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Abstract: Network alignment is an important technique with applications in diverse domains, such as
social network analysis, bioinformatics, and knowledge graph construction. Many of the alignment
methods rely on predefined anchor nodes, which are often unavailable in real-world scenarios.
To overcome this limitation, we propose MANNA (MAtched Neighbor consistency for Network
Alignment), an unsupervised approach to network alignment that exploits the concept of Matched
Neighborhood Consistency (MNC). The hypothesis of MANNA is that nodes with higher similarity
within their local neighborhood structures are more likely to be aligned across different networks.
To learn the structural and attribute features of networks, MANNA uses a Graph Neural Network
(GNN). It extracts multi-order node embeddings to capture multi-scale neighborhood features, which
are then used to construct similarity matrices for the alignment process. MANNA introduces a key
innovation by using pseudo-anchor nodes identified by the MNC strategy to provide self-supervised
learning signals in the absence of real anchor nodes. This approach enhances the model’s ability
to learn accurate network representations and improve alignment accuracy. Alignment results are
iteratively refined by applying the MNC strategy, which strengthens the consistency of neighborhood
structures between matched nodes. Extensive experiments on three public datasets show that
MANNA outperforms existing network alignment methods.

Keywords: network alignment; graph neural network; matched neighborhood consistency;
pseudo-anchor nodes; self-supervised learning

MSC: 68T01

1. Introduction

Network alignment, also known as graph alignment, is a technique used to identify
and match nodes that represent the same entity or role in different networks [1]. This
technique has various applications in multiple domains. For instance, in social network
analysis, network alignment can identify the accounts of the same user on different plat-
forms and enable friend recommendation [2]. In bioinformatics, identifying and comparing
similar biological functions among different species can promote the transfer of functional
knowledge across species [3]. Aligning the gene co-expression network of patients provides
a scientific basis for precise treatment [4]. Furthermore, network alignment can facilitate the
construction and integration of knowledge graphs by combining knowledge from different
sources to enhance the completeness of knowledge graphs [5,6].

Most traditional network alignment algorithms rely on heuristic methods or optimiza-
tion strategies and perform well on small to medium-sized networks [1,7]. However, as
networks become larger and more structurally complex, these conventional methods face
significant challenges in terms of computational efficiency and scalability. To overcome
these challenges, embedding-based network alignment techniques have attracted much
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attention from the academic community in recent years. These techniques can effectively
handle more complex network structures and large datasets. Their main advantage is that
they map network nodes into a low-dimensional vector space, and these representations
(node embeddings) aim to preserve the topological structure and node attributes of the
network [8]. Through this mapping, nodes representing the same entity can have similar
representations even in different networks, thus simplifying the task of node correspon-
dence identification. Embedding-based network alignment methods are mainly divided
into two categories: one is to learn the vector representations of nodes by random walk or
by directly exploiting the network structure, such as REGAL [9], NAWAL [10], PALE [11],
and so on. These methods typically adopt a shallow neural network model and optimize
the loss function to ensure that the nodes with similar structures in the network also
maintain consistency in the vector representation. The other type of method captures the
high-level structure and semantic information of the network more deeply through a Graph
Neural Network (GNN), such as GAlign [12], WAlign [13], and CCNE [14]. These models
use a multi-layer neural network structure, where each layer can effectively aggregate
information from neighboring nodes to learn more robust node embeddings. This not only
improves the accuracy of the alignment, but also increases the adaptability of the model to
the complexity of the network structure.

Although network embedding technology has remarkable advantages in feature
extraction and representation, which have greatly advanced research in network alignment,
this field still faces several limitations. First, the sensitivity of network alignment methods
to structural noise is a critical issue. Since the node representation is highly dependent on
the network topology, noise or abnormal connections in the network may be erroneously
incorporated during the model learning process and amplify these effects, which in turn
negatively affects the accuracy of the alignment results. Second, some models may require
known node correspondences (anchor nodes) to aid the learning process during the training
phase. However, in real-world applications, it is often difficult to collect a large number of
anchor nodes, and this reliance on prior knowledge can limit the applicability of the model.

The concept of Matched Neighborhood Consistency (MNC) [7,15] has gained attention
as a key principle in enhancing network alignment. MNC focuses on the similarity between
the neighborhoods of nodes in different networks, positing that nodes with similar local
structures are more likely to represent the same entity. This approach aims to improve
network alignment by considering the similarity of local structures rather than global
network properties. Although MNC has potential, its application in unsupervised net-
work alignment remains an open research question. Most existing methods do not fully
exploit the power of MNC to enhance alignment accuracy, particularly in the absence of
anchor nodes.

This paper proposes an unsupervised network alignment method called MANNA
(MAtched Neighbor consistency for Network Alignment) to address the above challenges.
Our approach employs a GNN model to capture network structure and attributes, and
trains the GNN in an unsupervised manner. To ensure consistency in node embeddings be-
tween the source and target networks, we use a weight-sharing mechanism during training.
Furthermore, to improve the model’s robustness to noise, a random perturbation strategy
is implemented. The GNN produces multi-order node embeddings from different layers,
which can capture the nodes’ multi-scale features. These multi-order node embeddings are
used to construct the alignment matrix. High-quality pseudo-anchor nodes are identified
based on MNC using the alignment matrix. These anchor nodes are used to refine the GNN
model and optimize the network representation. In the final step, we refine the alignment
matrix through a fine-tuning process, which reinforces the consistency of the neighborhood
structures between corresponding nodes and improves alignment accuracy.

