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Abstract: To tackle the issue of aerial tracking failure in adverse weather conditions, we developed
an innovative two-stage tracking method, which incorporates a lightweight image restoring model
DADNet and an excellent pretrained tracker. Our method begins by restoring the degraded image,
which yields a refined intermediate result. Then, the tracker capitalizes on this intermediate result
to produce precise tracking bounding boxes. To expand the UAV123 dataset to various weather
scenarios, we estimated the depth of the images in the dataset. Our method was tested on two famous
trackers, and the experimental results highlighted the superiority of our method. The comparison
experiment’s results also validated the dehazing effectiveness of our restoration model. Additionally,
the components of our dehazing module were proven efficient through ablation studies.

Keywords: aerial tracking; adverse weather conditions; two-stage method
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1. Introduction

Visual object tracking (VOT) is an important research topic in the field of computer
vision. Generally speaking, its task is to locate a moving target in a video sequence based
on the initial frame given. The tracking task is becoming more challenging due to factors
like variable appearance, occlusion, attraction from similar objects, fast movement of the
target, etc.

In recent years, a large number of trackers have been proposed to solve this issue,
ranging from the initial architectures based on the Siam Network: SiamFC [1], SiamRPN [2]
and SiamFC++ [3]; to the architectures based on transformers: TransT [4], SwinT [5], OS-
Track [6], and others [7–9]; and recent architectures based on temporal and spatial methods:
TCTrack [10], STMTrack [11], STARK [12], and AIATrack [13]. These single-object trackers
have demonstrated remarkable performance on various mainstream Single-Object Tracking
(SOT) datasets, such as OTB [14], VOT [15], GOT10K [16], TrackingNet [17], LaSOT [18],
UAV123 [19], etc. However, these benchmarks typically simulate general tracking scenarios,
and existing trackers are also designed for such conditions. However, in reality, tracking
environments are unpredictable and dynamic, and it has been observed that state-of-the-art
trackers might not perform well in environments with strong weather disturbances.

The dataset UAV123 [19] encompasses a collection of low-altitude UAV-captured
videos. It comprises 123 medium-to-long video sequences, which are typically used as the
test set without additional training. Recent tracking algorithms have achieved very promis-
ing performance on this dataset, with OSTrack [6] achieving an AUC of 0.707, AIA [13]
achieving an AUC of 0.706, and MixFormer [7] achieving an AUC of 0.704, etc. Nowadays,
drones have been widely applied in various fields such as visual positioning, missile track-
ing, and anti-missile systems. Nevertheless, aerial tracking still faces some unresolved
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difficulties [20–22]; some of the most representative are motion blur and occlusion caused
by adverse weather conditions.

In adverse weather, such as heavy rain or fog, a classic tracking system could lose
target information due to the obstruction or interference caused by the rain and fog during
the tracking process, which would result in erroneous tracking. To address this issue,
we artificially added rain and haze to the UAV123 [19] and applied some state-of-the-art
trackers [4,6] for testing. Figure 1 shows the result of OSTrack [6] on one frame of the
UAV123 [19], and it is evident that in adverse weather, most tracking algorithms fail due to
haze. Furthermore, the performance stays almost unaffected in rainy scenarios.

Figure 1. Different trackers’ actual tracking performance on UAV123 [19] with rain and fog. (a) The
origin input. (b) The tracking result of our method and comparison method, it can be seen that in
adverse weather, trackers would probably fail. (c) This denotes that the rainy weather has limited
impact on the tracking result.

To solve the tracking problem in adverse weather conditions, we propose a novel
method for tracking, and the method is mainly divided into two stages. The noisy image
is fed into a light dehazing network to generate intermediate results and then sent into a
tracking network to obtain the final tracking result. Recent studies show that researchers
are focusing on end-to-end single-image defogging algorithms. These methods can be
divided into two kinds. One is based on prior information [23–26], and the other is based
on deep learning [27–30]. Since neural networks have become prevalent, researchers
prefer letting the network autonomously learn parameters, as traditional methods with
manually introduced prior information have limitations and lack the generalization ability
of deep learning methods. Chen et al. [31] proposed a new end-to-end gated context
aggregation network called GCANet for image dehazing, which is characterized by the
use of smooth diffusion convolution to avoid grid artifacts and the fusion of features
at different levels through gated sub-networks. Qin et al. [32] proposed a new feature
fusion attention network called FFANet, which introduces both pixel attention and channel
attention, enabling the entire network to perform well on images with dense fog and a
rich texture. The application of the attention mechanism in the dehazing field has become
increasingly widespread.

In our two-stage tracking method, a light pretrained image dehazing network called
Dilated Attention Dehaze Network (DADNet) is proposed. Our DADNet is pretrained on
the indoors of RESIDE [33]; it can obtain a proper intermediate result from a noisy input.
In the second stage, the integrated tracker can predict final bounding boxes based on the
intermediate results. We applied this two-stage tracking method to the complex field of
aerial tracking and simulated five different adverse weather scenarios from light to dense
fog referring to HazeRD [34] on the UAV123 [19], and the corresponding results indicated
that our proposed two-stage tracking method can effectively perform tracking tasks under
adverse weather scenarios.

