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show that under some mild conditions, the periodization of any wavelet frame constructed
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machinery of the mixed extension principle and Walsh–Fourier transforms.
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1. Introduction

Wavelet frames have gained considerable popularity during the past decade, primarily due to their
substantiated applications in diverse and widespread fields of engineering and science. One of the
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most useful methods to construct wavelet frames is through the concept of the unitary extension
principle (UEP) introduced by Ron and Shen [1] and was subsequently extended by Daubechies
et al. [2] in the form of the oblique extension principle (OEP). They give sufficient conditions for
constructing tight wavelet frames for any refinable function φ(x) that generates a multiresolution
analysis. The resulting wavelet frames are based on multiresolution analysis, and the generators are often
called framelets. These methods of construction of wavelet frames are generalized from one dimension
to higher dimensions, tight frames to dual frames, from a single scaling function to a scaling function
vector. More importantly, the setup of tight wavelet frames provides great flexibility in approximating
and representing periodic functions. Using periodization techniques, Zhang [3] constructed a dual pair
of periodic wavelet frames for L2[0, 1] under the assumption that the support of the wavelet function ψ in
the frequency domain is contained in [−π,−ε]∪ [ε, π], ε > 0. Later on, Zhang and Saito [4] constructed
general periodic wavelet frames using extension principles. More precisely, they proved that under some
decay conditions, the periodization of any wavelet frame constructed by the unitary extension principle
is a periodic wavelet frame, and the periodization of any pair of dual wavelet frames constructed by the
mixed extension principle is a pair of dual periodic wavelet frames. To mention only a few references on
wavelet frames, the reader is referred to [5–8] and the many references therein.

The past decade has also witnessed a tremendous interest in the problem of constructing
compactly-supported orthonormal scaling functions and wavelets with an arbitrary dilation factor
p ≥ 2, p ∈ N (see Debnath and Shah [9]). The motivation comes partly from signal processing
and numerical applications, where such wavelets are useful in image compression and feature
extraction, because of their small support and multifractal structure. Lang [10] constructed several
examples of compactly-supported wavelets for the Cantor dyadic group by following the procedure of
Daubechies [11] via scaling filters, and these wavelets turn out to be certain lacunary Walsh series on
the real line. Kozyrev [12] found a compactly-supported p-adic wavelet basis for L2(Qp), which is
an analog of the Haar basis. The concept of multiresolution analysis on a positive half-line R+ was
recently introduced by Farkov [13]. He pointed out a method for constructing compactly-supported
orthogonal p-wavelets related to the Walsh functions and proved necessary and sufficient conditions for
scaling filters with pn many terms (p, n ≥ 2) to generate a p-MRAin L2(R+). Subsequently, dyadic
wavelet frames on the positive half-line R+ were constructed by Shah and Debnath in [14] using the
machinery of Walsh–Fourier transforms. They have established necessary and sufficient conditions for
the system

{
ψj,k(x) = 2j/2ψ(2jx	 k) : j ∈ Z, k ∈ Z+

}
to be a frame for L2(R+). Wavelet packets and

wavelet frame packets related to the Walsh polynomials were deeply investigated by Shah and Debnath
in [14,15]. Recent results in this direction can also be found in [16,17] and the references therein.

Recently, Shah [18] established a unitary extension principle for constructing normalized tight wavelet
frames generated by the Walsh polynomials on R+. Drawing inspiration from these wavelet frames, our
aim is to extend the notion of wavelet frames to periodic wavelet frames on R+ by using extension
principles. More precisely, we prove that under some mild conditions, the periodization of any wavelet
frame constructed by the unitary extension principle is a periodic wavelet frame on a positive half-line
R+. Furthermore, based on the mixed extension principle and Walsh–Fourier transforms of the wavelet
frames, an explicitly-constructed method for a pair of dual periodic wavelet frames generated by the
Walsh polynomials is also given.
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This paper is organized as follows. In Section 2, we introduce some notations and preliminaries
related to the operations on positive half-line R+, including the definitions of the Walsh–Fourier
transform and MRA-based wavelet frames related to the Walsh polynomials. Sections 3 and 4 state
and prove our main results about periodic wavelet frames generated by the Walsh polynomials.

2. Walsh–Fourier Analysis and MRA-Based Wavelet Frames

We start this section with certain results on Walsh–Fourier analysis. We present a brief review of
generalized Walsh functions, Walsh–Fourier transforms and their various properties.

As usual, let R+ = [0,+∞), Z+ = {0, 1, 2, . . . } and N = Z+ − {0}. Denote by [x] the integer part
of x. Let p be a fixed natural number greater than one. For x ∈ R+ and any positive integer j, we set:

xj = [pjx](mod p), x−j = [p1−jx](mod p) (1)

where xj, x−j ∈ {0, 1, . . . , p− 1}. Clearly, xj and x−j are the digits in the p-expansion of x:

x =
∑
j<0

x−jp
−j−1 +

∑
j>0

xjp
−j

Moreover, the first sum on the right is always finite. Besides,

[x] =
∑
j<0

x−jp
−j−1, {x} =

∑
j>0

xjp
−j

where [x] and {x} are, respectively, the integral and fractional parts of x.
Consider on R+ the addition defined as follows:

x⊕ y =
∑
j<0

ζjp
−j−1 +

∑
j>0

ζjp
−j

with ζj = xj + yj(mod p), j ∈ Z \ {0}, where ζj ∈ {0, 1, . . . , p− 1} and xj, yj are calculated by
Equation (1). Clearly, [x ⊕ y] = [x] ⊕ [y] and {x⊕ y} = {x} ⊕ {y}. As usual, we write z = x 	 y if
z ⊕ y = x, where 	 denotes subtraction modulo p in R+ .

Let εp = exp(2πi/p); we define a function r0(x) on [0, 1) by:

r0(x) =


1, if x ∈ [0, 1/p)

ε`p, if x ∈
[
`p−1, (`+ 1)p−1

)
, ` = 1, 2, . . . , p− 1

The extension of the function r0 to R+ is given by the equality r0(x+1) = r0(x),∀ x ∈ R+. Then, the
system of generalized Walsh functions {wm(x) : m ∈ Z+} on [0, 1) is defined by:

w0(x) ≡ 1 and wm(x) =
k∏
j=0

(
r0(pjx)

)µj
where m =

∑k
j=0 µjp

j, µj ∈ {0, 1, . . . , p− 1} , µk 6= 0. They have many properties similar to those of
the Haar functions and trigonometric series and form a complete orthogonal system. Further, by a Walsh
polynomial, we shall mean a finite linear combination of Walsh functions.