The main contributions of our study are as follows:

(1) We propose an unsupervised network alignment method that significantly reduces
the model’s sensitivity to network noise by introducing a random perturbation strat-
egy. In addition, we use a self-supervised learning approach to optimize network
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representations, thereby mitigating the excessive dependence on anchor nodes in
existing methods;

(2) Following the MNC principle, we adopt two optimization strategies. First, we care-
fully select high-confidence pseudo-anchor nodes by analyzing the neighborhood sim-
ilarity of cross-network node matches, which are used in subsequent self-supervised
learning processes. Second, we apply an iterative update method to refine the align-
ment matrix, increasing the similarity between nodes with similar neighborhood
structures across the two networks, thereby further improving the accuracy of net-
work alignment;

(3) We performed experimental evaluations on three publicly available datasets. The
results show that the proposed method is clearly superior to the most advanced
comparison method, and its validity is effectively verified;

The remainder of this manuscript is structured as follows: Section 2 introduces several
current embedding-based network alignment methods; Section 3 discusses the MANNA
in more detail; in Section 4, experiments are performed to prove the effectiveness of the
MANNA; finally, the research content of the manuscript is summarized.

2. Related Work

Embedding-based network alignment methods typically consist of the following steps:
Network Embedding: Network embedding is the process of mapping each node in

the network to a low-dimensional vector space using a network-embedding algorithm such
as Node2Vec [16] or LINE [17], or a graph neural network such as GCN [18] or GAT [19].
The objective of this process is to capture the structural information of the nodes. If the
network contains node attribute information, these attributes are also considered during
the embedding process to generate richer node embeddings.

Embedding Space Construction: After the embedding process, each node in the
network is assigned a vector representation. Nodes with similar embeddings are positioned
closer to each other in this embedding space. However, direct node matching can lead to
incorrect matches if the embedding spaces of different networks are learned independently.
This is because the embedding spaces of different networks may have different distributions,
which can cause the positions of similar nodes in the embedding space to not align. In this
case, it is necessary to align the embedding spaces to ensure that matching nodes from
different networks maintain similar feature representations in the final embedding space.

Node Matching: In the embedding space, the similarity between nodes can be evalu-
ated by calculating the similarity between node embedding vectors (e.g., cosine similarity).
This allows for the identification of corresponding node pairs in two networks. This pro-
cess typically involves finding the most similar pair of nodes in the embedding space or
employing more sophisticated matching strategies.

Some works use anchor nodes to align embedding spaces. PALE [11] proposes a
two-stage framework that consists of embedding and matching. In the embedding phase,
PALE maps the networks to a low-dimensional space. In the matching phase, PALE ensures
that anchor nodes remain close in the embedding space by learning a mapping function.
To optimize the mapping process, PALE employs a loss function based on anchor nodes to
minimize the difference in node embeddings before and after mapping. PALE provides
two options for mapping functions: linear mapping and multi-layer perceptron (MLP).
RAN [20] is similar to PALE as it also uses anchor nodes to reconcile the embedding spaces
of the source and target networks. To enhance node representation, RAN generates a
two-layer network consisting of a structure layer and an attribute layer. Biased random
walk and language modelling techniques are then used to learn the node embedding. In
contrast, CCNE [14] uses a collaborative optimization strategy instead of relying on complex
mapping functions. CCNE employs two separate encoders to obtain node embeddings and
reconstruct the original networks using a shared decoder. The objective function comprises
intra-network and inter-network losses. Technical term abbreviations are explained when
first used. The intra-network loss aims to minimize the reconstruction error to preserve the



Mathematics 2024, 12, 1211 4 of 20

internal structure of the network. Simultaneously, the inter-network loss aims to minimize
the distance between anchor nodes to preserve the inter-network structure. The encoder
and decoder parameters are updated through back-propagation during training. The
two losses work together to gradually bring the embedding space closer. Additionally,
CCNE employs a hard negative sampling strategy to maintain distance between anchor
nodes and non-anchor nodes (hard negative samples) in the latent space.

Obtaining anchor nodes in the real world can be difficult, making it challenging to
align the embedding space under unsupervised conditions. NAWAL [10] uses Generative
Adversarial Networks (GAN) [21] to learn the correspondence between networks adap-
tively. After embedding learning, NAWAL employs GAN to initialize the mapping function,
aligning the embedding space of the source network with that of the target network. The
aligner generates mappings to match nodes, while the discriminator distinguishes real from
generated embeddings. NAWAL selects the most similar pair of nodes as the initial anchor
and iteratively optimizes the mapping function, minimizing the embedding difference
using the Procrustes solution until the optimal mapping is found. Similarly, WAlign [13]
optimizes node correspondences through self-supervised learning without anchors. This
transforms the graph alignment problem into minimizing the Wasserstein distance in the
embedding space. The Wasserstein distance discriminator is a neural network that opti-
mizes embeddings through an adversarial training framework. Its goal is to maximize the
similarity of pairs of similar nodes by generating pseudo-anchors. These pseudo-anchors
are defined automatically based on the Wasserstein distance principle and updated itera-
tively to reflect the best node correspondences. REGAL [9] uses implicit matrix factorization
to learn node embeddings without relying directly on the network adjacency structure.
It generates identity information for each node by constructing a similarity matrix that
combines structure and attribute information. The embedding representation is learned by
computing its similarity with randomly selected landmark nodes. This approach provides
a network alignment solution without explicit anchors.