We propose an attention module which is more powerful and faster in convergence
than Qin’s method [32]. It is based on the dilated convolution called Dilated Attention. It
has a larger receptive field to pay attention to the haze distribution of different pixels. To
verify the effectiveness of dehazing, we trained the network on the dehazing benchmark
RESIDE [33] and calculated the PSNR and SSIM compared with other dehazing networks.
The experimental result showed that our proposed network is superior to them.

Generally speaking, our main works are summarized as follows:
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• We propose a light end-to-end dehazing network called DADNet, which has a good
removal effect on high-concentration and unevenly distributed fog. DADNet is fine-
tuned to improve the object tracking that follows. Unlike standard image dehazing
that aims for overall visual improvement, our method focuses specifically on tracking
performance. We use Dilated Attention Blocks (DABs) to protect and highlight the
image features that are important for reliable tracking. This focus ensures that our
dehazing is a key part of the tracking algorithm, creating a beneficial relationship
between the two stages. DADNet also performs better than other dehazing networks
in the RESIDE [33] benchmark tests, proving its effectiveness in real-world scenarios.

• A novel two-stage tracking method is proposed to track targets under adverse weather
conditions. It combines the light dehazing backbone DADNet with a SOTA tracker.
We applied this method to UAV123 [19] with five different levels of fog density. The
experimental results show that our two-stage tracking method can effectively solve
the problem of tracking errors in adverse weather conditions.

• To further simulate adverse weather conditions, the monocular depth estimation
method was adopted to calculate the depth map of each frame sequence in UAV123 [19],
and combined with an existing rain streak [35], we added the rain and haze weather
to the well-known dataset UAV123 [19].

• In order to further analyze the impact of rainy and foggy weather on tracking per-
formance, we conducted experiments using several state-of-the-art trackers, and the
experimental results showed that the performance of tracking was greatly affected by
foggy weather.

2. Related Work
2.1. Rain Image Formation

Mathematically speaking, an image O ∈ RM×N observed on a rainy day can be
modeled as a linear superimposition of a clean background image B ∈ RM×N and a rain
streak layer R̃ ∈ RM×N , expressed as Equation (1):

O = B + R̃. (1)

From the above equation, it can be seen that to manually generate rainy day images, a
clean background image and a rain streak mask are required. The clean background image
can be sourced from the UAV123 [19] and the mask of rain streak can be obtained from
Rain100L and Rain100H [36]. Similarly, the method of removing rain streaks from an image
involves decomposing the input image O into a clean background image B and a rain streak
layer R̃ which is an ill-posed problem because the number of unknowns to be recovered is
twice that of the input unknowns [37]. However, this paper does not focus on rain streak
removal, as the impact of heavy rain on state-of-the-art trackers is minimal, making such
removal unnecessary. For a detailed result analysis, please refer to the experimental results
with rain tracking below.

2.2. Monocular Depth Estimation Method

The main task of depth estimation is to determine the depth of each pixel in an image,
a challenge that has been central to computer vision research since its early stages. As a
fundamental computer vision task, depth estimation has significant applications in many
higher-level fields, including 3D reconstruction [38], fog simulation [39], and autonomous
driving [40]. Traditional depth estimation can be mainly divided into two directions: one is
based on stereo depth estimation, and the other is based on monocular depth estimation.
Stereo depth estimation utilizes the left and right RGB images captured by a camera for
stereo matching, generates a disparity map, and, finally, calculates the depth of each
pixel through some camera parameters. Common methods include [41,42]. In contrast,
monocular depth estimation only estimates the depth of each pixel with a color image.
This poses an ill-posed problem, as the same input image could correspond to multiple
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plausible depth interpretations. Researchers have explored various methods to address
this issue: [43–46].

Godard et al. [46] proposed a self-supervised monocular depth estimation method
which outperforms other state-of-the-art self-supervised methods both qualitatively and
quantitatively on the KITTI benchmark [47]. Inspired by their work, we adopted their
pretrained model named mono+stereo_1024 × 320 on KITTI [47] and used the monocular
estimation method to generate depth maps for the UAV123 [19]. The details of the depth
map can be seen in Figure 2.

Figure 2. (a) The images comes from UAV123 [19], which itself does not contain depth information.
(b) We adopted a monocular depth estimation method called monodepth2 [46], which was proposed
by previous researchers, to generate the corresponding depth information.

2.3. Atmospheric Scattering Model

The scattering of particles in the atmosphere is the main cause of haze. Scenes in foggy
weather, whether observed by the human eye or captured by a camera, always suffer from
reduced contrast and visibility.

Mie scattering theory [48] is applicable for analyzing light propagation under hazy
conditions when the particle size involved is significantly larger than the wavelength of the
light in Figure 3. In this article, the hazing processing is formulated as Equation (2):

I(x) = J(x)t(x) + A(1 − t(x)). (2)

where I(x) and J(x) are the hazy image and haze-free background, A is the global atmo-
spheric light, and t(x) is the medium transmission map. As Zhang et al. proposed in [34], we
set the airlight to 0.76 and simulated fog under five different concentrations in UAV123 [19]
using five sets of parameters in Figure 4. Detailed configurations of these parameters are
provided in Table 1.

