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1. Introduction

This work develops some new ideas in the theory of holomorphically projective
mappings of Kähler spaces. These questions are connected with the compact and
complete geodesics, Kähler spaces, and their holomorphically projective mappings
and transformations.

In 1954, Westlake [1] and Yano [2] studied the geodesic mappings of Kähler spaces.
They proved that if the structure of the Kähler space is preserved, then the mapping is
trivial. This result was generalized by Muto [3], for the case where these structures commute.
Mikeš proved that geodesic mappings of Kähler spaces can exist [4–7], eventually onto
Kähler spaces (see [8–14]). These Kähler spaces are equidistant (Sinyukov [15,16]); i.e., they
admit convergent vector fields (Shirokov [17–19]), which are special concircular vector
fields (Yano [20]).

Analytically planar curves and holomorphically projective mappings of Kähler spaces
introduced by Otsuki and Tashiro [21] are a natural generalization of geodesics and geodesic
mappings. In these mappings, analytically planar curves are mapped onto analytically
planar curves. They showed that spaces with a constant holomorphic curvature of holo-
morphically projective mapping have properties similar to those of spaces with a con-
stant curvature with respect to geodesic mappings. An overview of the results up to
1963 on holomorphically projective mappings is available in Beklemishev [22], Yano, and
Bochner [23,24], for example.

Mikeš generalized these results for holomorphically projective mappings in different
directions [25,26]; some of these results are included in the fifth (last) chapter of Sinyukov’s
monograph [16]. These results can be found in [10] and in [4,8,11–13]. More results can
be found in Mikeš dissertation [4], in particular, concerning Kn[B], see Section 4. These
general results were published in [10].

Other problems and ideas in the theory of holomorphically projective mappings were
developed by Aminova [27–30] and others. The complex projective space (CP(n), gFubini-Study)
admits global non-trivial holomorphically projective mappings and transformations with
maximal parameters (see [31,32]). Previously, locally, for spaces with constant holomorphic
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curvature, the same was proved in [25,26]. These calculations were mostly performed in a
complex form. The same is true in other works, e.g., [32]. In this work, Equation (3) was
not attributed to Mikeš (see [4,10]).

Holomorphically projective mappings of hyperbolic and parabolic Kähler spaces have
been dealt with in Prvanović [33], Kurbatova [14,34], and Shiha [35].

Holomorphically projective mappings views have been generalized in many ways. In
1962, A.Z. Petrov [36] studied quasi-geodesic mappings, where he showed that it is possible
to simulate physical processes and electromagnetic fields. Similar results were presented in
the paper of C.-L. Bejan and O. Kowalski [37]. The abovementioned mapping generalized the
F-planar mappings of Mikeš and Sinyukov [38]. The almost geodesic mappings π2 are also a
direct generalization of holomorphically projective mappings (see [16] and [10–13,39]). In a
2019 paper [40] by A. Kozak and A. Borowiec, the authors studied a new physical inter-
pretation of almost geodesic mappings that are special transformations, which genuinely
preserve geodesics in space and time.

The problems connected with these topics have been considered in many monographs
and reviews, such as [41–48].

Many authors have dealt with rigidity problems, i.e., when the holomorphically projec-
tive mappings will be affine (trivial). We follow these works on similar problems of rigidity,
which were studied for motions (Killing vector fields) and their generalization in compact or
complete Riemann and Kähler spaces (see the monographs by Yano and Bochner [23,24]).

Using Bochner’s methods (see Stepanov [49]), Tachibana and Ishihara [50,51], Hasegawa
and Yamauchi [52], and Akbar-Zadeh and Couty [53,54] also discovered new results. Later,
Sinyukov [55] and Mikeš [10,56] also continued this research. Due to the method of Švec [57],
even more general results were found [58].

In 1961, Tachibana and Ishihara [59] proved that Ricci symmetric (non-Einstein) spaces
do not admit nontrivial analytical holomorphically projective transformations. Then,
in 1979, Mikeš proved that these spaces also do not admit nontrivial mappings, while
global requirements are not assumed, [4,10]. See also Bácsó and Ilosvay [60].

Sakaguchi [61] used Sinyukov’s methods (see [15]) and proved that symmetric and
recurrent Kähler spaces of non-constant holomorphically projective curvature do not admit
non-trivial holomorphically projective mappings. Domashev and Mikeš [25] generalized
Sakaguchi’s results for (pseudo-) Kähler spaces.