Mathematics 2015, 3 1174

For x, y ∈ R+ , let:

χ(x, y) = exp

(
2πi

p

∞∑
j=1

(xjy−j + x−jyj)

)
(2)

where xj, yj are given by Equation (1).
We observe that:

χ

(
x,
m

pn

)
= χ

(
x

pn
,m

)
= wm

(
x

pn

)
, ∀ x ∈ [0, pn), m, n ∈ Z+

and:
χ(x⊕ y, z) = χ(x, z)χ(y, z), χ(x	 y, z) = χ(x, z)χ(y, z)

where x, y, z ∈ R+ and x ⊕ y is p-adic irrational. It is well known that systems {χ(α, .)}∞α=0 and
{χ(·, α)}∞α=0 are orthonormal bases in L2[0,1] (see Golubov et al. [19]).

The Walsh–Fourier transform of a function f ∈ L1(R+) ∩ L2(R+) is defined by:

f̂(ξ) =

∫
R+

f(x)χ(x, ξ) dx (3)

where χ(x, ξ) is given by Equation (2). The Walsh–Fourier operator F : L1(R+) ∩ L2(R+)→ L2(R+),
Ff = f̂ , extends uniquely to the whole space L2(R+). The properties of the Walsh–Fourier transform
are quite similar to those of the classic Fourier transform (see [19,20]). In particular, if f ∈ L2(R+),
then f̂ ∈ L2(R+) and: ∥∥∥f̂∥∥∥

L2 (R+)
=
∥∥f∥∥

L2(R+)

Moreover, if f ∈ L2[0, 1], then we can define the Walsh–Fourier coefficients of f as:

f̂(n) =

∫ 1

0

f(x)wn(x) dx

The series
∑

n∈Z+ f̂(n)wn(x) is called the Walsh–Fourier series of f . Therefore, from the standard
L2-theory, we conclude that the Walsh–Fourier series of f converges to f in L2[0, 1], and Parseval’s
identity holds:

∥∥f∥∥2

2
=

∫ 1

0

∣∣f(x)
∣∣2dx =

∑
n∈Z+

∣∣∣f̂(n)
∣∣∣2 (4)

By p-adic interval I ⊂ R+ of range n, we mean intervals of the form:

I = Ikn =
[
kp−n, (k + 1)p−n

)
, k ∈ Z+

The p-adic topology is generated by the collection of p-adic intervals, and each p-adic interval
is both open and closed under the p-adic topology (see [19]). The family {[0, p−j) : j ∈ Z} forms
a fundamental system of the p-adic topology on R+. Therefore, the generalized Walsh functions
wj(x), 0 ≤ j ≤ pn − 1, assume constant values on each p-adic interval Ikn and, hence, continuous on
these intervals. Thus, wj(x) = 1 for x ∈ I0

n.
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Let En(R+) be the space of p-adic entire functions of order n, that is the set of all functions that are
constant on all p-adic intervals of range n. Thus, for every f ∈ En(R+), we have:

f(x) =
∑
k∈Z+

f(p−nk)χIkn(x), x ∈ R+

Clearly, each Walsh function of order up to pn−1 belongs to En(R+). The set E(R+) of p-adic
entire functions on R+ is the union of all of the spaces En(R+). It is clear that E(R+) is dense in
Lp(R+), 1 ≤ p <∞, and each function in E(R+) is of compact support.

For j ∈ N0, let Nj denote a full collection of coset representatives of Z+/pjZ+, i.e.,

Nj =
{

0, 1, 2, . . . , pj − 1
}
, j ≥ 0 (5)

Then, Z+ =
⋃
n∈Nj

(n+ pjZ+), and for any distinct n1, n2 ∈ Nj , we have (n1 + pjZ+) ∩
(n2 + pjZ+) = ∅. Thus, every non-negative integer k can uniquely be written as k = rpj + s, where
r ∈ Z+, s ∈ Nj . Further, a bounded function g : R+ → R+ is said to be a radially-decreasing
L1-majorant of f(x) ∈ L2(R+) if |f(x)| ≤ g(x), g ∈ L1(R+), and g(0) <∞.

For j ∈ Z and y ∈ R+, we define the dilation Dj and translation operators Ty as follows:

Djf(x) = pj/2f
(
pjx
)

and Tyf(x) = f(x	 y), f ∈ L2(R+) (6)

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R+), define the wavelet system:

F(Ψ) =
{
ψ`,j,k(x) := pj/2ψ`(p

jx	 k), j ∈ Z, k ∈ Z+, ` = 1, 2, . . . , L
}

(7)

The wavelet system F(Ψ) is called a wavelet frame, if there exist positive constants A and B,
such that:

A
∥∥f∥∥2

2
≤

L∑
`=1

∑
j∈Z

∑
k∈Z+

∣∣〈f, ψ`,j,k〉∣∣2 ≤ B
∥∥f∥∥2

2
(8)

holds for every f ∈ L2(R+), and we call the optimal constants A and B the lower frame bound and the
upper frame bound, respectively. A tight wavelet frame refers to the case when A = B, and a Parseval
wavelet frame refers to the case when A = B = 1. On the other hand, if only the right-hand side of
the above double inequality holds, then we say F(Ψ) is a Bessel sequence. If both F(Ψ) and F(Ψ̃) are
wavelet frames and for any f ∈ L2(R+), we have the reconstruction formula:

f =
L∑
`=1

∑
j∈Z

∑
k∈Z+

〈
f, ψ̃`,j,k

〉
ψ`,j,k (9)

in the L2-sense; then, we say that F(Ψ̃) is a dual wavelet frame of F(Ψ) (and vice versa), or we simply
say that (F(Ψ),F(Ψ̃)) is a pair of dual framelets.

Wavelets and tight wavelet frames are often derived from refinable functions and wavelet masks.
A compactly supported function φ(x) ∈ L2(R+) is called a p-refinable function, if it satisfies an equation
of the type:

φ(x) = p

pn−1∑
k=0

ckφ(px	 k), x ∈ R+ (10)



Mathematics 2015, 3 1176

where ck are complex coefficients. In the Fourier domain, the above refinement equation can be
written as:

φ̂ (ξ) = h0

(
ξ

p

)
φ̂

(
ξ

p

)
(11)

where:

h0(ξ) =

pn−1∑
k=0

ck wk(ξ) (12)

is a generalized Walsh polynomial, which is called the mask or symbol of the p-refinable function
φ and is of course a p-adic step function. Observe that wk(0) = φ̂(0) = 1. By letting
ξ = 0 in Equations (11) and (12), we obtain

∑pn−1
k=0 ck = 1. Since φ is compactly supported and in

fact suppφ ⊂ [0, pn−1), therefore φ̂ ∈ En−1(R+), and hence, as a result, φ̂(ξ) = 1 for all ξ ∈ [0, p1−n) as
φ̂(0) = 1.