Figure 3. Two rain streak layers named Rain100L and Rain100H which originated from [36] were
linearly combined with the original image to generate the final UAV123 with light rain and heavy rain.
Furthermore, only a portion of the synthesized UAV123 images with rain are shown in the figure.
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Table 1. Five different parameters were used to simulate five different levels of haze interference,
with detailed configurations provided in [34] for reference.

170 m 200 m 300 m 350 m 500 m

weather condition Dense Thick Thick Moderate Light
scattering coef. β 26.1 19.6 15.5 13.7 7.8

Figure 4. Based on the generated depth map, five different sets of parameters were used in the
atmospheric model following [34] to simulate fog interference at five different concentrations in
UAV123 [19]. Furthermore, only a portion of the synthesized UAV123 [19] images with haze are
shown in the figure.

In most previous dehazing models, the transmission map t(x) or the atmospheric light
A is first estimated, followed by the recovery of the final haze-free image J(x). However, in
real-world scenarios, both t(x) and A are unknown and difficult to estimate. Recently, more
and more deep learning-based dehazing network architectures have been proposed. These
networks utilize the local receptive field of CNN to automatically learn parameter weights
on a large-scale dataset, avoiding the introduction of prior information manually. Ref. [27]
proposed an end-to-end-based CNN and multi-scale network to predict intermediate
transmission maps. However, in recent years, dehazing networks have become larger and
larger in order to keep up with the SOTA, diverging from the actual intention of dehazing.
In this article, our main task is to propose a two-stage tracking method to solve the tracking
error problem under high haze conditions. This method encompasses two distinct phases:
dehazing and tracking. This means that the dehazing network embedded within the
method must not be too large to avoid adversely affecting the tracking performance.

2.4. Visual Aerial Tracking

In recent years, with the emergence of fields such as visual localization and target
tracking, some researchers have begun to focus on the field of aerial tracking; as a result, an
increasing number of state-of-the-art tracking algorithms have shown good performance on
UAV123 [19]. The evolution of these algorithms ranges from the initial transformer-based
tracking architectures [4–7] to the newer architectures incorporating both temporal and
spatial information [10–13]. However, in the real world, aerial tracking often encounters
harsh weather conditions such as rain and haze, especially at high altitudes. The appearance
of rainy and foggy weather causes motion blur and occlusion in the photos taken by drones,
resulting in a significant decrease in algorithms’ tracking performance. To address this
issue, we propose a two-stage tracking method that integrates a dehazing backbone with
SOTA trackers, aiming to mitigate tracking errors in dense haze conditions.

3. Method

In this section, we first introduce the process of expanding UAV123 [19] to adverse
weather scenarios and the pipeline of the two-stage tracking method. The overview of our
light Dilated Attention Dehazing Network called DADNet and its significant components
is given subsequently. Finally, we describe the loss function used in the training process
of DADNet.
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3.1. Tracking Pipeline

All the details and the processes of the tracking architecture can be seen in Figure 5. To
address the tracking error caused by harsh environments, we first drew on some previous
methods and artificially synthesized UAV123 [19] images with rain and haze, and we
further simulated tracking in rainy and foggy conditions. In order to address the problem
of erroneous tracking caused by high-concentration haze, we propose a two-stage tracking
method which combines a light DADNet backbone with SOTA trackers. Finally, we applied
it to different haze levels of UAV123 [19] and improved tracking performance effectively.
Detailed results are presented in the experimental section below.

Figure 5. The pipeline is divided into three sections. (1) denotes artificially synthesized UAV123 [19]
with rain and haze. (2) denotes tracking in rainy and foggy conditions with classic methods. (3) de-
notes applying the two-stage tracking method under identical conditions.

As mentioned in Equation (1), synthesizing a dataset with rain artificially requires
a clean background image B ∈ RM×N and a rain streak mask R̃ ∈ RM×N ; then, they are
superimposed linearly to obtain the final image. Yang et al. [36] provided the correspond-
ing rain streak mask Rain100L and Rain100H, and we obtained the corresponding clean
background images from the tracking benchmark UAV123 [19]. Consequently, we were
able to create versions of the UAV123 dataset with light and heavy rain conditions.

The UAV123 [19] does not contain depth information, and its image sequences were all cap-
tured by monocular cameras. We used the self-supervised monocular depth estimation method
proposed by Godard et al. [46] and applied a pretrained model named mono+stereo_1024× 320
on KITTI [47] directly to predict the depth information of UAV123 [19]. Based on Equation (2))
and inspired by the method of fog simulation proposed by Zhang et al. [34], we set five groups
of parameters to obtain five different concentrations of foggy UAV123. Please refer to Table 1
below for detailed parameter configurations.