The main results of our study are Theorems 2 and 3. They clearly state that in order for
the mapping to be rigid the space does not have to be complete. It suffices that there exist a
finite number of geodesics and their images that are complete. In other words, the space is
uniquely defined by the given geodetics, which are the supporting skeleton (reinforcement)
of the space.

2. Kähler Spaces

Kähler space Kn is an n dimensional (pseudo-) Riemannian space in which, along with
the metric tensor g, an affine structure F is defined that satisfies the relations F2 = −Id,
g(X, FX) = 0, and ∇F = 0, where ∇ is the Levi–Civita connection, and X is any tangent
vector on Kn. Necessarily, the spaces Kn are of an even dimension, i.e., n = 2m, and n ≥ 4.

In local coordinates x ≡ (x1, x2, . . . , xn), components gij(x) and Fh
i (x) of g and F

satisfy the relations
Fh

α Fα
i = − δh

i ; Fα
(igj)α = 0; Fh

i,j = 0.

Here and in what follows, “,” denotes a covariant derivative on Kn and the round brackets
denote the symmetrization of indices. The structure F is called a complex structure.

The spaces Kn were first considered by Shirokov [18]. Independently, in complex form,
these spaces were studied by Kähler [62]. In the available literature, these spaces are also
called Kählerian. We present the notation that is used in Mikeš’s dissertations [4,8] and in
many articles, for example, [10–14,16,22,23].
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In the Kähler spaces Kn, we introduce the operation of the conjugation of indices
as follows:

A···
··· i ··· ≡ A···

··· α ··· Fα
i ; A··· j ···

··· ≡ A··· α ···
··· Fj

α .

According to the definition of a tensor F, this operation has the following properties:

A
i
= −Ai; Bi = −Bi; AαBα = AαBα; AαBα = −AαBα; (Ai),j = Ai,j; (Bi),j = Bi

,j.

For the Kronecker symbol, metric, and and its inverse tensors it holds that

δh
i = δh

i = Fh
i ; gij + gij = 0; gi j = gij; gij + gij = 0; gi j = gij.

For the Riemann and Ricci tensors, Rh
ijk = ∂jΓh

ik − ∂kΓh
ij + Γh

αjΓ
α
ik − Γh

αkΓα
ij, ∂j = ∂/∂xj, and

Rik = Rα
iαk, the following formulas hold:

Rhij k = Rhijk ≡ ghαRα
ijk; Ri j = Rij; Rα

αjk = 2Rjk.

In the Kähler spaces Kn, we can consider the holomorphically projective curvature tensor

Ph
ijk ≡ Rh

ijk +
1

n + 2
(δh

k Rji − δh
j Rki + δh

k Rȷi − δh
ȷ Rki − 2δh

ı Rȷk).

When specific maps f of spaces are considered, say, Kn
f→ Kn, both spaces are assigned

to the coordinate system x, in general, with respect to these mappings. In this coordinate
system, the corresponding points x ∈ Kn and f (x) ∈ Kn have the same coordinates
x ≡

(
x1, x2, . . . , xn).

In this case, we denote the corresponding geometric objects in An with a bar; for in-
stance, Rh

ijk and Rij are the Riemannian and Ricci tensors.

3. General Questions Concerning Holomorphically Projective Mappings of
Kähler Spaces

Natural generalizations of geodesic mappings are the holomorphically projective
mappings (HP-mappings) of Kähler spaces Kn. Naturally, similar problems appear within
the HP-mappings theory as in the geodesic mappings theory. Interestingly, numerous
findings and results valid for geodesic mappings seamlessly extend to HP-mappings as
well, indicating a high degree of compatibility between the two. Note that HP-mappings
were considered, as a rule, under the condition of the preservation of the structure. It
turned out that in the case of HP-mappings, the structure is necessarily preserved.

The works by Tashiro [63], Ishihara [50], Otsuki and Tashiro [21], Domashev and
Mikeš [25], and Mikeš [6,7,26,64,65] are devoted to general questions concerning the theory
of holomorphically projective mappings of the Kähler spaces Kn.

Problems related to integrating the fundamental equations of HPM theory and other re-
lated questions have been examined, for example, in the works by Aminova and Kalinin [27–30].
Unfortunately, many of the questions that the authors present are not their own originally.