Parameter sharing is a crucial technique in neural networks that enables the model to
reuse the same weights for different inputs, rather than learning a new set of weights for
each input. This strategy is especially significant in network alignment, as it guarantees that
corresponding nodes in the source and target networks can share a consistent embedding
representation. By utilizing parameter sharing, GAlign [12] is able to effectively map the
nodes of both the source and target networks into a shared embedding space without the
need for labeled data. To achieve this, GAlign employs the multi-order characteristics of
the Graph Convolutional Network (GCN) [18] to capture node information across different
neighborhood structures at varying levels of embedding. This method of multi-order
embedding enables the model to comprehend the global network structure while retaining
the local structure information, resulting in a more profound comprehension of network
alignment. GAlign enhances the resilience of alignment outcomes by simulating noise
and inconsistency in actual networks through data augmentation and noise adaptation
loss functions. GATAL [22] also utilizes the parameter-sharing strategy. Unlike GAlign,
GATAL adopts the multi-layer architecture of the Graph Attention Network (GAT) [19].
GAT assigns different weights to each node through the attention mechanism, enabling
GATAL to capture the complex relationships between nodes more effectively.

Inferring node correspondences solely based on network structure and attribute infor-
mation is a challenging task when explicit anchor links are absent. To enhance alignment
accuracy, researchers have investigated various strategies. For instance, Grad-Align [23] uti-
lizes GNN to acquire low-dimensional representations of nodes, capturing both structural
and attribute information from the networks. The approach adopts a gradual alignment
strategy to iteratively identify and match node pairs across networks, leveraging informa-
tion from previously aligned nodes to guide subsequent matches. In addition, Grad-Align
utilizes the Tversky similarity measure to align networks with different scales, thereby
improving the accuracy of the alignment process. Grad-Align+ [24] also introduces node
feature enhancement technology to enrich the node feature representation by calculating
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the centrality of nodes. SANA [25], on the other hand, continuously optimizes the similar-
ity matrix by using the topological structure similarity of the source and target networks
through an iterative refinement process to improve the alignment quality. Other methods,
such as NAME [26], capture the first-order proximity, high-order proximity and global
network structure information of nodes by constructing shallow, deep and community-
based embedding, and fuse these embeddings to improve alignment accuracy. By defining
high-order topological consistency based on edge orbits, HTC [27] not only considers
direct neighbors, but also pays attention to the structural role of nodes in the network, and
integrates this consistency into the information aggregation process of GCN to identify and
align corresponding nodes more accurately. MINING [28] adopts the multi-granularity
alignment framework and contrastive learning strategy, decomposes the large network
into sub-networks of different granularities, and combines the graph SAGE encoder to
learn discriminative node features to achieve more accurate alignment at both coarse and
fine granularities. Together, these methods have advanced the state of the art in network
alignment techniques, enabling models to learn important information from unlabeled data
to aid alignment.

Although GNN has made remarkable progress in the field of network alignment, it still
faces some challenges, including sensitivity to noise and dependence on anchor nodes. To
overcome these problems, this paper proposes an unsupervised network alignment method
combining GNN and self-supervised learning, which aims to improve the accuracy and
robustness of the alignment, especially when noisy data and anchor nodes are scarce. The
core innovation of this method is the use of pseudo-anchor links for self-supervised learning.
This method allows the model to learn effectively in the absence of real anchor nodes by
introducing pseudo-anchor nodes in the source and target networks. As a regularization
factor for model training, the pseudo-anchor nodes encourage the model to learn a better
network representation and ensure that the embedding of the pseudo-anchor nodes in the
source and target networks is as similar as possible.

3. Proposed Method

This chapter provides a detailed description of the MANNA framework, as shown
in Figure 1. The framework includes the following main sequential steps. First, a GNN is
initialized to capture the structural and attribute features of the networks. To enhance the
model’s robustness to noise, the algorithm introduces controlled structural and attribute
perturbations during the training phase, ensuring that the learned representations are
not overly sensitive to network imperfections. The GNN is used to generate multi-order
node embeddings that capture the multi-scale neighborhood characteristics of each node.
This provides a comprehensive representation of space for the alignment process. The
algorithm applies the MNC principle to identify pseudo-anchor nodes from the similarity
matrices derived. These pseudo-anchor nodes act as self-supervised guidance, enabling
the model to learn more accurate network representations. The algorithm improves the
alignment matrix by iteratively applying the MNC strategy. This strategy adjusts the
similarity scores between pairs of nodes to strengthen the consistency of the neighborhood
structures between aligned nodes. The iterative process is governed by a termination
condition to optimize the alignment quality without over-fitting to noise.

3.1. Notation and Problem Definition

Consider two networks, Gs = (Vs, Es, Xs) and Gt = (Vt, Et, Xt), where Gs is the source
network and Gt is the target network. To simplify the presentation, we use an asterisk (*) as
a wildcard to represent either the source or the target network, without specifying which
one. Let V∗ and E∗ denote the sets of nodes and edges, respectively, within the network.
The attribute matrix X∗ ∈ R|V∗ |× f provides the initial feature for each node, where f is the
dimension of the feature. In this paper, we assume that both networks are undirected and
unweighted, and we use the adjacency matrix A∗ ∈ R|V∗ |×|V∗ | to represent the connectivity
relationships between nodes. In the adjacency matrix, the element A∗(i, j) describes the
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relationship between nodes i and j. Specifically, if there is a direct edge between nodes
i and j, then A∗(i, j) = A∗(j, i) = 1; otherwise, A∗(i, j) = A∗(j, i) = 0. We denote by N(i)
the set of first-order neighbors of node i in the adjacency matrix A∗ of the network.
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Figure 1. Overview of MANNA framework. 
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The objective of network alignment is to obtain a mapping matrix (alignment matrix)
S ∈ R|Vs |×|Vt |, where the element S(i, j) represents the similarity between node i in the
source network and node j in the target network. The values of S(i, j) typically satisfy the
following criteria:

Non-negativity: S(i, j) ≥ 0, since similarity scores are inherently non-negative.
Normalization: For each row i, the sum of all elements equals 1, i.e., ∑

|Vt |
j=1 S(i, j) = 1,

indicating that each node in the source network is aligned with, at most, one node in the
target network.