After completing the dataset for rain and haze conditions in UAV123, we conducted
tests using SOTA trackers and drew a conclusion: the effect of rain on aerial tracking
is minimal, but the effect of haze is significant, and it will increase gradually with the
concentration of haze. For a detailed analysis, please refer to the experimental section.

To address aerial tracking errors in adverse weather conditions, we propose a two-
stage tracking method which is composed of a light dehazing backbone and an efficient
tracker. In the first stage, we trained a light dehazing backbone to extract commendable
intermediate results from the noisy input on the indoors of RESIDE [33], while in the second
stage, pretrained SOTA trackers such as [4,6] were used to predict final bounding boxes
based on the intermediate results. Finally, we tested our two-stage tracking method across
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five distinct levels of simulated foggy conditions. The experimental results demonstrate
the effectiveness of our approach.

3.2. Overall Architecture of Our Model

In this section, we introduce the proposed DADNet, and its detailed structures are
illustrated in Figure 6. Our network is designed as a light encoder–decoder architecture. In
the encoder, the foggy image is first subjected to feature pre-extraction through three layers
of convolutional layers, and Instance Norm and ReLU are applied immediately after each
convolutional layer. Next, the obtained feature maps are sequentially processed by three
groups of Dilated Attention Blocks (DABs) and residual blocks, with quantities N1, N2,
and N3, respectively. It should be noted that the channel number C of the feature map will
remain unchanged during this process in order to preserve semantic information during
feature extraction. After passing three groups of dilated attention modules, the network
can adaptively learn the haze distribution across the entire image, focusing more effectively
on areas with dense haze.

Figure 6. (a) Overview of the DADNet structure. The image passes through a pre-set convolutional
layer and goes through DAB and residual block sequentially, repeated N1, N2, and N3 times, respec-
tively. Finally, the MSAB module performs multi-scale fusion on the results of the three modules and
outputs intermediate results through a transposed convolution layer. (b) Illustration of the core mod-
ule named DAB. It adds channel attention and pixel attention after repeated dilated convolutional
layers and introduces residual connections.

The decoder’s architecture is efficiently designed to process the feature maps. It first
adaptively learns from the three groups of feature maps generated in the encoder. These
maps are then integrated through weighted summation, which fuses multi-scale feature
information to produce the final feature map. This map undergoes further transformation
into the haze-free image via a sequence of one deconvolution layer and two convolution
layers, with each layer followed by Instance Norm.

As highlighted in [49,50], pre-calculating the edge of the input image is crucial for
network learning. Following their idea, we also concatenate the input image with the
pre-computed edges along the channel dimension as the input to our entire network.

3.3. Feature Attention

As [32] mentioned, most dehazing networks do not differentiate between channel
information and pixel information, leading to challenges in handling images with uneven
fog concentration distributions. To address this issue, Qin et al. [32] proposed a feature
attention module, which mainly includes pixel attention and channel attention, making



Mathematics 2024, 12, 1216 8 of 18

the entire network more flexible. Building on this foundation, we made improvements by
adding batch normalization after both of the two convolutional layers which can be seen
in Figure 7, further enhancing the dehazing performance and the convergence speed. For
specific details, please refer to the ablation experiments below.

Channel attention (CA) primarily learns different type of channel information and
eventually applies weighted processing to them. Initially, global average pooling is used to
fuse the channel information for the input Ic, transforming the shape of the feature map
from C × H × W to C × 1 × 1. Following this, a 1 × 1 convolution operation is performed,
accompanied by batch normalization. Finally, the output is passed through the activation
function ReLU. This process can be summarized as follows:

C̃Ac = δ(BN(Conv(AvgPooling(Ic)))). (3)

In order to further extract information from the feature map, the intermediate results
C̃Ac are processed through 1 × 1 convolutional operations, followed by corresponding
batch normalization. Furthermore, the weight CAc is finally output through the Sigmoid
activation function. The entire process can be summarized as follows:

CAc = σ(BN(Conv(C̃Ac))). (4)

Finally, we multiply the weights CAc and the input Ic element-wise and obtain the final
output of channel attention Fc:

Fc = CAc
⊗

Ic. (5)

Pixel attention (PA) can focus more on local feature information mainly to solve the problem
of uneven fog distribution.

Similar to CA, pixel attention first feeds the input Fc into two convolutional layers
with the corresponding activation functions ReLU and Sigmoid to gain the weight PAc. It
is worth noting that, in our approach, batch normalization is applied following the two
convolutional layers. This process enhances the network’s stability and performance, and
it can be described as follows:

PAc = σ(BN(Conv(δ(BN(Conv(Fc)))))). (6)

Finally, we perform weighted processing by an element-wise multiplication of the input Fc
and the weights PAc, resulting in the final output of pixel attention Oc:

Oc = PAc
⊗

Fc. (7)

Figure 7. The architecture of channel attention and pixel attention. It incorporates batch normalization
before the convolutional layer based on the work of our predecessors.
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3.4. Dilated Attention Block

In the past, most visual tasks on the market tended to employ down-sampling to
gradually merge feature information of different scales [51–53]. This allowed the final
feature map to capture multi-scale information from the original image, which improved
the model’s generalization ability and helped to avoid over-fitting. However, for certain
pixel-level prediction tasks, there is a phenomenon of spatial resolution loss during the
multi-scale feature extraction process through down-sampling. Inspired by the previous
findings [31,54], we use dilated convolution. This method is designed to address the
shortcomings of ordinary convolution receptive fields. By employing dilated convolution,
we maintain a constant number of channels during feature extraction, avoiding down-
sampling and, thereby, preventing the loss of spatial resolution.