The fundamentals of the theory of holomorphically projective mappings can be found
in [22] by Beklemishev, [23,24] by Yano, [16] by Sinyukov, and [10–13] by Mikeš. In the
monograph ([16], fifth chapter), Sinyukov presented classical results of holomorphically
projective mappings, and results were obtained Mikeš and Domashev [25] and Mikeš [4,26].

Definitions and the Basic Equations

Below, the terms related to holomorphically projective mappings and transformations
are given in detail, e.g., [10–13,16,21–23].

An analytically planar curve γ of the Kähler space Kn is a curve defined by the equations
x = x(t), whose tangent vector λ = dγ(t)/dt, being translated, remains in the area
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element formed by the tangent vector λ and its conjugate Fλ; i.e., the conditions ∇tλ =
ρ1(t)λ + ρ2(t)Fλ, where ρ1, ρ2 are functions of the argument t, are fulfilled [21].

If ρ2(t) ≡ 0, then ℓ is a geodesic. We note that if the tangent vector λ of an analytically
planar curve γ is isotropic (null-vector) in one of its points, then it is isotropic in all its
points γ, which is analogous to geodesics. The physical meaning of these curves is given,
for example, in [66,67].

The diffeomorphism of Kn onto Kn is a holomorphically projective mapping if it transforms
all the analytically planar curves of Kn onto analytically planar curves of Kn.

Under the HP-mapping, the structure of the spaces Kn and Kn is preserved; i.e., in the
coordinate system x, in general, with respect to the mapping, the conditions Fh

i (x) = Fh
i (x)

are satisfied. To be more precise, Fh
i (x) = ±Fh

i (x) for Kn, since the structure in Kn is defined
with an accuracy within the sign (see [14]).

The holomorphically projective mappings were introduced by Otsuki and Tashiro [21] for
Kn under the a priori assumption that the structure was preserved. Note that HP-mappings
are special F-planar mappings introduced by Mikeš and Sinyukov [38]. Questions about the
preservation of the structure for the above mappings are studied in detail in [14,38,68].

The necessary and sufficient conditions for the holomorphically projective mappings
of Kn onto Kn fulfill the following conditions in the general (with respect to the mapping)
coordinate system (Tashiro [63]),

Γh
ij(x) = Γh

ij(x) + ψiδ
h
j + ψjδ

h
i − ψıδ

h
ȷ − ψȷδ

h
ı , (1)

where ψi is a vector, and Γh
ij and Γh

ij are the Christoffel symbols of Kn and Kn. Relation (1) is
equivalent to the equation

gij,k = 2 ψkgij + ψigjk + ψjgik + ψigjk + ψjgik, (2)

where gij are the components of metric g on Kn. When ψi ̸≡ 0, we say that the holomor-
phically projective mapping is nontrivial or affine. After contracting (1), it is valid that ψi is
necessarily a gradient; moreover,

ψi = ∂iΨ, where Ψ =
1

n + 2
ln

√∣∣∣∣det g
det g

∣∣∣∣ .

The Riemannian and Ricci tensors Kn and Kn are connected by the conditions

Rh
ijk = Rh

ijk + δh
k ψij − δh

j ψik + δh
k ψi j − δh

j ψi k + 2δh
i ψj k; Rij = Rij − (n + 2)ψij,

where ψij ≡ ψi,j − ψiψj + ψiψj is a symmetric tensor, for which ψij = ψi j.

The holomorphically projective curvature tensor Ph
ijk is invariant relative to the holo-

morphically projective mapping. Its identical vanishing is necessary and sufficient for Kn to
be a space of constant holomorphic curvature and for these spaces to admit holomorphi-
cally projective mapping onto a flat space (Tashiro [63], Ishihara [50]). It has been proven
that non-trivial holomorphically projective mapping can be established between any Kn of
constant holomorphic curvature [14].

Mikeš [26] has found that the Kähler space Kn admits a holomorphically projective
mapping if and only if the system of the following equations,

(a) aij,k = λigjk + λjgik + λigjk + λjgik; (b) nλi,j = µgij + aiαRα
j − aαβRα

· ij
β
· ; (c) µ,i = 2λαRα

i , (3)

has a solution for the unknown tensors aij (= aji = ai j , |aij| ̸= 0), λi and µ. The solutions of

(2) and (3) are connected by the relations aij = e2ψgαβgαigβj, λi = −e2ψgαβgαiψβ. Evidently,
λi = ∂i(2 aαβgαβ) is the gradient, and the mapping is trivial if and only if λi = 0. For vector



Mathematics 2024, 12, 1239 5 of 13

λi, it holds that λi,j = λi,j = λj,i; therefore, λi,j + λj,i = 0. From this, it follows that the
vector λi is the Killing vector.