Suppose Ψ = {ψ1, . . . , ψL} is a set of p-MRA functions derived from:

ψ̂` (ξ) = h`

(
ξ

p

)
φ̂

(
ξ

p

)
(13)

where:

h`(ξ) =

pn−1∑
k=0

d`k wk(ξ), ` = 1, . . . , L (14)

are the generalized Walsh polynomials, called the framelet symbols or wavelet masks.
With h`(ξ), ` = 0, 1, . . . , L, L ≥ p− 1 as the Walsh polynomials (wavelet masks), we formulate the
matrixM(ξ) as:

M(ξ) =


h0(ξ) h0(ξ ⊕ 1/p) . . . h0(ξ ⊕ (p− 1)/p)

h1(ξ) h1(ξ ⊕ 1/p) . . . h1(ξ ⊕ (p− 1)/p)
...

... . . . ...
hL(ξ) hL(ξ ⊕ 1/p) . . . hL(ξ ⊕ (p− 1)/p)

 (15)

The so-called unitary extension principle (UEP) provides a sufficient condition on Ψ = {ψ1, . . . , ψL},
such that the wavelet system F(Ψ) given by Equation (7) constitutes a tight frame for L2(R+). It is well
known that in order to apply the UEP to derive a wavelet tight frame from a given refinable function, the
corresponding refinement mask must satisfy:

p−1∑
k=0

∣∣h0

(
ξ ⊕ k/p

)∣∣2 ≤ 1, ξ ∈ R+ (16)

Recently, Shah [18] has given a general procedure for the construction of tight wavelet frames
generated by the Walsh polynomials using unitary extension principles as:

Theorem 2.1: Let φ(x) be a compactly-supported refinable function, and φ̂(0) = 1. Then, the wavelet
system F(Ψ) given by (7) constitutes a Parseval frame in L2(R+) provided the matrixM(ξ) as defined
in Equation (15) satisfies:

M(ξ)M∗(ξ) = Ip, for a.e. ξ ∈ σ(V0) (17)
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where σ(V0) :=
{
ξ ∈ [0, 1] :

∑
k∈Z+ |φ̂

(
ξ ⊕ k

)
|2 6= 0

}
.

3. Periodic Wavelet Frames Related to the Walsh Polynomials

For any f ∈ L1(R+), we define the periodic version of f as:

f per =
∑
k∈Z+

f(x⊕ k)

Then, it is easy to verify that f per is a well-defined locally-integrable function. With the same dilation
and translation operators as in Equation (6), we define the periodic wavelet system as:

F
(
Ψper) :=

{
φper, ψper

`,j,k : 1 ≤ ` ≤ L, j ∈ Z+, k ∈ Nj
}

(18)

First, we present an approach for constructing periodic wavelet frames generated by the Walsh
polynomials on R+ via the unitary extension principle (UEP). The following theorem is the main result
of this section.

Theorem 3.1: Let h0, h1, . . . , hL be the Walsh polynomials given by Equations (12) and (14),
and let the wavelet system F(Ψ) given by Equation (7) form a Parseval wavelet frame generated
by the compactly-supported p-refinable function φ. If {φ, ψ1, . . . , ψL} ⊂ L1(R+) ∩ L2(R+) and
φ, ψ1, ψ2, . . . , ψL have a common radial decreasing L1-majorant, then the periodic wavelet system
F(Ψper) given by Equation (18) generates a Parseval wavelet frame for L2[0, 1].

We split the proof of Theorem 3.1 into several lemmas.
Lemma 3.2: Suppose that the periodic wavelet system F(Ψper) is as in Theorem 3.1. Then, for any

function f ∈ E [0, 1) and given δ > 0, there exists a positive integer J ∈ N, such that:

(1− δ)
∥∥f∥∥2

2
≤
∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 ≤ (1 + δ)
∥∥f∥∥2

2
, for all j ≥ J (19)

Proof: Let S denote the support of the Walsh–Fourier coefficients
{
f̂
(
n
)}

n∈Z+ . Then, we have:

f(x) =
∑
n∈S

f̂(n)wn(x)

Let:
φper
j,k(x) =

∑
n∈Z+

φ̂per
j,k(n)wn(x) (20)

where the Walsh–Fourier coefficients of the above series are given by:

φ̂per
j,k(n) = p−j/2φ̂

(
p−jn

)
wk
(
p−jn

)
(21)

Applying Parseval’s formula to the above Walsh–Fourier series, we obtain:
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∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∑
k∈Nj

∣∣∣∑
n∈S

f̂(n)φ̂per
j,k(n)

∣∣∣2

=
∑
k∈Nj

∣∣∣∑
n∈S

f̂(n)p−j/2φ̂
(
p−jn

)
wk
(
p−jn

)∣∣∣2

=
∑
k∈Nj

∣∣∣∑
n∈S

dn

(
f̂ , φ̂

)
wk
(
p−jn

)∣∣∣2
where dn

(
f̂ , φ̂

)
= p−j/2f̂(n)φ̂

(
p−jn

)
. As S is a finite set, there exists a positive number N , such that

S ⊆ D(N) =
{
k ∈ Z+ : |k| ≤ N

}
. Hence, there exists J1 ≥ 0, such that for all j ≥ J1, the elements

of D(N) lie in different cosets of Z+/pjZ+ (see [13]). Thus, the cardinality of E(R+)
⋂

(k + pjZ+) is
at most one for each j ≥ J1, k ∈ Nj . Consequently, we have:∑

k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∑
k∈Nj

∑
m∈S

dm

(
f̂ , φ̂

)
wk
(
p−jm

)∑
n∈S

dn

(
f̂ , φ̂

)
wk
(
p−jn

)

=
∑
m∈S

∑
n∈S

dm

(
f̂ , φ̂

)
dn

(
f̂ , φ̂

) ∑
k∈Nj

wk
(
p−j(m− n)

)

= p−j
∑
n∈S

∣∣∣dn (f̂ , φ̂) ∣∣∣2

=
∑
n∈S

∣∣∣p−j/2f̂(n)φ̂
(
p−jn

)∣∣∣2
Since φ̂(0) = limξ→0 φ̂(ξ) = 1, therefore there exists a non-negative integer J2, such that:

(
1− δ

)
≤
∣∣∣φ̂(p−jn)∣∣∣2 ≤ (1 + δ

)
, for all j ≥ J2

Let J = max{J1, J2}, then with this choice of j ≥ J , we obtain:

(
1− δ

)∑
n∈S

∣∣∣f̂(n)
∣∣∣2 ≤ ∑

k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 ≤ (1 + δ
)∑
n∈S

∣∣∣f̂(n)
∣∣∣2

By using Equation (4), we have:

(
1− δ

)∥∥f∥∥2

2
≤
∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 ≤ (1 + δ
)∥∥f∥∥2

2

This completes the proof of Lemma 3.2.
Lemma 3.3: Let h0(ξ) be the refinement mask of a compactly-supported refinable function φ of an

MRA, and let h`(ξ), ` = 1, 2, . . . , L be the wavelet masks. Moreover, if the wavelet system F(Ψ) given
by Equation (7) forms a normalized tight wavelet frame for L2(R+), then for any f ∈ L2(R+), we have:
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∑
k∈Z+

∣∣〈f, φj+1,k

〉∣∣2 =
∑
k∈Z+

∣∣〈f, φj,k〉∣∣2 +
L∑
`=1

∑
k∈Z+

∣∣〈f, ψ`,j,k〉∣∣2 (22)

Proof: For any f ∈ L2(R+) and j ∈ Z+, define the linear operators Pj and Qj as:

Pjf(x) =
∑
k∈Z+

〈
f, φj,k

〉
φj,k(x), Qjf(x) =

L∑
`=1

∑
k∈Z+

〈
f, ψ`,j,k

〉
ψ`,j,k(x) (23)

Since E(R+) is a dense subset of L2(R+), it is sufficient to prove that:

〈
Pjf, f

〉
+
〈
Qjf, f

〉
=
〈
Pj+1f, f

〉
(24)

holds for all of the functions f in E(R+). Therefore, for all f ∈ E(R+) and j ∈ Z, k ∈ Z+, we obtain
the following equality by using Parseval’s formula:

〈
Pjf, f

〉
= pj

∫ 1

0

∣∣∣∣∣ ∑
m∈Z+

f̂
(
pj(ξ ⊕m)

)
φ̂(ξ ⊕m)

∣∣∣∣∣
2

dξ

=

∫ pj

0

∣∣∣∣∣ ∑
m∈Z+

f̂
(
ξ ⊕ pjm

)
φ̂
(
p−jξ ⊕m

)∣∣∣∣∣
2

dξ (25)

By taking advantage of the periodicity of the Walsh polynomial h0(ξ), we obtain:

〈
Pjf, f

〉
=

∫ pj

0

∣∣∣∣∣ ∑
m∈Z+

f̂
(
ξ ⊕ pjm

)
φ̂
(
p−j−1ξ ⊕ p−1m

)
h0

(
p−j−1ξ ⊕ p−1m

)∣∣∣∣∣
2

dξ

=

∫ pj

0

∣∣∣∣∣ ∑
m∈Z+

∑
n∈N1

f̂
(
ξ ⊕ pj

(
pm⊕ n

))
φ̂
(
p−j−1ξ ⊕ p−1

(
pm⊕ n

))
× h0

(
p−j−1ξ ⊕ p−1

(
pm⊕ n

))∣∣∣∣2 dξ
=

∫ pj

0

∣∣∣∣∣ ∑
m∈Z+

∑
n∈N1

f̂
(
ξ ⊕ pj

(
pm⊕ n

))
φ̂
(
p−j−1ξ ⊕ p−1

(
pm⊕ n

))
× h0

(
p−j−1ξ ⊕ p−1n

)∣∣∣2 dξ
=

∫ pj

0

∣∣∣∣∣∑
n∈N1

Rj
f,φ

(
n, ξ
)
h0

(
p−j−1ξ ⊕ p−1n

)∣∣∣∣∣
2

dξ

where:

Rj
f,φ

(
n, ξ
)

=
∑
m∈Z+

f̂
(
ξ ⊕ pj

(
pm⊕ n

))
φ̂
(
p−j−1ξ ⊕ p−1

(
pm⊕ n

))
Proceeding on similar lines as above, we can have:

〈
Qjf, f

〉
=

L∑
`=1

∫ pj

0

∣∣∣∣∣∑
n∈N1

Rj
f,φ

(
n, ξ
)
h`
(
p−j−1ξ ⊕ p−1n

)∣∣∣∣∣
2

dξ
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Therefore, we have:〈
Pjf, f

〉
+
〈
Qjf, f

〉
=

∫ pj

0

{∑
n∈N1

Rj
f,φ

(
n, ξ
)
h0

(
p−j−1ξ ⊕ p−1n

)}{∑
n′∈N1

Rj
f,φ

(
n′, ξ

)
h0

(
p−j−1ξ ⊕ p−1n′

)}

+
L∑
`=1

∫ pj

0

{∑
n∈N1

Rj
f,φ

(
n, ξ
)
h`
(
p−j−1ξ ⊕ p−1n

)}{∑
n′∈N1

Rj
f,φ

(
n′, ξ

)
h`
(
p−j−1ξ ⊕ p−1n′

)}

=

∫ pj

0

{∑
n∈N1

∑
n′∈N1

Rj
f,φ

(
n, ξ
)
Rj
f,φ

(
n′, ξ

)}{ L∑
`=0

h`
(
p−j−1ξ ⊕ p−1n′

)
h`
(
p−j−1ξ ⊕ p−1n

)}

Since the UEP condition Equation (17) is equivalent to:

L∑
`=0

h`
(
p−j−1ξ ⊕ p−1n′

)
h`
(
p−j−1ξ ⊕ p−1n

)
= δn,n′

therefore, we have:

〈
Pjf, f

〉
+
〈
Qjf, f

〉
=

∫ pj

0

∑
n∈N1

∣∣Rj
f,φ

(
n, ξ
)∣∣2 dξ

=

∫ pj

0

∑
n∈N1

∣∣∣∣∣ ∑
m∈Z+

f̂
(
ξ ⊕ pj

(
pm⊕ n

))
φ̂
(
p−j−1ξ ⊕ p−1

(
pm⊕ n

))∣∣∣∣∣
2

dξ

=
∑
n∈N1

∫ pj(1+n)

pjn

∣∣∣∣∣ ∑
m∈Z+

f̂
(
ξ ⊕ pj+1m

)
φ̂
(
p−j−1ξ ⊕m

)∣∣∣∣∣
2

dξ

=

∫ pj+1

0

∣∣∣∣∣ ∑
m∈Z+

f̂
(
ξ ⊕ pj+1m

)
φ̂
(
p−j−1ξ ⊕m

)∣∣∣∣∣
2

dξ

=
〈
Pj+1f, f

〉
and hence, we get the desired result.

