents appear proportional to population size, while fertility (b) and mortality (m) rates are
considered as linear time-dependent parameters [22].
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5.1.1. Randomized population model

World population evolves according to the following differential equation that has an
analytical solution:

dE(t)
dt

= (b(t)−m(t))E(t), b(t) = b0 + ubt, m(t) = m0 + umt

E(t) = E0 exp
((

(b0 −m0) +
1
2
(ub − um)t

)
t
)

, where (34)

E0 = E(T−), b0 = b(T−), m0 = m(T−)

Real measurements of the population size dynamics modeled by Equation (34) take place at
discrete moments. Hence, the population size at discrete moments ih (where h specifies a given
increment) is defined by the expression:

Φi(r, ur | E0) = E0 exp [(r + uri)ih] , i ∈ I (35)

r = b0 −m0, ur =
1
2
(ub − um) h

with parameters r and ur, which describe the result of the difference between fertility and
mortality flows.

World population is measured in billions of people. Fertility and mortality processes aggregate
many factors, including measurement errors, whose quantitative analysis is impossible or complicated.
On the other hand, the mass nature of fertility and mortality processes admits their modeling based on
the probabilistic approach.

Thus, the resultant flow rate and its changing in time are supposed to be random variables with a
joint probability density function P(r, ur) defined on the rectangle:

J = Ir
⋃
Iur , Ir = [r−, r+], Iur = [u−r , u+

r ] (36)

Generally, measurement errors are modeled by an additive noise ξ[ih] of the interval type:

ξ[ih] ∈ Ξi = [ξ−i , ξ+i ], i ∈ I (37)

where I indicates a time interval of such measurements. By assumption, the PDFs qi(ξ[ih]), i ∈ I
are specified on the intervals Ξi from Equation (37). Due to the independence of the set of random
variables ξ[0], . . . , ξ[ih], their joint PDF has the form:

Q(ξ̄) = ∏
i∈I

qi(ξ[ih]) (38)

Therefore, the randomized model of World population dynamics can be described by:

v[ih] = Φi(r, ur|E0) + ξ[ih], i ∈ I (39)

where the function Φi(r, ur|E0) meets Equality (35).

5.1.2. Real and forecasting data

For PDF estimation, address the World population measurements for the period from 1960–1995
(http://data.un.org/; see Table 1).

The entropy-optimal RM is tested via the measurements of the World population dynamics
during the period from 1995–2015 and the values Eprn

1985 for this period (according to the UN forecast
announced in 1985) (http://www.irbis.vegu.ru/repos/1002/Html/27.htm; see Table 2).
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The World population prediction till 2050 using the UN data is illustrated by Table 3
(http://data.un.org/; [31]). United Nations’ projections both for the testing interval and the
forecasting interval were made in accordance with the commonly-used cohort-component method,
based on age-specific estimates of the components of population change (fertility, mortality and
international migration) [32,33]. We will compare this prediction with its randomized analog.

World population is measured in billions of people. In the sequel, the subscript real indicates the
measured data of the population.

To summarize, the RM has the following forms on corresponding time intervals:

• on the estimation interval Test (see Table 1):

v[ih] = Φi(r, ur|Eest
real [0]) + ξ[ih], i ∈ [0, 7] (40)

• on the testing interval Ttst (see Table 2):

v[ih] = Φi(r, ur|Etst
real [0]) + ξ[ih], i ∈ [0, 4] (41)

• on the forecasting interval T f rc (see Table 3):

v[ih] = Φi(r, ur|E f rc
real [0]), i ∈ [0, 5] (42)

where r and ur are random parameters with the entropy-optimal PDFs P∗(r, ur) and ξ̄ is a vector of
random noise with entropy-optimal PDF Q∗(ξ̄).

Table 1. Estimation interval Test.

i 0 1 2 3 4 5 6 7

year 1960 1965 1970 1975 1980 1985 1990 1995

Eest
real 3.026 3.358 3.691 4.070 4.449 4.884 5.320 5.724

Table 2. Testing interval Ttst.

i 0 1 2 3 4

year 1995 2000 2005 2010 2015

Etst
real 5.724 6.128 6.514 6.916 7.359

Eprn
1985 5.666 5.962 6.450 6.985 7.469

Table 3. Forecasting interval T f rc.

i 0 1 2 3 4 5

year 2015 2020 2025 2030 2040 2050

E f rc
UN 7.359 7.644 7.964 8.284 8.924 9.564

5.1.3. The entropy-optimal PDFs of the parameters and noise

According to the general entropy-robust estimation procedure of PDFs (see Section 2), we have:

• the PDF of the parameters r and ur in the form:

P∗(r, ur) =
1

R(θ̄ | Eest
real [0])

7

∏
j=0

p∗j (r, ur|θj), p∗j (r, ur|θj) = exp
(
−θjΦj(r, ur|Eest

real [0])
)

(43)
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• the PDF of the noise in the form:

Q∗(ξ̄) =
1
Q(θ̄)

7

∏
j=0

q∗j (ξ[jh]|θj), q∗j (ξ[jh]|θj) = exp
(
−θjξ[jh]

)
(44)

where:

R(θ̄ | Eest
real [0]) =

∫
J

7

∏
j=0

exp
(
−θjΦj(r, ur|Eest

real [0])
)

dr dur (45)

Q(θ̄) =
6

∏
j=0

∫ ξ+j

ξ−j

exp(−θjξ[jh])dξ[jh] =

=
6

∏
j=0

1
θj

(
exp(−θjξ

−
j )− exp(−θjξ

+
j )
)

(46)

To calculate the Lagrange multipliers, we will solve the system of balance equations (see
Equations (16) and (17):

1
R(θ̄ | Eest

real [0])

∫
J

Φi(r, ur|Eest
real [0])

7

∏
j=0

exp
(
−θjΦj(r, ur|Eest

real [0])
)

dr dur +

+
1
Q(θ̄)

∫
Ξ

ξ[ih]
7

∏
j=0

exp
(
−θjξ[jh]

)
dξ[ih]− Eest

real [ih] = 0, i ∈ [0, 7] (47)

We will denote:

Ni(θ̄ | Eest
real [0]) =

∫
J

Φi(r, ur|Eest
real [0])

7

∏
j=0

exp
(
−θjΦj(r, ur|Eest

real [0])
)

dr dur (48)

Then, Equation (47) can be rewritten as:

Gi(θ̄ | Eest
real [0]) =

Ni(θ̄ | Eest
real [0])

R(θ̄ | Eest
real [0])

+ Li(θi)− yi = 0 (49)

yi = Eest
real [ih], i = [0, 7]

where:

Li(θi) =
exp(−θiξ

−
i )(ξ−i + 1

θi
)− exp(−θiξ

+
i )(ξ+i + 1

θi
)

exp(−θiξ
−
i )− exp(−θiξ

+
i )

(50)

We endeavor to solve these equations through minimizing the residual function:

J(θ̄) = ‖G(θ̄)‖ ⇒ min (51)

5.2. The Results of Computer Experiment

5.2.1. General conditions

We have performed calculations for the stages of estimation, testing and prediction with the
following ranges for the model parameters, which include the possibility for both positive and negative
trends of World population growth:

Ir = [−0.025; 0.075], Iur = [−0.002; 0.001] (52)
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and identically the range for the measurement noises:

Ξj = [−0.5; 0.5], j ∈ [0, 7] (53)

Under the above ranges of the model parameters and measurement noises, the computer
experiment has constructed the entropy-optimal PDFs and generated the ensembles of corresponding
random trajectories for RM testing and randomized forecasting.

5.2.2. Estimation

On the estimation interval, we employ the data from Table 1. The residual function J(θ̄)
Equation (51) is a function of eight variables, and it contains integral component Equations (45)–(49) to
be estimated only numerically. For this, we have selected the so-called tiled method of two-dimensional
integral estimation, which represents a combination of several quadrature formulas [34].

The idea of the tiled method consists of: (1) partitioning the whole domain of integration into a set
of smaller-area subdomains having the rectangular or trapezoidal shape; and (2) applying appropriate
quadrature formulas on each subdomain. The described method is implemented in MATLAB by the
function quad2d.

Minimization of the residual function J(θ̄) (51) runs by the nonlinear trusted region method
implemented by the function lsqnonlin from the package Optimization Toolbox. The function
lsqnonlin has been optimized [35] for nonlinear least-squares problems.

The function lsqnonlin have several user-defined options for stopping criteria, such as function
evaluation tolerance (10−6), step size tolerance (10−6) and maximum number of iterations (500). Table 4
presents the calculated Lagrange multipliers for the above ranges.

Table 4. Calculated Lagrange multipliers.

Range Ir , Iur

Measurements 0 1 2 3 4 5 6 7

θ̄ 0.0000 −0.3833 −0.3984 −0.5839 −0.3802 −0.4679 −0.1812 0.8881

Figures 1 and 2 demonstrate the entropy-optimal PDFs for the parameters of Model (35) and
noise components. The functions P∗(r, ur, θ̄) and q∗(ξ[ih]), i ∈ [0, 7] represent an entropy-optimal
distribution of random variables at the corresponding intervals and will be used for making
randomized predictions.