Condition (3)a is necessary and sufficient for the existence of the holomorphically
projective mapping Kn; this result was obtained by Domashev and Mikeš [25].

Equation (3) forms a linear system of the Cauchy type with respect to the components
of the unknown tensors aij, λi, and µ. Consequently, the general solution of this system
depends on rhpm ≤ (n/2 + 1)2 parameters [25]. For rhpm > 2, Equations (4) and (5) hold;
see [10–13,64] and [32].

The solution of Equation (3) in Kn reduces to the study of the integrability conditions
for (3) and their differential continuations, which, in turn, constitute a system of linear
algebraic equations for the unknows aij, λi, and µ. Thus, we can determine whether the
given space Kn admits holomorphically projective mapping, and if it does, then with
what arbitrariness.

Holomorphically projective transformations of Kähler spaces are closely related to
HP-mappings (see [50,51,59,69,70]). It is obvious that Kn, in which NHPT exist, admits
NHPM, and conversely, there are no NHPT in the spaces Kn that do not admit NHPM.

Mikeš [71] obtained the inequality rhpt ≤ rhpm + r∗m, where rhpt is the order of the
complete group HPT, and r∗m is the order of the complete group of motions that preserves the
analytic planar curves. The spaces in which conditions hij,k = ψigjk + ψjgik + ψigjk + ψjgik
are fulfilled necessarily admit HPT and, for B ̸= 0, NHPT. A more detailed investigation of
these regularities was carried out in [71].

Yamaguchi [72] studied a K-torse-forming vector ξ, for which ξh
,i = aδh

i + bFh
i + αiξ

h +

βiξ
αFh

α . Esenov’s works [73,74] are devoted to the study of Kn in which there exist vector
fields of this kind. He showed that K-torse-forming vector fields were HPM-invariant.
In his works, he studied Kn in which the conditions λi,j = agij + c(λiλj − eλiλj), where a, c
are invariants, were satisfied.

These spaces admit NHPM. The metric of the holomorphically projectively corre-
sponding spaces Kn that contain K-concircular fields has been found in explicit form. These
fields exist in spaces of constant holomorphic curvature.

4. Holomorphically Projective Mappings of the Spaces Kn[B]

We denote the Kähler space Kn by Kn[B] if it admits a holomorphically projective
mapping under which the relations (for details, see Mikeš’ dissertation [4], also, see [10,11])

(a) aij,k = λigjk + λjgik + λigjk + λjgik; (b) λi,j = µgij + B aij (4)

are satisfied, where aij, (= aji = ai j , |aij| ̸= 0), λi ( ̸≡ 0), µ, B are tensors, while B is
uniquely determined by the space Kn. When B is a constant, then µ,i = 2Bλi, and when
B ≡ 0, then µ is a constant. Relations (4) are equivalent to relations (2), and

ψij = B gij − B gij. (5)

These conditions are fulfilled, in particular, under the holomorphically projective
mappings of spaces of a constant holomorphic curvature [14] and for HP-mappings between
Einstein spaces, while B = − R

n(n+2) and B = − R
n(n+2) , where R and R are scalar curvatures

of Kn and Kn, respectively.
Spaces in which there are K-concircular fields are spaces Kn[B]. In the spaces Kn[0]

and Kn[B], B ̸≡ const , fields of this kind necessarily exist. The spaces Kn[B] admit NHPM
only on Kn[B], with B and B being simultaneously constant or nonconstant. The spaces
Kn[B], B = const , admit holomorphically projective transformation (nontrivial for B ̸= 0).