Matched Neighborhood Consistency (MNC) [7,15,25] is a key concept in network
alignment that measures the similarity between the sets of neighbors of two nodes that
correspond to the same entity in different networks. This similarity can be quantified by
calculating the similarity of the neighbors of the nodes.

In this paper, we use the node neighborhood similarity matrix J ∈ R|Vs |×|Vt | to measure
the similarity between pairs of nodes in two networks. Here, J(u, v) denotes the neigh-
borhood similarity between node u in Gs and node v in Gt. Given a set of node mappings
M = {(u, v)|u ∈ Vs, v ∈ Vt }, the formula for computing J(u, v) is as follows:

J(u, v) =
|N(u) ∩ N′(v)|
|N(u) ∪ N′(v)| (1)

N′(v) =
{

M(v′)
∣∣v′ ∈ N(v) ∧ v = M(u)

}
(2)

Figure 2 displays two distinct node mappings. For instance, we use the node pair (a, 1)
to demonstrate how MNC is employed to assess the alignment quality of the node pair. In
this scenario, N(a) of node a in the source network is {b, c, d, e, f , g}, and N(1) of node 1 in
the target network is {2, 4, 5, 7}. In Figure 2a, M = {a : 1, b : 2, c : 3, d : 4, e : 5, f : 6, g : 7},
N′(a) of node 1 is {b, d, e, g}. Consequently, the value of J(a, 1) = 4/6 ≈ 0.67. In Figure 2b,
M = {a : 2, b : 1, c : 3, d : 4, e : 5, f : 6, g : 7}, the mapped neighborhood set N′(a) for node 1
is {a, d, e, g}, and J(a, 1) = 3/6 = 0.5. It is clear that a higher score indicates a more similar
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neighborhood structure between node a in the source network and node 1 in the target
network under different mappings, which typically indicates better alignment quality.
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different networks are correctly matched. (b) Some nodes are incorrectly matched.

We can calculate the MNC score for all pairs of mappings in M using the
following formula:

MNC(M) =
1
|M| ∑

(u,v∈M)

J(u, v) (3)

where, |M| is the number of mapping pairs. The formula calculates the average neigh-
borhood similarity across all mapping pairs, which serves as a metric for the quality of
network alignment. Higher MNC values indicate that the node pairs in the two networks
are more aligned, suggesting that their neighborhood structures are more similar.

3.2. Generation Nodes Embedding Using Graph Augmentation

A Graph Neural Network (GNN) consists of multiple convolutional layers, with
each layer updating the node embeddings based on the previous layer’s representations.
However, as the number of layers increases, over-smoothing can occur. This phenomenon
causes the node representations to lose their diversity and distinctiveness, which reduces
their discriminative power and can lead to matching ambiguity. Moreover, noise in the
network can be amplified by propagation and aggregation across multiple layers, affecting
matching accuracy.

To mitigate the problem of over-smoothing, we obtain multi-order node embeddings
by extracting outputs from the different layers of the GNN model. The multi-order embed-
ding captures the node feature at different neighborhood scales. In our study, we use the
GNN architecture proposed in [29]. Let L denote the depth of the GNN model. For each
node v in a network, its multi-order node embeddings are denoted as h(0)∗ (v), h(1)∗ (v), . . .,
h(L)∗ (v), where h(0)∗ (v) = X∗(v) and h(1)∗ (v) is the embedding of node v at layer l. At the
k-th layer of the GNN, the feature vector h(k)∗ (v) for node v is computed as follows:

h(k)∗ (v) = σ(h(k−1)
∗ (v) ·W(k)

1 + ∑
u∈N∗(v)

h(k−1)
∗ (u) ·W(k)

2 ), k = 1, 2, . . . , L (4)

where W(k)
1 and W(k)

2 is the weight matrices in the k-th layer of the GNN that are shared
between the source and target networks. Weight sharing avoids the complex process
involved in traditional methods that first learn the node embeddings and then perform
spatial alignment. σ(·) is the activation function. In our study, we choose theTanh function.

To increase the robustness of the model to noise, we introduce two types of noise,
structural and attribute noise, into the model training process so that our model can cope
better with noisy or incomplete network data. For structural noise, we simulate structural
changes in the network by randomly removing a certain percentage of edges. For attribute
noise, we perturb the features of the nodes by adding Gaussian noise to the attribute matrix.
Specifically, we generate a Gaussian noise matrix N∗ ∈ R|V∗ |× f whose elements N∗(i, j)
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follow a normal distribution with mean 0 and standard deviation 0.1. We then multiply this
noise matrix by the original feature matrix X∗ to obtain the final noisy feature matrix X’

∗:

X’
∗ = X∗ ×N (5)

The GNN model is trained using an unsupervised learning strategy to discover and
understand the inherent structure and features of the data without relying on labelled
data. The training process includes two loss functions: structural-aware loss (Ls) and
noise-aware loss (Ln). The structural-aware loss ensures that the model accurately captures
and preserves the topological properties of the network data. The noise aware loss function
aims to enhance the model’s robustness to data noise, enabling steady learning even in its
presence. These two loss functions work together to guide the model in effectively learning
deep representations of network data under unsupervised conditions.