Lemma 3.4: Let φ ∈ L2(R+) be a compactly-supported refinable function with refinement mask
h0(ξ), and let the wavelet system F(Ψ) given by Equation (7) constitute a Parseval wavelet frame for
L2(R+). Moreover, if {φ, ψ1, . . . , ψL} ⊂ L1(R+)∩L2(R+) and φ, ψ1, ψ2, . . . , ψL have a common radial
decreasing L1-majorant, then we have:

∑
k∈Nj

∣∣〈f, φper
j+1,k

〉∣∣2 =
∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 +
L∑
`=1

∑
k∈Nj

∣∣〈f, ψper
`,j,k

〉∣∣2 (26)
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Proof: For any f ∈ E(R+) and j ∈ Z+, we have:∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∑
k∈Nj

∣∣∣〈f, ∑
n∈Z+

φj,k(x⊕ n)
〉∣∣∣2 =

∑
k∈Nj

∣∣∣ ∑
n∈Z+

〈
f, φj,k(x⊕ n)

〉∣∣∣2
The change of the summation and the integration above is reasonable. In fact, we have:

∑
n∈Z+

∫ 1

0

∣∣∣f(x)φj,k(x⊕ n)
∣∣∣ dx ≤ ∥∥f∥∥

L∞[0,1]

∫
R+

∣∣φj,k(x)
∣∣dx

=
∥∥f∥∥

L∞[0,1]
p−j/2

∫
R+

∣∣φ(x)
∣∣dx

< ∞

We can also deduce that the series:

∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

〈
f, φj,k(x⊕m)

〉〈
f, φj,k(x⊕ n)

〉
is absolutely convergent. Therefore, the series can be rearranged as follows:∑

k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

〈
f, φj,k(x⊕m)

〉〈
f, φj,k(x⊕ n)

〉

=
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

〈
f, φj,k(x⊕m)

〉〈
f, φj,k(x⊕m⊕ n)

〉
For n ∈ Z+, we define:

Fn(x) = f(x)χ[0,1]+n(x)

where χ(x) is the characteristic function. Using the fact that φj,k(x⊕ n) = φj,k−pjn(x), we have:

∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

{∫ 1

0

f(x)φj,k(x⊕m)dx

}{∫ 1

0

f(x)φj,k(x⊕m⊕ n)dx

}

=
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

{∫ 1

0

f(x)φj,k(x⊕m) dx

}{∫ 1+n

0

f(x)φj,k(x⊕m) dx

}

=
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

{∫
R+

F0(x)φj,k(x⊕m) dx

}{∫
R+

Fn(x)φj,k(x⊕m) dx

}

=
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

〈
F0, φj,k−pjm

〉 〈
Fn, φj,k−pjm

〉

=
∑
k∈Z+

∑
n∈Z+

〈F0, φj,k〉 〈Fn, φj,k〉

Similarly, for each ` = 1, 2, . . . , L, we have:
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∑
k∈Nj

∣∣〈f, ψper
`,j,k

〉∣∣2 =
∑
k∈Z+

∑
n∈Z+

〈F0, ψ`,j,k〉 〈Fn, ψ`,j,k〉

The application of Lemma 3.3 yields:

∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 +
L∑
`=1

∑
k∈Nj

∣∣〈f, ψper
`,j,k

〉∣∣2
=
∑
k∈Z+

∑
n∈Z+

〈F0, φj,k〉 〈Fn, φj,k〉+
L∑
`=1

∑
k∈Z+

∑
n∈Z+

〈F0, ψ`,j,k〉 〈Fn, ψ`,j,k〉

=
∑
k∈Z+

∑
n∈Z+

〈F0, φj+1,k〉 〈Fn, φj+1,k〉

=
∑
k∈Nj

∣∣〈f, φper
j+1,k

〉∣∣2
This completes the proof.
Proof of Theorem 3.1: For any function f ∈ E [0, 1) and δ > 0, we can choose J > 0 by Lemma 3.2,

such that for all j > J , we have:

(1− δ)
∥∥f∥∥2

2
≤
∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 ≤ (1 + δ)
∥∥f∥∥2

2

For any j ∈ Z, Lemma 3.4 implies that:

∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∑

k∈Nj−1

∣∣〈f, φper
j−1,k

〉∣∣2 +
L∑
`=1

∑
k∈Nj−1

∣∣〈f, ψper
`,j−1,k

〉∣∣2
By repeating this argument on

∑
k∈Nj−1

∣∣〈f, φper
j−1,k

〉∣∣2, we obtain:

∑
k∈Nj

∣∣〈f, φper
j,k

〉∣∣2 =
∣∣〈f, φper〉∣∣2 +

L∑
`=1

j−1∑
m=0

∑
k∈Nm

∣∣〈f, ψper
`,m,k

〉∣∣2
Therefore, we have:

(1− δ)
∥∥f∥∥2

2
≤
∣∣〈f, φper〉∣∣2 +

L∑
`=1

j−1∑
m=0

∑
k∈Nm

∣∣〈f, ψper
`,m,k

〉∣∣2 ≤ (1 + δ)
∥∥f∥∥2

2

Letting j →∞, we obtain:

(1− δ)
∥∥f∥∥2

2
≤
∣∣〈f, φper〉∣∣2 +

L∑
`=1

∞∑
m=0

∑
k∈Nm

∣∣〈f, ψper
`,m,k

〉∣∣2 ≤ (1 + δ)
∥∥f∥∥2

2

Since δ > 0 was arbitrary. Therefore, it follows that:



Mathematics 2015, 3 1183

∣∣〈f, φper〉∣∣2 +
L∑
`=1

∞∑
m=0

∑
k∈Nm

∣∣〈f, ψper
`,m,k

〉∣∣2 = ‖f
∥∥2

2

This completes the proof of the Theorem 3.1.

4. Dual Periodic Wavelet Frames Related to the Walsh Polynomials

In this section, we construct dual periodic wavelet frames generated by the Walsh polynomials on R+

using the mixed extension principle (MEP). The following theorem is the main result of this section.
Theorem 4.1: Suppose that φ and φ̃ are two compactly-supported refinable functions, and

h`(ξ), h̃`(ξ), ` = 0, 1, . . . , L are the Walsh polynomials. Let F(Ψ) and F(Ψ̃) be a pair of dual wavelet
frames for L2(R+) generated by the mixed extension principle. Then, F

(
Ψper

)
and F

(
Ψ̃per

)
form a pair

of dual wavelet frames for L2[0, 1].
We need the following lemmas, which are important for the proof of the main result.
Lemma 4.2: The sequences F

(
Ψper

)
and F

(
Ψ̃per

)
are both Bessel sequences for L2[0, 1].