Under the holomorphically projective mapping of Kn[B] onto Kn[B], the tensors∗
Zh

ijk and
∗
Zij are invariant, where
∗
Zh

ijk ≡ Rh
ijk − B

(
δh

k gij − δh
j gik + δh

k gij − δh
j gik + 2δh

i gjk

)
;

∗
Zij ≡

∗
Zα

ijα.
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The set of solutions of system (4) forms, for B = const , a special Jordan algebra
relative to the multiplication operation (see [65,75]):(

1
a,

1
λ,

1
µ

)
×

(
2
a,

2
λ,

2
µ

)
=

(
3
a,

3
λ,

3
µ

)
,

with

2
3
aij = B

1
as
·(i

2
aj)s −

1
λ(i

2
λj) −

1
λ(i

2
λj) ; 2

3
λi = B (

1
λα 2

aiα +
2
λα 1

aiα)−
1
µ

2
λi −

2
µ

1
λi ;

3
µ = B

1
λα

2
λα −

1
µ

2
µ .

A similar multiplication operation for solutions in Vn(B) was obtained by
Mikeš and Shandra [76].

It was established [75] that every solution aij of (4) in Kn[B], B = const ̸= 0, is
associated with a covariantly constant field Aab in the Riemannian space Vn+2, whose
metric tensor has the structure

Gab =
1
B

e2Bx0

 −B 0 0
0 gij − Bτiτj −Bτi
0 −Bτj −B

,

where gij(x1, . . . , xn) is the metric tensor of Kn[B], B = const ̸= 0, and τi(x1, . . . , xn) is
a covector potential; i.e., Fij = ∂[jτi] (the form Fij ≡ giαFα

j is exact), a, b = 0, 1, . . . , n, n +

1, with

Aab =

 µ λi 0
λj aij + τ(iFα

j)λα + µτiτj λαFα
i − µτi

0 λαFα
j − µτj µ

.

Holomorphically Projective Mappings of T-Quasi-Semisymmetric Spaces

The following terms and results, unless otherwise stated, were introduced in Mikeš’s
dissertation [4] and publications [10–13].

By means of
∗
Zh

ijk, we introduce into consideration the operation ⟨⟨lm⟩⟩ as follows:

T
h1 ...hp
i1 ...iq⟨⟨lm⟩⟩ ≡

q

∑
s=1

T
h1 ...hp
i1 ...is−1αis+1 ...iq

∗
Zα

is lm − T
h1 ...hs−1αhs+1 ...hp
i1 ...iq

∗
Zhs

αlm,

where T is a tensor of the type (p
q). When B = 0, T⟨⟨lm⟩⟩ = T,[lm].

For tensors u and v, this operation possesses the properties

(u ± v)⟨⟨lm⟩⟩ = u⟨⟨lm⟩⟩ ± v⟨⟨lm⟩⟩; (uv)⟨⟨lm⟩⟩ = u⟨⟨lm⟩⟩v + uv⟨⟨lm⟩⟩; gij⟨⟨lm⟩⟩ = 0; gij
⟨⟨lm⟩⟩ = 0; δi

j⟨⟨lm⟩⟩ = 0.

The analog of the Walker identities [77] is valid:

Rhijk⟨⟨lm⟩⟩ + Rjklm⟨⟨hi⟩⟩ + Rlmhi⟨⟨jk⟩⟩ = 0.

We say [4,8,10] that the Kähler space Kn is T-quasi-semisymmetric (TPsn[B]) if the
condition T⟨⟨lm⟩⟩ = 0 is fulfilled in it. Many results regarding HP-mappings of these spaces
can be found, for example, in [4,8,10,78–80]. Here, it was proved that HP-mappings of these
spaces fulfill Equation (4). Spaces for which Rh

ijk⟨⟨lm⟩⟩ = 0 and Rij⟨⟨lm⟩⟩ = 0 (see [4,8,78])
were studied by Luczyszyn and Olszak, respectively [81–83].

In the works by Sinyukov, Sinyukova [55], and Mikeš [10,56], a series of results for
global geodesic mappings of compact semisymmetric and Ricci-semisymmetric Kähler man-
ifolds with additional conditions was obtained. Haddad proved that the four-dimensional
Einsteinian Kn spaces do not admit NHPM onto the Einsteinian spaces of nonconstant
holomorphic curvature and do not admit nontrivial holomorphically projective transforma-
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tions. The investigation of the NHPM of complete Einsteinian Kn was carried out in [54]
by Akbar-Zadeh.

5. Rigidity of the Kähler Spaces’ Respective Holomorphically Projective Mappings
5.1. Spaces That Do Not Admit Nontrivial HPM Locally

Many authors isolated Kähler spaces that do not admit either nontrivial holomorphi-
cally projective mappings (NHPM) or nontrivial holomorphically projective transforma-
tions (NHPT).