The learning process of node embedding is guided by the loss function Ls, which
measures the discrepancy between the predicted adjacency matrix, based on the node
features output by different network layers, and the given multi-order adjacency matrix.
The formula for calculating this function is as follows:

Ls(k)∗ =
1
|V∗|

|V∗ |

∑
i=1

|V∗ |

∑
j=1

(P(k)
ij − A(k)

ij )
2
, k = 1, 2, . . . , L (6)

P(k)
∗ = normalize(H(k)

∗ ) · (normalize(H(k)
∗ ))

T
(7)

Ls =
L

∑
k=1

(Ls(k)s + Ls(k)t ) (8)

where P(k)
∗ is the predicted adjacency matrix, and

¯
A
(k)

∗ is the matrix of order k, which
captures more distant neighbor information by considering k-hop relationships between
nodes, constructed from the adjacency matrix. The multi-order matrix is constructed using
the following method:

¯
A
(k)

∗ = D(k)
∗ · (A

(k−1)
∗ ) ·D(k)

∗ , k = 1, 2, . . . , L (9)

A(k)
∗ = A(k−1)

∗ + A(k−1)
∗ ·A(k−1)

∗ (10)

where A(0)
∗ = A∗ + I,

¯
A
(1)

∗ = D(1)
∗ · (A

(0)
∗ ) ·D(1)

∗ , and, as k increases, A(k)
∗ encapsulates

information over additional hops, thereby facilitating the model’s ability to capture long-
range dependencies within the network. This approach allows each node to learn not only
from its immediate neighbors, but also from more distant neighbors, thereby improving the
model’s understanding of the structure and features of the network. The diagonal matrix
D(k)
∗ is computed from A(k−1)

∗ as follows:

(D(k)
∗ )ii = (∑

j
(A(k−1)
∗ )ij)

−0.5
, k = 1, . . . , L (11)

The noise-aware loss function aims to guide the GNN model in generating represen-
tations that are consistent with the original data-embedding vectors, even when faced
with augmented data. This loss function targets embedding vectors that deviate from the
original embedding vectors within a pre-set threshold and encourages the model to be
insensitive to these variations. This increases the model’s robustness to noise in the input
data. The model can maintain important structural information while allowing for some
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level of noise with the use of the noise-aware loss function. The formula for calculating this
function is as follows:

Ln(k)
∗ =

1
|V∗|

|V∗ |

∑
i=1

(
∥∥∥h(k)∗ [i]− h′(k)∗ [i]

∥∥∥2

2
· I(

∥∥∥h(k)∗ [i]− h′(k)∗ [i]
∥∥∥

2
> θ)), k = 1, 2, . . . , L (12)

Ln =
L

∑
k=1

(Ln(k)
s + Ln(k)

t ) (13)

where h(k)∗ [i] is the k-th order embedding of the i-th node in either the source or target
network; h′(k)∗ [i] is the k-th order embedding of the i-th node in the perturbed source or
target network; ∥·∥2 signifies the Euclidean norm, commonly referred to as the length of a
vector; θ is a predefined threshold; and I(·) is an indicator function that assumes a value of
1 when its internal condition is true, and 0 otherwise.

3.3. Pseudo-Anchor Nodes Collection and Self-Supervised Learning

Anchor nodes can act as a direct supervisory signal to guide the model towards learn-
ing more accurate network representations, thereby enhancing the performance of network
alignment tasks. Furthermore, anchor nodes can serve as a regularization mechanism, help-
ing the model avoid over-fitting and improving its generalization capabilities. However,
obtaining anchor nodes can be challenging in real-world applications, especially within
large-scale networks. In response, researchers have introduced pseudo-anchor nodes to
optimize network alignment performance. However, if the selection of pseudo-anchor
nodes is biased, it may lead the model to learn incorrect mapping relationships, subse-
quently compromising the alignment outcome. In this work, we employ the MNC strategy
to collect high-quality pseudo-anchor nodes.

Specifically, we calculate the similarity between multi-order embeddings to obtain sev-
eral similarity matrices. These matrices are then combined to create a composite embedding
similarity matrix (alignment matrix), denoted S′ ∈ R|Vs |×|Vt |, using the
following formula:

S’ =
L

∑
k=0

1
L + 1

S’(k) (14)

S’(k) = normalize(H(k)
s ) · (normalize(H(k)

t ))
T

(15)

After obtaining the alignment matrix S’, we create an initial node mapping set M
using a greedy matching algorithm [30]. Following this, the neighborhood similarity matrix
J is calculated for all node pairs using Equation (1). A fixed ratio of node pairs is then
selected as pseudo-anchor nodes, based on both the neighborhood similarity matrix and
the alignment matrix.

The execution process of the pseudo-anchor nodes generation is summarized in
Algorithm 1.
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Algorithm 1 Collect Pseudo-Anchor Nodes

Input: source network Gs, target network Gt, alignment matrix S’, ratio of pseudo-anchor nodes r.
Output: pseudo-anchor nodes set T = {(i, j)|i ∈ Vs, j ∈ Vt }.