Proof. To simplify expressions in the proof, we let:

PΨ(f) =
L∑
`=1

∑
j∈Z+

∑
k∈Nj

∣∣〈f, ψper
`,j,k

〉∣∣2
PΨ̃(f) =

L∑
`=1

∑
j∈Z+

∑
k∈Nj

∣∣∣〈f, ψ̃per
`,j,k

〉∣∣∣2
In order to prove that the sequences F

(
Ψper

)
and F

(
Ψ̃per

)
are both Bessel sequences, we need to find

out two positive numbers C, C̃, such that for any function f ∈ E(R+), we have:

PΨ(f) +
∣∣〈f, φper〉∣∣2 ≤ C

∥∥f∥∥2

2

PΨ̃(f) +
∣∣∣〈f, φ̃per〉∣∣∣2 ≤ C̃

∥∥f∥∥2

2

For any f ∈ L2[0, 1], by the Parseval identity of the Walsh–Fourier series, we deduce that:∣∣〈f, φper〉∣∣2 =
∣∣∣ ∑
n∈Z+

f̂(n)φ̂per(n)
∣∣∣2

=
∣∣∣ ∑
n∈Z+

f̂(n)φ̂(n)w0(n)
∣∣∣2

≤
∑
n∈Z+

∣∣∣f̂(n)
∣∣∣2 ∑
n∈Z+

∣∣φ̂(n)
∣∣2 (27)

Since limn→0 φ̂(n) = 1, n ∈ Z+, so φ̂ is bounded on Z+; therefore, there exists C1 > 0, such that∑
n∈Z+

∣∣φ̂(n)
∣∣2 ≤ C1. Using Equation (4) and this estimate, Equation (27) reduces to:

∣∣〈f, φper〉∣∣2 ≤ C1

∥∥f∥∥2

2
(28)
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Next, we compute PΨ(f). Using the periodic property of the functions ψper
`,j,k, that is

ψ`,j,k(x⊕ n) = ψ`,j,k−pjn(x), n ∈ Z+, we have:

PΨ(f) =
L∑
`=1

∑
j∈Z+

∑
k∈Nj

(∑
n∈Z+

∣∣∣〈f, ψ`,j,k(x⊕ n)
〉∣∣∣)2

=
L∑
`=1

∑
j∈Z+

∑
k∈Nj

(∑
n∈Z+

∣∣∣∣∫ 1

0

f(x)ψ`,j,k(x⊕ n) dx

∣∣∣∣
)2

≤ C2

L∑
`=1

∑
j∈Z+

∑
k∈Nj

∑
n∈Z+

∣∣∣∣∫ 1

0

f(x)ψ`,j,k(x⊕ n) dx

∣∣∣∣2
≤ C2

L∑
`=1

∑
j∈Z+

∑
k∈Nj

∣∣∣∣∫ 1

0

f(x)ψ`,j,k(x) dx

∣∣∣∣2
= C2

L∑
`=1

∑
j∈Z+

∑
k∈Nj

∣∣∣∣∫
R+

f .χ[0,1](x)ψ`,j,k(x) dx

∣∣∣∣2
Since the wavelet system F(Ψ) is a Bessel sequence for L2(R+), thus we can deduce that there exists

a positive number C3, such that:

PΨ(f) ≤ C3

∥∥f .χ[0,1]

∥∥2

2
= C3

∥∥f∥∥2

2
(29)

Combining Equations (28) and (29), we get:

PΨ(f) +
∣∣〈f, φper〉∣∣2 ≤ (C1 + C3)

∥∥f∥∥2

2
= C4

∥∥f∥∥2

2

Similarly, we have:
PΨ̃(f) +

∣∣〈f, φ̃per〉∣∣2 ≤ C̃4

∥∥f∥∥2

2

This completes the proof of Lemma 4.2.
Lemma 4.3: If f, g ∈ E [0, 1), i.e.,

f(x) =
∑
n∈Z+

f̂(n)wn(x) and g(x) =
∑
n∈Z+

ĝ(n)wn(x),

where the sequences
{
f̂(n)

}
and

{
ĝ(n)

}
have only finitely many non-zero terms. Then, the following

formula holds:

〈f, g〉 =
〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
+

L∑
`=1

∑
j∈Z+

∑
k∈Nj

〈
f, ψper

`,j,k

〉〈
ψ̃per
`,j,k, g

〉
(30)

Proof: We split the proof of this results into three steps.
Step 1: We rearrange and rewrite the following series:

∑
k∈Nj

〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
,

∑
k∈Nj

〈
f, ψper

`,j,k

〉 〈
ψ̃per
`,j,k, g

〉
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Since both the functions φ and φ̃ are compactly supported, thus it is possible to make a rearrangement
in the above series:

〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
=

(∑
m∈Z+

〈
f, φj,k(x⊕m)

〉)(∑
n∈Z+

〈
φ̃j,k(x⊕ n), g

〉)
=
∑
m∈Z+

∑
n∈Z+

〈
f, φj,k(x⊕m)

〉 〈
φ̃j,k(x⊕ n), g

〉
=
∑
m∈Z+

∑
n∈Z+

〈
f, φj,k(x⊕m)

〉 〈
φ̃j,k(x⊕m⊕ n), g

〉
(31)

For any n ∈ Z+, we define:

Fn(x) = f(x)χ[0,1]+n(x), Gn(x) = g(x)χ[0,1]+n(x) (32)

Since f and g are periodic functions, by Equations (31) and (32), we have:

〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
=
∑
m∈Z+

∑
n∈Z+

(∫ 1

0

f(x)φj,k(x⊕m) dx

)(∫ 1

0

φ̃j,k(x⊕m⊕ n)g(x) dx

)
=
∑
m∈Z+

∑
n∈Z+

(∫ 1

0

f(x)φj,k(x⊕m)dx

)(∫ 1+n

0

φ̃j,k(x⊕m)g(x) dx

)
=
∑
m∈Z+

∑
n∈Z+

(∫
R+

F0(x)φj,k(x⊕m) dx

)(∫
R+

φ̃j,k(x⊕m)Gn(x) dx

)
(33)

By summing Equation (33) over the set Nj and noting that φj,k(x⊕m) = φj,k−pjm(x), we have:∑
k∈Nj

〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
=
∑
k∈Nj

∑
m∈Z+

∑
n∈Z+

〈
F0, φj,k−pjm

〉 〈
φ̃j,k−pjm, Gn

〉

=
∑
n∈Z+

∑
k∈Z+

〈
F0, φj,k

〉〈
φ̃j,k, Gn

〉
(34)

Similarly, for each ` = 1, 2, . . . , L, we have:

∑
k∈Nj

〈
f, ψper

`,j,k

〉〈
ψ̃per
`,j,k, g

〉
=
∑
n∈Z+

∑
k∈Z+

〈F0, ψ`,j,k〉
〈
ψ̃`,j,k, Gn

〉
(35)