Note that the Kähler spaces Kn, which do not admit NHPM, do not admit NHPT
either, as well as nontrivial geodesic mappings or nontrivial projective transformations. In
these spaces, there are no nonconstant concircular and K-concircular vector fields. In this
section, this is not specifically stipulated.

In 1974, Sakaguchi [61] proved that proper Kähler symmetric spaces Kn of nonconstant
holomorphic curvature do not admit NHPM. For symmetric Kn with a metric of arbitrary
signature, Sakaguchi’s result was proved by Domashev and Mikeš [25] (see also [10–13,16]).
In [8,10], Mikeš indicated more general conditions for recurence under which Kn does
not admit NHPM. In particular, recurrent, m-recurrent, two-symmetric, and generalized
recurrent D2

n Kähler spaces K±
n do not admit NHPM.

The abovementioned results for holomorphically projective mappings of semisym-
metric and generalized recurrent manifolds with affine connection were generalized in
papers [10,84–86] by al Lamy, Mikeš, Škodová, etc.

5.2. Holomorphically Complete Manifolds Kn[B]

I. Hasegawa and K. Yamauchi in [52] proved that an infinitesimal holomorphically
projective transformation has infinitesimal isometry on a compact classic Kähler manifold
Kn with non-positive constant scalar curvatur. Additionally, they proved that a compact
classical Kähler manifold with constant scalar curvature is holomorphically isometric to
a complex projective space with the Fubini–Study metric (i.e., manifold with constant
holomorphic curvature), provided Kn admits a non-isometric infinitesimal holomorphically
projective transformation.

The investigation of the holomorphically projective mappings of the complete Einstein
Kähler manifold Kn was carried out by H. Akbar-Zadeh and R. Couty in [53,54,87].

We prove the following theorem ([13], p. 502).

Theorem 1. Let a Kähler manifold Kn[B], B = const, admit a holomorphically projective map-
ping f onto a complete manifold Kn.

1. If Kn[B] has an indefinite metric, then f is affine.
2. If B ≥ 0, then f is affine.

Please note that the proof presented there is not correct. Below, we prove more general
facts from which this Theorem follows.

5.3. Holomorphically Projective Mappings and Fundamental Functions along Geodesics

Let us suppose that f : Kn → Kn is a holomorphically projective mapping and
Equation (4) holds with ψi = ∂iΨ; B and B are constants. Let γ(s) be a geodesic on
Kn and a corresponding analytically planar curve γ(τ(s)) on Kn with natural parameter s
and with canonical parameter τ, respectively. Assume τ̇ = dτ(s)/ds > 0 for the parameter
transformation τ = τ(s).

Because g and e−4Ψ g are first integrals of geodesics, the following holds:

gijγ̇
iγ̇j = ε = ±1, 0 and gijγ̇

iγ̇j = c e4Ψ(t), c = const . (6)

The first equality is generally known, and the second follows from the contraction of (2)
with γ̇iγ̇jγ̇k.
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By differentiating γ(s) = γ(τ(s)) with respect to parameter s, we obtain

γ̇(s) =
◦
γ(τ(s)) · τ̇(s), where

◦
γ =

dγ(τ)

dτ
, (7)

and, naturally, we suppose that τ̇(s) > 0.

Since τ is canonical of γ it holds that g(
◦
γ,

◦
γ) = c (= const ), and from this, it

follows that g(γ̇, γ̇) = c · τ̇2. Then, from (7), in the case where c ̸= 0 (and c ̸= 0), the
following holds:

τ̇(s) = c̃ · e2Ψ, c̃ > 0; (8)

i.e., γ is a non-isotropic analytical planar curve on Kn. In the case where c = 0 (and c ̸= 0),
this formula may not apply.

Along the geodesic γ(s), we put Ψ(s) = Ψ(γ(s)), and from this, Ψ̇(s) = ψαγ̇α. For the
tensor ψij (≡ ψi,j − ψiψj + ψiψj), the equality ψij = ψji = ψi j holds. It follows from this

that tensor ψi j is skew, and ψα βγ̇αγ̇β = 0. From the definition of ψij, evidently,

ψi,j = ψiψj + ψiψj + ψi j .