1. Calculate the number of the pseudo-anchor nodes, TrainNum = |Vs| ∗ r.
2. Obtain the mapping set M using a greedy matching algorithm and the alignment matrix S’.
3. Compute the neighborhood similarity matrix J for the nodes of the two graphs.
4. Compute the weighted similarity matrix M = S’ ∗ J.
5. For each row of matrix M, identify the index of the maximum value and the corresponding

value.
6. Items = [(node1, node2, similarity)|node1 ∈ Vs, node2 ∈ Vt, similarity ∈ Value]
7. Sort the Items list in descending order based on similarity values.
8. T = ItemsSorted[:TrainNum]
9. Return T

During the second phase of model training, we utilize the pseudo-anchor node pairs
within set T to provide enhanced supervisory signals. These pseudo-anchor node pairs
are instrumental in enabling the model to learn correspondences between nodes in the
two networks with greater accuracy. Specifically, for each node pair (i, j) in T, we employ
the loss function La to measure the discrepancy between their embedding vectors. The
design principle of the loss function La is to minimize the disparity between the embedding
vectors of matched node pairs, thereby ensuring that similar nodes in the source and target
graphs are assigned similar embedding representations. The calculation of the loss function
La is as follows:

La(k) =
1
|T| ∑

(i,j∈T)

∥∥∥h(k)i − h(k)j

∥∥∥2
, k = 1, 2, . . . , L (16)

La =
L

∑
k=1

(La(k)s ) (17)

3.4. Alignment and Refinement

After completing the second phase of model training, we obtain an updated alignment
matrix S”. Following this, a refinement process is carried out to optimize the alignment
matrix and improve alignment accuracy. The process involves iteratively adjusting the
similarity scores between matched node pairs, thereby strengthening the consistency of
the neighborhood structure among matched nodes. This strategy uses the topological
information of the network to refine the matching quality between nodes iteratively.

During each iteration, the model updates the alignment matrix using the adjacency
matrices of the source network and the target network. The iterative update rule is
as follows:

S”’ = S” ◦As ∗ (S” ∗At) + ε (18)

where symbol ◦ denotes the Hadamard product, and ε is a small positive scalar. The use of
ε introduces randomness, which can help to reduce the risk of over-fitting in the model.

To prevent a potential decrease in alignment accuracy caused by too many iterations,
the module includes a termination mechanism. The iteration is automatically stopped if the
consistency score of matched neighbors starts to deteriorate during the iterative process.
This ensures that the final alignment score is maximized.

The process of executing MANNA is summarized in Algorithm 2.
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Algorithm 2 MANNA

Input: source network Gs, target network Gt, hyper-parameters epochs, α, β, φ, T.
Output: final alignment matrix S.

1. Obtain the enhanced graphs G′s and G′t.
2. Model←Initialize the GNN model.
3. for some epochs do

4. H(0)
s , . . . , H(L)

s = Model(As, Xs

)
, H(0)

t , . . . , H(L)
t = Model(At, Xt

)
.

5. Obtain structural aware loss Ls using (6), (7) and (8).

6. H′(0)s , . . . , H′(L)
s = Model(A′s, X′s

)
, H′(0)t , . . . , H′(L)

t = Model(A′t, X′t
)

.

7. Obtain structural aware loss Ls′ using (6), (7) and (8).
8. Obtain noise aware loss Ln using (12) and (13).
9. L1 = α× Ls + (1− α)× Ls′

10. L2 = β× Ls + (1− β)× Ln
11. Back-propagation and optimization of the model parameters.
12. Calculate the similarity matrix S’ using (14) and (15).
13. T←Obtain pseudo-anchor nodes use Algorithm 1.
14. for some epochs do

15. H(0)
s , . . . , H(L)

s = Model(As, Xs

)
, H(0)

t , . . . , H(L)
t = Model(At, Xt

)
.

16. Obtain structural aware loss Ls using (6), (7) and (8).
17. Obtain anchors aware loss La using (16) and (17).

18. H′(0)s , . . . , H′(L)
s = Model(A′s, X′s

)
, H′(0)t , . . . , H′(L)

t = Model(A′t, X′t
)

.

19. Obtain structural aware loss Ls′ using (6), (7) and (8).
20. Obtain noise aware loss Ln using (12) and (13).
21. L1 = α× Ls + (1− α)× Ls′

22. L2 = β× Ls + (1− β)× Ln
23. L = φ× L2 + (1− φ)× La
24. Back-propagation and optimization of the model parameters.
25. Calculate the similarity matrix S” using (14) and (15).
26. for iteration in 1, 2, . . ., T do
27. Calculate the update similarity matrix S”’ using (18).
28. if termination_condition(S”’, As, At) then
29. break
30. S←S”’.
31. Return S

The time complexity of the MANNA algorithm is influenced by several components
that work in tandem to provide an efficient and accurate network alignment. These compo-
nents include the Network Enhancement Module, the GNN Module, the Self-Supervised
Learning Module, and the Alignment Refinement Module. Below is a more detailed
analysis of how each of these components contributes to the overall time complexity.

Network Enhancement Module: This component introduces controlled structural
and attribute perturbations to the network to enhance the model’s robustness to noise.
The complexity of generating structural noise by randomly removing edges is linear with
respect to the number of edges, O(m), where m is the number of edges in the network. For
attribute noise, if each node has f features, the complexity of adding Gaussian noise to the
feature matrix is O(n · f ), where n is the number of nodes.