Step 2: For any J ≥ 0, we claim that:

〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
+

L∑
`=1

J∑
j=0

∑
k∈Nj

〈
f, ψper

`,j,k

〉〈
ψ̃per
`,j,k, g

〉
=

∑
k∈NJ+1

〈
f, φper

J+1,k

〉 〈
φ̃per
J+1,k, g

〉
Taking the sum on the R.H.S of Equation (35) over ` = 0, 1, . . . , L, we have:

Qj =
L∑
`=0

∑
k∈Z+

∑
n∈Z+

〈F0, ψ`,j,k〉
〈
ψ̃`,j,k, Gn

〉
(36)
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By the Parseval identity of the Walsh–Fourier transform and Equation (13), we deduce that:〈
F0, ψ`,j,k

〉
=
〈
F̂0, ψ̂`,j,k

〉
= p−j/2

∫
R+

F̂0(ξ) ψ̂`
(
p−jξ

)
wk
(
p−jξ

)
dξ

= p−j/2
∫
R+

F̂0(ξ)h`
(
p−j−1ξ

)
φ̂
(
p−j−1ξ

)
wk
(
p−jξ

)
dξ

= p−j/2
∫ pj

0

∑
m∈Z+

F̂0

(
ξ ⊕ pjm

)
h`
(
p−j−1ξ ⊕ p−1m

)
× φ̂
(
p−j−1ξ ⊕ p−1m

)
wk
(
p−jξ

)
dξ (37)

Since h`(ξ), 1 ≤ ` ≤ L are the Walsh polynomials (wavelet masks) associated with given wavelets
ψ` and we know each h`(ξ) is bounded periodic on [0, 1], therefore we have:∫ pj

0

{∑
m∈Z+

∣∣∣F̂0

(
ξ ⊕ pjm

)
h`
(
p−j−1ξ ⊕ p−1m

)
φ̂
(
p−j−1ξ ⊕ p−1m

)
wk
(
p−jξ

)∣∣∣} dξ
≤
∥∥h`∥∥∞ ∫

R+

∣∣∣F̂0(ξ)φ̂
(
p−j−1ξ

)∣∣∣ dξ <∞
Therefore, the exchange of the integral and the summation is reasonable in the above formula.

Again, by the periodicity of wavelet masks h`, we infer that:〈
F0, ψ`,j,k

〉
= p−j/2

∫ pj

0

∑
m′∈Z+

∑
t∈N1

F̂0

(
ξ ⊕ pj(pm′ ⊕ t)

)
wk
(
p−jξ

)
× h`

(
p−j−1ξ ⊕ p−1(pm′ ⊕ t)

)
φ̂
(
p−j−1ξ ⊕ p−1(pm′ ⊕ t)

)
dξ

= p−j/2
∫ pj

0

∑
m′∈Z+

∑
t∈N1

F̂0

(
ξ ⊕ pj

(
pm′ ⊕ t

)
wk
(
p−jξ

)
× φ̂

(
p−j−1ξ ⊕ p−1

(
pm′ ⊕ t

)
h`
(
p−j−1ξ ⊕ p−1t

)
dξ (38)

Similarly, we have:〈
ψ̃`,j,k, Gn

〉
= p−j/2

∫ pj

0

∑
n′∈Z+

∑
t′∈N1

Ĝn

(
ξ ⊕ pj(pn′ ⊕ t′)

)
wk
(
p−jξ

)
× ˆ̃φ

(
p−j−1ξ ⊕ p−1(pn′ ⊕ t′)

)
h̃`
(
p−j−1ξ ⊕ p−1t′

)
dξ (39)

Since
{
p−j/2wk

(
p−jξ

)
: k ∈ Z+

}
is an orthonormal basis for L2(pj[0, 1]), therefore, by

Equations (38) and (39), together with the Parseval identity of the Walsh–Fourier series, we have:∑
k∈Z+

〈
F0, ψ`,j,k

〉〈
ψ̃`,j,k, Gn

〉
=

∫ pj

0

{ ∑
m′∈Z+

∑
t∈N1

F̂0

(
ξ ⊕ pj

(
pm′ ⊕ t

)
h`
(
p−j−1ξ ⊕ p−1t

)
φ̂
(
p−j−1ξ ⊕ p−1(pm′ ⊕ t)

)}

×

{∑
n′∈Z+

∑
t′∈N1

Ĝn

(
ξ ⊕ pj(pn′ ⊕ t′)

)
h̃`
(
p−j−1ξ ⊕ p−1t′

) ˆ̃φ
(
p−j−1ξ ⊕ p−1

(
pn′ ⊕ t′

))}
dξ
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Again, by Equation (36), we deduce that:

Qj =
∑
n∈Z+

∫ pj

0

∑
m′∈Z+

∑
n′∈Z+

∑
t∈N1

∑
t′∈N1

F̂0

(
ξ ⊕ pj

(
pm′ ⊕ t

)
Ĝn

(
ξ ⊕ pj

(
pn′ ⊕ t′

))

× φ̂
(
p−j−1ξ ⊕ p−1

(
pm′ ⊕ t

)) ˆ̃φ
(
p−j−1ξ ⊕ p−1

(
pn′ ⊕ t′

))

×

(
L∑
`=0

h`
(
p−j−1ξ ⊕ p−1t

)
h̃`
(
p−j−1ξ ⊕ p−1t′

))
dξ

By the mixed extension principle (MEP) condition, we have:
L∑
`=0

h`
(
p−j−1ξ ⊕ p−1t

)
h̃`
(
p−j−1ξ ⊕ p−1t′

)
= δt,t′

Therefore, we have:

Qj =
∑
n∈Z+

∫ pj

0

∑
m′∈Z+

∑
n′∈Z+

∑
t∈N1

F̂0

(
ξ ⊕ pj

(
pm′ ⊕ t

))
Ĝn

(
ξ ⊕ pj

(
pn′ ⊕ t

))

× φ̂
(
p−j−1ξ ⊕ p−1

(
pm′ ⊕ t

)) ˆ̃φ
(
p−j−1ξ ⊕ p−1

(
pn′ ⊕ t

))
dξ

Letting:

Rj(ξ) =
∑
m′∈Z+

F̂0

(
ξ ⊕ pj+1m′

)
φ̂
(
p−j−1ξ ⊕m′

)
, Sj,n(ξ) =

∑
n′∈Z+

Ĝn

(
ξ ⊕ pj+1n′

) ˆ̃φ
(
p−j−1ξ ⊕ n′

)
we conclude that:

Qj =
∑
n∈Z+

∑
t∈N1

∫ pj

0

Rj

(
ξ ⊕ pjt

)
Sj,n
(
ξ ⊕ pjt

)
dξ

=
∑
n∈Z+

∑
t∈N1

∫ (1+t)pj

pj
Rj(ξ)Sj,n(ξ) dξ

=
∑
n∈Z+

∫ pj+1

0

Rj(ξ)Sj,n(ξ) dξ

Using the Parseval identity of the Walsh–Fourier series, we obtain:∫ pj+1

0

Rj(ξ)Sj,n(ξ) dξ

= p−(j+1)
∑
k∈Z+

∫ pj+1

0

Rj(ξ)wp−(j+1)k(ξ) dξ

∫ pj+1

0

Sj,n(ξ)wp−(j+1)k(ξ) dξ

= p−(j+1)
∑
k∈Z+

∫
R+

F̂0(ξ) φ̂
(
p−j−1ξ

)
wp−(j+1)k(ξ) dξ

∫
R+

Ĝn(ξ) ˆ̃φ
(
p−j−1ξ

)
wp−(j+1)k(ξ) dξ
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Again, by the Parseval identity of the Walsh–Fourier transform, we have:

Qj =
∑
k∈Z+

∑
n∈Z+

〈
F0, φj+1,k

〉〈
φ̃j+1,k, Gn

〉
(40)

By Equations (36) and (40), it follows that:

∑
k∈Z+

∑
n∈Z+

〈
F0, φj+1,k

〉〈
φ̃j+1,k, Gn

〉
=

L∑
`=0

∑
k∈Z+

∑
n∈Z+

〈F0, ψ`,j,k〉
〈
ψ̃`,j,k, Gn

〉
=
∑
k∈Z+

∑
n∈Z+

〈
F0, φj,k

〉〈
φ̃j,k, Gn

〉
+

L∑
`=1

∑
k∈Z+

∑
n∈Z+

〈F0, ψ`,j,k〉
〈
ψ̃`,j,k, Gn

〉
Using Equations (34) and (35) in the above identity, we obtain:

∑
k∈Nj+1

〈
f, φper

j+1,k

〉〈
φ̃per
j+1,k, g

〉
=
∑
k∈Nj

〈
f, φper

j,k

〉〈
φ̃per
j,k, g

〉
+

L∑
`=1

∑
k∈Nj

〈
f, ψper

`,j,k

〉 〈
ψ̃per
`,j,k, g

〉
Since Nj = {0}, when j = 0, we have:

∑
k∈N1

〈
f, φper

1,k

〉〈
φ̃per

1,k, g
〉

=
〈
f, φper

0,0

〉〈
φ̃per

0,0, g
〉

+
L∑
`=1

∑
k∈N1

〈
f, ψper

`,0,k

〉 〈
ψ̃per
`,0,k, g

〉
In general, for any J ≥ 0, we have:

∑
k∈NJ+1

〈
f, φper

J+1,k

〉〈
φ̃per
J+1,k, g

〉
=
〈
f, φper

j,k

〉 〈
φ̃per
j,k, g

〉
+

L∑
`=1

J∑
j=0

∑
k∈Nj

〈
f, ψper

`,j,k

〉〈
ψ̃per
`,j,k, g

〉
(41)

Step 3: For f, g ∈ E [0, 1), we have:

Tj =
∑
k∈Nj

〈
f, φper

j,k

〉〈
φ̃per
j,k, g

〉
→ 〈f, g〉 , j →∞ (42)

Since f and g are both periodic, hence there exists a non-negative integer J , such that:

f(x) =
∑
n∈Z+

f̂(n)wn(x), g(x) =
∑
n∈Z+

ĝ(n)wn(x)

where f̂(n) = ĝ(n) = 0, n /∈ NJ . Again, let:

φper
j,k(x) =

∑
n∈Z+

φ̂per
j,k(n)wn(x), φ̃per

j,k(x) =
∑
n∈Z+

ˆ̃φper
j,k(n)wn(x),

where:
φ̂per
j,k(n) = p−j/2φ̂

(
p−jn

)
wk
(
p−jn

)
, ˆ̃φper

j,k(n) = p−j/2 ˆ̃φ
(
p−jn

)
wk
(
p−jn

)
Therefore, for j ≥ J , we have:

〈
f, φper

m,k

〉
=
∑
n∈Nj

f̂(n)φ̂per
j,k(n) =

∑
n∈Nj

f̂(n)p−j/2φ̂
(
p−jn

)
wk
(
p−jn

)
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Similarly, we have:

〈
φ̃per
m,k, g

〉
=
∑
n∈Nj

ĝ(n)p−j/2 ˆ̃φ
(
p−jn

)
wk
(
p−jn

)
, j ≥ J

Hence, we conclude that for j ≥ J , we have:

Tj =
∑
k∈Nj

∑
m∈Nj

f̂(m)p−j/2φ̂
(
p−jm

)
wk
(
p−jm

)∑
n∈Nj

ĝ(n)p−j/2 ˆ̃φ
(
p−jn

)
wk
(
p−jn

)
=

∑
m∈Nj

∑
n∈Nj

f̂(m)ĝ(n)φ̂
(
p−jm

) ˆ̃φ
(
p−jn

)∑
k∈Nj

p−j wk
(
p−j(m	 n)

)
=

∑
n∈Nj

f̂(n)ĝ(n)φ̂
(
p−jn

) ˆ̃φ
(
p−jn

)
=

∑
n∈NJ

f̂(n)ĝ(n)φ̂
(
p−jn

) ˆ̃φ
(
p−jn

)
Since limξ→0 φ̂(ξ) = limξ→0

ˆ̃φ(ξ) = 1, we have:

lim
j→∞

Tj =
∑
n∈NJ

f̂(n)ĝ(n) =
∑
n∈Z+

f̂(n)ĝ(n) = 〈f, g〉

From Equations (41) and (42), we deduce that:

〈
f, φper

j,k

〉〈
φ̃per
j,k, g

〉
+

L∑
`=1

∑
j∈Z+

∑
k∈Nj

〈
f, ψper

`,j,k

〉 〈
ψ̃per
`,j,k, g

〉
= 〈f, g〉

This completes the proof of the Lemma 4.3.
Proof of Theorem 4.1: By Lemma 4.2, it follows that the sequences F

(
Ψper

)
and F

(
Ψ̃per

)
are both

Bessel sequences for L2[0, 1]. By Lemma 4.3, we know that for any f, g ∈ E [0, 1), Equation (30) holds.
Again, since the set E [0, 1) is dense in L2[0, 1], it follows that the periodic wavelet systems F

(
Ψper

)
and

F
(
Ψ̃per

)
constitute a pair of dual frames for L2[0, 1]. This completes the proof.
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