By differentiating the expression ψα γ̇α with respect to s, from the above, we make sure that
(ψαγ̇α). = 2Ψ̇ · (ψαγ̇α), and, after integrating, it is obvious that

ψαγ̇α = χ · e2Ψ, where χ is constant.

Next, we study the holomorphically projective mapping where the condition (4) is
valid, i.e., ψij = B gij − B gij, where B and B are constants. If this mapping is non-trivial,
then the spaces Kn and Kn will be Kn[B] and Kn[B], respectively.

We can write the condition (4) in expanded form

ψi,j = ψiψj − ψiψj + B gij − B gij . (9)

We calculate Ψ̈(s) according to geodesics γ(s): Ψ̈(s) = (Ψ̇). = (ψαγ̇α). = ψα,βγ̇αγ̇β,
and after using (9), we obtain

Ψ̈ = (Ψ̇)2 + b · e4 Ψ − a, (10)

where a = ε B, and b = c B − χ2.
We substitute q = e−2Ψ(s); then, Equation (9) is equivalent to

2q q̈ = q̇2 − 4 b + 4a q2 . (11)

The derivative of (11) gives the following equation
...
q = 4 a q̇ , which has a solution

(a) q = c0 + c1 s + c2 s2, if a = 0,
(b) q = c0 + c1 cosh(α s) + c2 sinh(α s), if a > 0,
(c) q = c0 + c1 cos(α s) + c2 sin(α s), if a < 0,

(12)

where α = 2
√
|a|, and c0, c1, c2 are constants. Since the function q must satisfy Equation (11),

the coefficients ci are tied to each other.
We analyze the obtained results in terms of the compactness and completeness of the

studied geodesics γ and their image γ = f (γ).

Lemma 1. If geodesic γ on Kn is compact, then, for a ≡ B · g(γ̇, γ̇) ≥ 0, the function Ψ(s)
is constant.
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Lemma 2. If geodesic γ on Kn and its non-isotropic images γ on Kn are complete, then, for
a ≡ B · g(γ̇, γ̇) ≥ 0, the function Ψ(s) is constant.

Lemma 3. If geodesic γ on Kn is complete, then, for a ≡ B · g(γ̇, γ̇) = 0 and b ≡ B c − χ2 = 0,
the function Ψ(s) is constant.

Proof. The proof of Lemma 1 is trivial, because the non-constant function Ψ(s) is not
bounded for s ∈ R.

The proof of the analogue of Lemma 2 has been shown by many authors and relies on
ideas by Couty [87] in an investigation of projective transformations of Einstein manifolds
and by Shen [88] in an investigation of Finsler Einstein geodesically equivalent metrics.

Since q = e−2Ψ, from (8), it follows that τ̇(s) = c̃ e2Ψ = c̃/q(s) > 0. We mean
τ(s)=

∫ s
s0

c̃/q(t) dt.
For functions q = c0 + c1 s + c2 s2 and q = c0 + c1 cosh(α s) + c2 sinh(α s), (c1 ̸= 0 or

c2 ̸= 0), this integral diverges (goes to infinity in finite time s). Then, c1 = c2 = 0 and
τ = const · s + s0, and it follows that τ̇ = const . Evidently, the function Ψ(s) is constant
along geodesic γ(s).

The proof of Lemma 3 is trivial, because for non-constant function q(s), there exists s0,
for which q(s0) = 0; this is the contradiction with q(s) > 0 for s ∈ R.

5.4. Holomorphically Projective Mappings of Kn[0] with n Complete Geodesics

Holomorphically projective mapping Kn[0] onto Kn[B] is characterized by Equation (2)
and

ψij ≡ ψi,j − ψiψj + ψiψj = B gij , (13)

which are equivalent to the equations (see Formulae (4)a and (5))

λi,j = µ gij , µ = const . (14)

Theorem 2. Let g be a (pseudo-) Riemannian Kähler metric, its complex structure F on a domain
V of n-dimensional manifold M (shortly Kähler space Kn=(M, g, F)), and their holomorphically
projective mapping of Kn onto Kähler space Kn with Equation (13). Further, assume that there is a
point at which not all sectional curvatures are vanishing and through which in linearly independent
directions pass n/2 complete geodesics, for which the condition of at least one of Lemmas 1–3 applies.
These directions with their complex united vectors form an n-dimension base. Then, this mapping is
trivial (affine).