GNN Module: The GNN module is at the core of the MANNA algorithm, responsible
for learning the structural and attribute features of the networks. The complexity of
this module is primarily determined by the depth of the GNN (L layers) and the size of
the networks. Each layer processes the nodes and their connections, leading to a time
complexity of O(L · (n + m) · d), where d is the dimensionality of the node features.

Self-Supervised Learning Module: This module identifies high-quality pseudo-anchor
nodes based on the MNC principle. The process involves calculating the similarity ma-
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trix and selecting pseudo-anchor nodes, which can be computationally intensive. The
complexity of this module can be approximated as O

(
n2 · k

)
, where k is the number of

pseudo-anchor nodes selected.
Alignment Refinement Module: The alignment refinement module iteratively updates

the alignment matrix to strengthen the consistency of neighborhood structures between
matched nodes. Each iteration involves recalculating the alignment matrix based on
the current node embeddings, with a complexity of O

(
n2). Over T iterations, the total

complexity for this module is O
(
T · n2).

4. Evaluation
4.1. Datasets

We use three openly available datasets: douban online/offline [12,22,23],
allmovie/imdb [12,22,23], and flickr/myspace [12,27]. The douban dataset comprises
two subsets, douban online and douban offline, obtained from Douban, a Chinese so-
cial application. These subsets were created by analyzing users’ social interactions. The
application douban online reflects users’ online social networks, while douban offline
tracks their real-world social activities, such as attending events in the physical world. The
allmovie/imdb dataset consists of two subnetworks that are based on the relationships
between actors in films. Each node in this dataset represents a movie, and each edge
indicates a connection between two movies that feature at least one common actor. The
flickr/myspace dataset combines networks from the separate social media platforms Flickr
and Myspace. Nodes represent individual users, while edges represent the friendships
between them. Table 1 provides a detailed description of these datasets.

Table 1. Details of the datasets.

Dataset Nodes Edges Attributes Anchor
Nodes

Average
Degree

Max
Degree

Clustering
Coefficient

douban
online/offline 3906/1118 8164/1511 538 1118 4.18/2.70 97/26 0.0404/0.0866

allmovie/imdb 6011/5713 124,709/119,073 14 5175 41.49/41.68 159/157 0.3813/0.3833
flickr/myspace 6714/10,733 7333/11,081 3 267 2.18/2.06 639/164 0.0014/0.0

4.2. Baselines

In order to evaluate the performance of the proposed model, the following six models
are compared:

REGAL [9]: REGAL combines the topological structure and node attributes to generate
a matrix that represents the similarity of different network nodes. The Nyström [31] method
is then used to decompose the similarity matrix and obtain node embeddings, which are
later used for node matching.

GAlign [12]: GAlign is a network alignment method that is based on a graph convolu-
tional network. The model achieves node matching between different networks by learning
the embedding of nodes and optimizing using the consistency loss function and adaptive
loss function.

GATAL [22]: GATAL is an unsupervised network alignment model that utilizes graph
attention networks. It is comprised of three parts: an enhancement learning process, multi-
level GAT embedding, and alignment computation. The model enhances adaptability by
simulating noise in the real world and employs multi-level GAT to learn the latent features
of the nodes.

WAlign [13]: WAlign is a network alignment method that uses node embedding
learning and a Wasserstein distance discriminator to achieve efficient and accurate network
alignment. The method minimizes the distance between the embedding distributions of
the source and target networks.
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Grad-Align [23]: Grad-Align is a method that uses a stepwise matching strategy
to achieve network alignment. This is done through multi-layer embedding similarity
calculation and Tversky similarity coefficient, resulting in improved accuracy and efficiency
of alignment.

Grad-Align+ [24]: Grad-Align+ is an enhanced version of Grad-Align that uses
centrality-based node feature augmentation (CNFA) to improve the performance of GNN
in network alignment tasks. Additionally, it employs a gradual alignment strategy to accu-
rately identify correspondences between nodes across networks, even without
additional information.

4.3. Parameter Setting and Evaluation Metrics

The experimental procedures were conducted on a personal computer running Win-
dows 10, equipped with an Intel® i7-4790 processor clocked at 3.60 GHz and 16 GB of RAM.
During the MANNA training phase, we employed the Adam optimizer with an initial learn-
ing rate of 0.005. The graph neural network architecture consisted of 2 convolutional layers,
and we iterated the training for 30 epochs. We set the sampling rate for pseudo-anchor
nodes to 0.1, and the embedding dimension to 100. The benchmark algorithm parameters
were adjusted according to the recommendations of the original papers, with the exception
of the embedding dimensionality, number of convolutional layers, and training epochs,
which remained consistent with MANNA. The optimal performance under these parameter
configurations was recorded.

Building on previous research, we used two evaluation metrics—MAP (Mean Average
Precision) [12,22] and Precision@k [12,22–24]—to compare the alignment effectiveness of
different methods.

The MAP metric was used to evaluate the performance of algorithms in identifying
corresponding nodes (anchor nodes) in the target network for each node in the source
network. This metric considers alignment results for all nodes in the source network and
calculates the average of the inverse ranks. For each node i in the source network, all nodes
in the target network are ranked based on the alignment scores (similarity) in the alignment
matrix. The position of the true anchor node for node i in the ranking is determined, and
the inverse of its rank is computed. Subsequently, the inverses of the ranks of the true
anchor nodes for all nodes in the source network are averaged to obtain the MAP value.
The formula is as follows:

MAP =
1
|Vs| ∑i∈Vs

1
ri

(19)

where ri denotes the rank of the true anchor node for the node i in the source network
within the alignment results.