Dilated convolution is different from regular convolution; it can be seen as a convolu-
tion with a dilated filter. In the one-dimensional case, given a one-dimensional input f and
a convolution kernel of size k, the output of the corresponding dilated convolution can be
described as follows:

( f
⊗

r
w)(i) =

k

∑
j=1

f [i + r × j]w[j], (8)

where r represents dilation rate. In this way, it can increase the receptive field from k to
r × (k − 1) + 1.

In addition, we incorporate a convolutional layer with a kernel size of 2r − 1 which
shares weights across all channels, referring to [31,55], before dilated convolutions to avoid
grid artifacts [31,56] caused by subsequent expansion convolutions. The entire process of
implementing the dilated convolution can be described as follows:

FM = ReLu(IN(Conv(SharedConv(I)))), (9)

where I and FM denote input and feature map, respectively; IN stands for Instance Norm.
Furthermore, the above process is executed twice.

To endow the model with a global modeling capability, we add the attention module
mentioned above after the dilated convolution and apply residual connections. This ap-
proach implicitly further amplifies the receptive fields of the dilated convolution, enabling
the network to focus more effectively on the global distribution of haze. The specific process
can be described as follows:

Out = Relu(FM + PA(CA(FM))), (10)

where FM denotes the feature map by dilated convolution; CA and PA stand for channel
attention and pixel attention, respectively.

3.5. Multi-Scale Attention Block

Building on the approach outlined by Qin et al. (2020) [32], we process the data
through three distinct DAB modules as previously described. Subsequently, we concate-
nate the feature maps derived from each set and apply feature attention mechanisms to
derive adaptive learning weights effectively. Finally, we execute a weighted fusion of
the three distinct sets of feature maps to synthesize the final feature map. The above
processes are named as Multi-Scale Attention Bloack (MSAB), and this enables the entire
network to assimilate feature information across various scales while striving to preserve
semantic integrity.

3.6. Training Loss

In this section, we introduce our innovative loss function. Some previous deep
learning-based dehazing methods [27,28,57] adopt L2 loss while others [32,58] adopt L1
loss. Unlike previous methods, we directly use the image dehazing metric SSIM as the loss
evaluation criterion. However, considering that SSIM tends to increase during the training
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process, we finally took the opposite of SSIM and used it as the final loss function, which
can be described as follows:

L (θ, Y1, Y2) = −
(2µy1 µy2 + C1)(σy1y2 + C2)

(µ2
y1
+ µ2

y2
+ C1)(σ2

y1
+ σ2

y2
+ C2)

, (11)

where θ represents the parameters of the whole network; Y1 and Y2 correspond to the
output of the net and ground truths, respectively; µy1 and µy2 indicate the means of Y1 and
Y2; σy1 , σy2 denote the standard deviation of Y1 and Y2; and σy1y2 represents the covariance
of Y1 and Y2.

It is important to emphasize that employing the Structural Similarity Index (SSIM)
as the loss function is more advantageous than utilizing the L2 loss function. A specific
quantitative analysis is presented in the detailed results of the ablation experiment.

4. Experiments
4.1. Implementation Details

Our rain and haze tracking was divided into two stages: firstly, the proposed dehazing
network was trained on the dataset RESIDE [33]. Then, the trained dehazing network
was embedded into the current SOTA tracking algorithm. By comparing the tracking
performance, we verified the superiority of our new proposed tracker. For the dehazing
network’s training, we maintained the input and output channels of each dilated attention
block at 64. The configuration of dilated attention blocks was established as N1 = 3,
N2 = 3, and N3 = 2 for the three respective groups, with their dilation rates set to {2, 4, 6},
respectively. Following this, we set the dilation rate of the residual block after dilated
attention as {1, 2, 4}, respectively. It should be noted that the whole network was trained
in 100 epochs with the Adam optimizer. The initial learning rate was set at 0.005 and
underwent a decennial reduction every 40 epochs. The entire training process was executed
on an NVIDIA GeForce GTX RTX4090 with 24 GB of VRAM, where we configured the batch
size to be 10. The hardware on which our DADNet was tested was an NVIDIA GeForce
GTX2080Ti graphics card. To measure the FPS, we calculated it based on the processing
time per frame. Specifically, the additional processing time per frame introduced by our
DADNet was 2 ms (FPS = 500).

4.2. Evaluation Metrics

The efficacy of the object tracking algorithms was quantitatively assessed through
metrics such as success and precision, which are contingent upon defined thresholds for
overlap and location error.