Proof. Let the conditions of the theorem be satisfied. Then, according to the given
geodesics, the function Ψ(s) is constant; thus, at point x0 in the direction of these geodesics,
∂αΨ(x)γ̇α = 0 is vanishing in the tangent directions. Since this also applies to complex
united directions at point x0: ∂αΨ(x)γ̇α = 0, then ψi(x0) = 0 must apply. This is equivalent
with λi(x0) = 0.

The integrability conditions of Equation (14) have the form λαRα
ijk=0. We covariantly

differentiate them and use (14): µRlijk + λαRα
ijk,l = 0. It follows that µ = 0 to the extent

that Rhijk(x0) ̸= 0. Therefore, equations λi,j = 0 for initial conditions λi(x0) = 0 have a
trivial solution λi(x) = 0. It follows that ψi(x) is vanishing, and holomorphically projective
mapping is trivial (in other words affine).

Note that, in the above assumption, there do not exist Kn[0] and Kn[B], which are
holomorphically projective correspondent.

5.5. Holomorphically Projective Mappings of Kn[B] with Finite Complete Geodesics

For spaces Kn[B], B ̸= 0 the similar condition is weak. Therefore, we recall some
aspects of matrix theory.
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Let the symmetric matrix A be a bilinear mapping A: Tx × Tx → R, where Tx is the
tangent space at x, dim Tx = n. On the other hand A: S2Tx → R, where S2Tx is the second
symmetric power of Tx. Evidently, dim S2Tx = N = 1

2 n(n + 1). We choose vectors v1, v2,
. . . , vN ∈ V in such a way that v1 ◦ v1, v2 ◦ v2, . . . , vN ◦ vN is a basis of S2Tx.

Evidently, it follows that A(vi, vi) = 0, for ∀i = 1, 2, . . . , N ⇐⇒ A = 0.
If the symmetric matrix A satisfies the following condition Ai j = Aij, the set of vectors

S2Tx can be reduced to S2∗Tx, and the number of these vectors is N = (n/2)2.

Theorem 3. Let g be a (pseudo-) Riemannian Kähler metric, its complex structure F on a domain
V of n-dimensional manifold M (shortly Kähler space Kn=(M, g, F)), and their holomorphically
projective mapping of Kn onto Kähler space Kn with Equation (9). Further, assume that there is
a point x0 through which in directions vi ∈ S2∗ pass (n/2)2 complete geodesics, for which the
condition of at least one of Lemmas 1–3 applies. Then, this mapping is homothetic; i.e., the metrics
are proportional with a constant coefficient.

Proof. Let the conditions of the theorem be satisfied. We construct N geodesics γα(s),
α = 1, . . . , N, for which x0 ∈ γα and the vectors vα are the tangent vectors of γα at the point
x0. Then, according to the given geodesics, the function Ψ(s) is constant, and thus at point
x0 in the direction of these geodesics, ∂iΨ(x0)γ̇

i
α = 0 is vanishing in the tangent directions.

Since this also applies to complex united directions at point x0: ∂iΨ(x0)γ̇
i
α = 0, ψi(x0) = 0

must apply.
From (9), in contraction with γi

α(x0)γ
j
α(x0), we obtain B g(va, vα)− B g(va, vα) = 0 for

any vector vα ∈ S2∗T, α = 1, 2, . . . , (n/2)2. Therefore, B g = B g at point x0; so, at point x0,
we have g = κ g. Evidently,

gij(x0) = κ · gij(x0), and ψi(x0) = 0. (15)

As we know, the system of Equations (2) and (9) has only one solution with respect
to the unknown functions gij(x) and ψi(x) for the initial conditions gij(x0) = g∗ij and
ψi(x0) = ψ∗

i .
Solution gij(x) = κ · gij(x) and ψi(x) = 0 satisfy the initial conditions (15), which

is unique. This theorem is proven.

Theorems 2 and 3 imply the validity of Theorem 1. The Kähler space Kn is complete if
every geodesic is complete. In this case, Kn in the definition are Kähler space under the
Equations (2) and (4).

6. Summary

The main results of our study are Theorems 2 and 3. They clearly state that in order
for the mapping to be rigid the space does not have to be complete. It suffices that there
exist a finite number of geodesics and their images that are complete.

Practically speaking, the space is uniquely defined by the given geodetics, which are
the supporting skeleton (reinforcement) of the surface.
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