0

1

2000

4000

6000

0

8000

0.06

10000

P (b,m)

ur

×10
-3

0.04

12000

r

-1 0.02

0

-0.02-2

Figure 1. The joint PDF of the random parameters r and ur for the range J = Ir
⋃ Iur .
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3
2

1
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Figure 2. The family of the PDFs of the noise ξi, i ∈ [0, 7].

5.2.3. Testing

Testing of the model has been made using the data from Table 2. The population size has been
evaluated by the Formula (41), where r, ur are the random variables with the PDF P∗(r, ur) and ξ[ih]
are the random noises with the PDFs qi(ξ[ih]), i ∈ [0, 4] (see Figures 1 and 2).

To generate an ensemble of random variables, the two-dimensional modification of the Ulam–von
Neumann method has been used [24]. The size of the generated sample is k = 100,000.

Each pair of the random values r and ur defines a separate exponential growth curve; moreover,
for each point ih, a random value of the noise ξ[ih] is added according to its PDF. As a result, the
constructed trajectory of World population dynamics is not an exponential function.

The test procedure yields the probabilistic characteristics of the parameters r,ur and ξ. It depends
on the initial population size for the testing interval. Figure 3 shows the ensemble of the model-based
trajectories for the parameter range from Equation (52) and the noise range from Equation (53), with a
data-based selection of the initial point:

Etst[0] = Etst
real [0] (54)
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1

4

3

Figure 3. The ensemble of projection trajectories on the testing interval.
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Figure 3 has the following notation: 1, the ensemble-average trajectories of population dynamics;
2, real population dynamics on the testing interval; 3, population dynamics on the testing interval
according to the UN forecast of the year 1998; 4, the boundaries of the first and the third quartiles. The
same model-generated ensemble for testing interval can be presented as a box plot with median mark
and interquartile ranges; see Figure 4.

Testing quality is assessed by the root-mean-square error of the average trajectory with respect to
its real counterpart:

δ = ‖Etst − Etst
real‖ =

√√√√ 4

∑
i=0

(Etst
real [ih]− Etst[ih])2 (55)

as well as by the relative error:

ε =
δ

‖Etst
real‖+ ‖Etst‖

(56)

For instance, the UN forecast for the testing interval (Table 2) has the following errors:

δ1985 = 0.228, ε1985 = 0.008 (57)

In our case, the deviation of the model-average trajectory from the real one (Figure 3) appears to
be appreciably smaller and demonstrates the following errors:

δRM = 0.079, εRM = 0.003 (58)

5.2.4. Prediction

This simple RM has been applied to predict World population dynamics for the period from
2015–2050. The trajectory ensemble corresponding to the UN predictions (Table 3) is illustrated by
Figure 5: 1, the ensemble-average trajectory; 2, UN projection; 4, the boundaries of the interquartile
range (IQR zone). The corresponding box-plot is presented in Figure 6.

1995 2000 2005 2010 2015

t

5

10

15

20

E(t)

Box-plot for test interval

Figure 4. Box plot for the ensemble of projection trajectories on the testing interval.
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Figure 5. The ensemble of projection trajectories on the prediction interval.

2015 2020 2025 2030 2035 2040

t

5

10

15

20

25

30

35

E(t)

Box-plot for forecast interval

Figure 6. Box plot for the ensemble of projection trajectories on the testing interval.

The presented results testify that the randomized forecasting as opposed to existent methods gives
a set of probability characteristics of the World population prediction, which is calculated by using the
ensemble of prognostic trajectories. The latter is generated by the randomized dynamic model with
entropy-optimal PDFs of parameters. The randomized projection algorithm shows significantly closer
to real data numerical results for testing interval, as well as stable projection that is higher, but close
to the modern UN forecast for the future. According to our randomized model, 2026 will be the first
eight billion year.

6. Conclusions

In this paper, we have suggested a randomized forecasting method that operates dynamic
models described by linear ordinary differential equations with random parameters. Entropy-robust
estimation has been developed for the probability density functions (PDFs) of model parameters and
noisy measurements based on entropy maximization. It has been shown that the above PDFs belong
to the exponential class. The randomized forecasting technique has been applied to randomized
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prediction of the World population dynamics. It has been demonstrated that randomized forecasting
gives a set of probability characteristics of the World population dynamics.
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