4.2.1. Success Rate

The success rate (S) evaluates the overlap between the predicted bounding box (Bp)
and the ground truth bounding box (Bt). It is defined as follows:

S =
Area(Bp ∩ Bt)

Area(Bp ∪ Bt)
> τo, (12)

where τo is the overlap threshold. This metric is threshold-dependent, with a higher score
indicating a better tracking performance.

4.2.2. Precision

The precision (P) measures the accuracy of the tracker in terms of the distance between
the center points of Bp and Bt. This metric is also threshold-dependent, and is defined
as follows:

P =

(√
(Cpx − Ctx)2 + (Cpy − Cty)2 < τl

)
, (13)
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where τl represents the location error threshold, and Cpx, Cpy, Ctx, Cty are the x and y
coordinates of the center points of Bp and Bt, respectively.

We used the area under the curve (AUC) as the overall metric to quantify the performance
of the tracker. The plots of success rate and precision are shown in Figures 8 and 9.

Figure 8. The overall performance of our method and TransT [4] (TransT-N2 in this figure) in
adverse weather conditions on the UAV123 [19] dataset. It can be seen that weather conditions have
a negative impact on the performance of TransT [4]. As the result of the implementation of our
DADNet, an improved performance is obtained, effectively mitigating the negative effects of the
adverse weather conditions.

4.3. Evaluation on RESIDE

In this section, we trained the model on the Indoor subset of the dehazing benchmark
RESIDE [33] and tested it on the corresponding test set. To measure the algorithm’s
performance, we compared it with some other networks such as CAP [59], AOD-Net [60],
DehazeNet [27], GFN [61], and GCANet [31]. The data clearly demonstrated that our
proposed network not only held its ground against other established dehazing networks
but also surpassed CANet [31] in PSNR by a notable margin of 1.48, showcasing its
superior performance. In addition, we selected the common metrics SSIM and PSNR [33]
for dehazing evaluation, and except for the results of our proposed dehazing network, all
other results are from their respective papers (Table 2).
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Figure 9. The overall performance of of our method and OSTrack [6] in adverse weather conditions on
the UAV123 [19] dataset. Adverse weather conditions had negative effects on OSTrack [6]. However,
the application of DADNet led to a notable enhancement in the tracking, successfully diminishing
the impact of harsh weather on the performance.

It is important to highlight that we did not benchmark our dehazing results against
the current state-of-the-art (SOTA) methods; this decision stems from the fact that our
application domain differs from those typically addressed by SOTA benchmarks.

Table 2. Quantitative comparisons of our proposed network with several other light and classic
dehazing networks on the RESIDE [33] indoor dataset. It is apparent that the dehazing accuracy of
our network exceeds theirs.

GRM [62] CAP [59] AOD-Net [60] DeHaze-Net [27] GFN [61] GCANet [31] Ours

PSNR 18.86 19.05 19.06 21.14 22.30 30.23 31.71 ↑1.48
SSIM 0.8600 0.8400 0.8504 0.8472 0.8800 0.9800 0.9845 ↑0.0045

The primary objective for the SOTA tasks is to climb the ranks through achieving
heightened PSNR and SSIM scores. However, our innovative two-stage tracking method
demands a more agile dehazing network. The current SOTA dehazing networks are
excessively bulky and, thus, incompatible with our streamlined method. Our network’s
advantage lies in its lightweight design, ensuring that it meets our specific needs while
maintaining high performance.
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4.4. Synthesis of the Datasets

To assess the efficacy of our novel two-stage tracking approach under rainy conditions,
we selected the UAV123 dataset as the cornerstone for our evaluation, owing to its broad
endorsement and prevalent application within the aerial tracking research sphere. The
UAV123 dataset offers a rich compilation of low-altitude aerial footage, establishing itself
as a quintessential benchmark for gauging the performance of tracking algorithms within
authentic environments. Additionally, this dataset encompasses a spectrum of demanding
scenarios, including occlusions, rapid movements, and scale variations, which furnishes a
thorough platform to scrutinize the resilience and flexibility of our proposed method.

In our pursuit to emulate inclement weather conditions for robust testing, we in-
geniously augmented the UAV123 dataset by overlaying synthetic rain streaks, thereby
crafting two derivative datasets that depict scenarios of light and heavy rain. Concurrently,
to simulate haze, we utilized the sophisticated HazeRD simulation tool, which is renowned
for its precise modeling of haze-related scattering and attenuation effects, as per the atmo-
spheric scattering model. This integration with HazeRD allowed us to generate a continuum
of fog-affected environments, each distinguished by varying visibility constraints. This
initiative to blend UAV123 with HazeRD’s simulations establishes a formidable testing bed,
enabling us to meticulously gauge the performance of our two-stage tracking method across
an array of weather conditions, from pristine to the severely hampered, and underscores
its viability for deployment in real-world aerial tracking contexts.

4.5. The Impact of Rain on Tracking Performance

We artificially used existing rain steak marks to synthesize two datasets with light rain
and heavy rain in UAV123. Figure 3 shows the original images and the synthesized images.
Utilizing the synthesized datasets described above, we conducted performance evaluations
employing state-of-the-art trackers.

Table 3 presents a comparative analysis of the OSTrack [6] and TransT [4] trackers’
performance on the original, light rain, and heavy rain datasets. The data in the table
suggest that rainy conditions appear to have a negligible effect on the tracking efficacy of
unmanned aerial vehicles. Specifically, for the OSTrack [6] tracker, the AUC decreased by
1.63 percentage points in heavy-rain conditions, while it only decreased by 0.05 percentage
points in light-rain conditions. In the same way, for the TransT [4] tracker, the AUC
decreased by 2.15 percentage points in heavy-rain conditions, while it only decreased by
0.24 percentage points in light-rain conditions. Consequently, our focus is on enhancing
tracking performance in foggy scenarios, as rainy conditions have not shown a substantial
impact warranting optimization.

Table 3. Tracking performance of SOTA trackers (OSTrack [6], TransT [4]) under light rain and heavy
rain conditions. The blue arrows represent performance degradation. It can be observed that rain has
minimal impact on tracking performance.

Tracker
Original Image Light Rain Heavy Rain

AUC OP50 OP75 Prec. AUC OP50 OP75 Prec. AUC OP50 OP75 Prec.

OSTrack 70.52 86.28 64.45 92.04 70.47 ↓0.05 86.18 64.17 91.90 68.89 ↓1.63 84.03 62.51 89.54

TransT 66.53 82.13 59.99 87.43 66.29 ↓0.24 82.08 59.31 87.03 64.38 ↓2.15 79.47 57.73 84.66

4.6. The Impact of Haze on Tracking Performance

Similarly, we used our generated depth maps to artificially synthesize the UAV123
under five different levels of haze followed by [34], and detailed parameters are described
in Table 1. Figure 4 displays the actual results of UAV123 [19] under the five different levels
of haze.

Firstly, we evaluated the performance of the SOTA trackers such as OSTrack [6] and
TransT [4] on five different concentrations of foggy UAV123. Furthermore, we assessed
the efficacy of our innovative two-stage tracking method that combines DADNet with the
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associated tracker, using the same datasets. Detailed comparison results are presented
in Table 4. It is not difficult to observe that tracking performance significantly decreases
in a highly foggy environment. Specifically, for the OSTrack [6] tracker, we observe a
significant 36.42% drop in AUC when operating in adverse weather conditions. Similarly,
the performance of the TransT [4] tracker is notably affected, with a 29.94% decrease in AUC
in these challenging visibility scenarios. Furthermore, it is clear that our proposed network
architecture demonstrably alleviates the adverse effects of such environmental factors.

Table 4. Performance comparison between the original tracker and our proposed two-stage tracking
method in five different levels of foggy environments. The red arrows represent performance
improvement. It can be seen that as the concentration of fog increases, the tracking speed (FPS) is not
influenced, and the performance gradually declines, but our two-stage tracking method alleviates
this problem.

Weather
OSTrack DADNet+OSTrack TransT DADNet+TransT

AUC Precision FPS AUC Precision FPS AUC Precision FPS AUC Precision FPS

Origin 70.52 92.04 41.4 70.41 91.82 39.3 66.53 87.43 69.1 66.46 86.89 60.7

Light Fog 67.30 88.27 41.4 67.37 ↑0.07 91.47 39.3 63.53 84.11 69.1 63.59 ↑0.06 84.87 60.7

Moderate Fog 63.36 78.16 41.4 63.50 ↑0.14 83.97 39.3 58.96 78.26 69.1 59.47 ↑0.51 79.64 60.7

Thick Fog (15.5) 60.10 74.18 41.4 61.06 ↑0.94 80.69 39.3 56.31 74.78 69.1 58.91 ↑2.60 79.62 60.7

Thick Fog (19.6) 48.50 63.08 41.4 52.20 ↑3.70 68.84 39.3 47.05 62.75 69.1 50.17 ↑3.12 68.79 60.7

Dense Fog 34.10 43.63 41.4 42.89 ↑8.79 56.88 39.3 36.59 49.47 69.1 38.56 ↑1.97 53.36 60.7

4.7. The Comparison of Rain and Fog

Through experiments, we found that rain has less impact on object tracking than fog.
Furthermore, it can be further explained from a mathematical perspective in this article
that the hazing processing and raining are formulated as Equations (1) and (2).

In real life, the R in Equation (2) is usually quite sparse, and the impact of rain on
images is mainly reflected in the local gradient distribution rather than in the color distri-
bution. Therefore, rain does not affect the image in its entirety. Simultaneously, the main
operations in the convolutional neural networks are the cross-correlation computations of
convolutional layers and average pooling, which can reduce the effect of local gradient
distribution interference on target feature extraction. So, in general, the tracking algorithm
is relatively less disturbed by rain.

Furthermore, in Equation (2), we can see that each pixel of the original images is
subjected to a weighted average operation with the global light intensity. Furthermore,
owing to the intrinsic characteristics of fog, the transmittance t(x) of the medium decreases
as the depth value of the pixel point increases, that is, as objects become farther from the
camera. Consequently, the extent to which the image is influenced intensifies. Hence,
foggy conditions can markedly diminish the sharpness and contrast of an image, leading
to widespread blurring and a reduction in contrast levels. However, global blurring
and diminished contrast within an image can substantially affect the performance of a
convolutional neural network. This is due to the fact that such alterations directly disrupt
the CNN’s foundational mechanisms for feature extraction and decision-making processes
in classification tasks.

From a mathematical standpoint, blurring leads to the edges and texture details in an
image becoming less defined, which, in turn, diminishes the convolutional layer’s capacity
to extract features via the process of weighted summation. The reduction in contrast
narrows the spectrum of pixel values, thereby limiting the dynamic scope of activation
function outputs. This limitation reduces the network’s ability in identifying key features.
The forfeiture of such detailed information becomes especially critical at the network’s
deeper levels, significantly impairing its object recognition capabilities. Furthermore, the
deterioration in image quality may also interfere with the optimization process, leading
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to issues such as vanishing or exploding gradients, which can make the training process
more challenging.

4.8. The effDilated Attention Block

Quantitative data show that our two-stage tracking frame improved OSTrack [6] with
8.79% of AUC and 13.25% of precision in adverse weather. It also improved TransT [4]
with 3.12% of AUC and 6.04% of precision in thick fog. To enhance the persuasiveness and
conciseness of our results, we graphically represented the tracking performance of two
trackers across various scenarios. For detailed insights, please refer to Figure 9.

Evidenced by the graphical data, our proposed tracking method exhibits a significant
improvement over the original tracker, particularly under high-concentration haze condi-
tions, indicating robustness at different levels of haze. It is worth mentioning that while
applying our two-stage tracking method to the original UAV123 dataset, there may be a
slight and often negligible deviation in performance. This is attributed to the two-stage
nature of our tracking approach, as opposed to a seamless end-to-end process. However,
the excellent performance improvement in high fog conditions will compensate for the
slight performance decrease on original images.

Therefore, the addition of the Dilated Attention Block further enhances the effective-
ness of the dehazing network, making it more efficient and converge faster when dealing
with high-concentration fog, thus contributing significantly to the overall tracking per-
formance. Compared to Qin’s method, the Dilated Attention Block is able to capture key
features in the image more efficiently and adapt to different foggy environments faster
by combining dilated convolution and attention mechanisms. As a result, our two-stage
tracking method not only demonstrates superior performance in high-concentration foggy
environments but also further improves the efficiency and accuracy of the dehazing net-
work through the application of the Dilated Attention Block.

4.9. Ablation Study and Analysis

To further demonstrate the effectiveness of our proposed dehazing network, we con-
ducted ablation experiments on different modules of the network, including the following:
(1) with/without attention in dilated convolutions block; (2) with/without normalization
in CA and PA; (3) using L2 loss or SSIM loss.

To conduct the ablation experiments mentioned above, we configured four different
network architectures by gradually adding each module to the initial network. The experi-
mental results are shown in Table 5. It is evident that the dehazing performance continued
to improve in tandem with the progressive refinement of the network architecture. From
the data in the table, it can be seen that using attention in dilated convolution yielded a
gain of about 0.29 in PSNR; adding normalization in CA and PA further improved PSNR
by about 0.39. Finally, using the SSIM loss function instead of the regular loss function also
improved PSNR by about 0.4. Obviously, all the components of our network demonstrated
positive effects.

Table 5. Ablation experiments on different components of the dehazing backbone on SOTS indoor
RESIDE. The table mainly includes attention in dilated convolution, normalization in CA and PA,
and SSIM loss.

Attention in
Dilated Conv ✗ ✓ ✓ ✓

Normalization
in CA and PA ✗ ✗ ✓ ✓

SSIM Loss ✗ ✗ ✗ ✓

PSNR 28.63 28.92 ↑0.29 30.31 ↑0.39 31.71 ↑0.40
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5. Conclusions and Future Research

In this paper, we propose a two-stage aerial tracking method under adverse weather
conditions. Specifically, we introduce a lightweight dehazing network called DADNet.
DADNet is a lightweight network designed for image restoration, utilizing an encoder–
decoder structure. In the encoder part, DADNet processes the image through successive
layers to distill features and then employs Dilated Attention Blocks (DABs) to concentrate
on regions shrouded in dense haze, enhancing the tracking accuracy. In the decoder part,
it combines these features to create a clear, restored image. This network is effective in
learning the distribution of haze in images and efficiently removing them. Then, we
construct a two-stage tracking method that combines the proposed DADNet with state-
of-the-art trackers. Additionally, we expanded the UAV123 dataset to include scenarios
with rain and haze and applied our method to this expanded dataset. It is easily observed
that haze can significantly impair the accuracy of tracking methods. The results of the
comparison experiments demonstrated the effectiveness of our two-stage method.

In future research, we aim to broaden and refine our two-stage tracking strategy
through a series of initiatives. We plan to encompass a wider array of weather conditions,
including snow and sandstorms, to thoroughly evaluate the robustness of our method.
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