Precision@k measures the proportion of correctly identified true anchor nodes among
the top k candidate anchor nodes for each node. To achieve this, we first identify the top k
target network nodes with the highest alignment scores to node i in the alignment matrix
and place these target nodes in the set Qk(i) for each node i in the source network. We then
check whether the node pair (i, j) appears in the set of true anchor node pairs T for each
node j in the set Qk(i). If the node pair (i, j) is present in the set T, it indicates a correct
match and is counted as a successful match. The Precision@k value is calculated by dividing
the number of successful matches by the total number of nodes in the source network
as follows:

Precision@k =

∑
i∈Vs

∑
j∈Vt ,j∈Qk(i)

I((i, j) ∈ T)

|Vs|
(20)

where the indicator function I(·) is a function that takes the value of 1 when the condition
is true and 0 otherwise.
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4.4. Model Performance Comparison

To evaluate the performance of the method proposed in this paper, we compared it
with six baselines. Table 2 presents the experimental results of the proposed method and
the other six baselines on three datasets. The optimal results of each column are in bold,
and the best results of the baseline are underlined.

Table 2. Network alignment comparison of three datasets.

Dataset Metrics REGAL GAlign GATAL WAlign Grad-
Align

Grad-
Align+ MANNA

douban
online/offline

MAP 0.1005 0.5215 0.5926 0.3207 0.5920 0.6807 0.7223

Precision@1 0.0456 0.4034 0.4839 0.2120 0.4928 0.5903 0.6273

Precision@5 0.1360 0.6601 0.7272 0.4186 0.6914 0.7907 0.8371

Precision@10 0.2030 0.7639 0.8122 0.5340 0.7862 0.8515 0.8980

allmovie/imdb

MAP 0.1888 0.7133 0.7331 0.6501 0.7023 0.8915 0.9375

Precision@1 0.0953 0.6521 0.6637 0.5715 0.6303 0.8460 0.9160

Precision@5 0.2687 0.7810 0.8158 0.7370 0.7831 0.9416 0.9648

Precision@10 0.3869 0.8257 0.8635 0.7907 0.8375 0.9528 0.9700

flickr/myspace

MAP 0.0227 0.0200 0.0212 0.0190 0.0310 0.0173 0.0350

Precision@1 0.0075 0.0075 0.0075 0.0037 0.0187 0.0000 0.0262

Precision@5 0.0262 0.0262 0.0225 0.0262 0.0412 0.0112 0.0449

Precision@10 0.0412 0.0449 0.0375 0.0375 0.0599 0.0337 0.0712

The experimental results show that there are significant performance differences
among various baselines on different datasets. REGAL uses xNetMF, a low-rank approx-
imation and implicit matrix decomposition technique, to learn node representations in
different networks. In contrast, other baselines use Graph Neural Networks (GNNs) to
learn node representations from graph data. GNNs can effectively capture both the local
and global neighborhood information of nodes by transferring and aggregating information
on graphs. This makes them more efficient in expressing complex dependencies between
nodes. However, xNetMF mainly relies on node degree distribution and attribute informa-
tion, which may limit its flexibility in capturing complex interactions and dependencies
between nodes. Among all baseline algorithms, REGAL has the worst performance. Of
the GNN-based baselines, WAlign performs the worst. This could be attributed to the
weight-sharing mechanism used by other algorithms. The weight-sharing mechanism
allows the model to learn common, meaningful representations from both networks, which
is crucial for the network alignment task. Additionally, both Grad-Align and Grad-Align+
employ a stepwise network alignment strategy to gradually discover node pairs through an
iterative process. The importance of the structural positions of the nodes in their respective
networks is emphasized by measuring the similarity of the aligned cross-network node
pairs, thus optimizing the alignment results. Grad-Align+ outperformed other baselines on
the douban online/offline and allmovie/imdb datasets, while Grad-Align outperformed
other baselines on the flickr/myspace dataset.

MANNA consistently outperformed the baselines in all three datasets, demonstrating
its superior performance. Compared to the highest-performing baseline, Grad-Align+, on
the douban dataset, MANNA showed a significant improvement in performance metrics:
approximately 15.3% in MAP, 27.3% in Precision@1, 20.6% in Precision@5, and 14.2% in
Precision@10. MANNA outperformed Grad-Align+ on the almovie/imdb dataset with a
remarkable enhancement of around 33.5% in MAP, 45.9% in Precision@1, 24.0% in Preci-
sion@5, and 15.5% in Precision@10. Similarly, on the flickr/myspace dataset, MANNA
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surpassed Grad-Align with significant gains of approximately 12.9% in MAP, 39.6% in
Precision@1, 11.4% in Precision@5, and 20.3% in Precision@10.

4.5. Ablation Experiment

In this section, we conducted experiments on three datasets to investigate the contri-
butions of various key modules within our model to the overall performance. To evaluate
the efficacy of the different components of the model more clearly, we removed some key
modules from the original model and monitored the resulting performance changes.

Base Model (BM): This version uses only unsupervised learning techniques to train
the graph neural network for node representation. It removed all the modules designed to
improve matching performance.

To evaluate the impact of individual components on model performance, we in-
corporated each of the following modules into the base model separately: the Network
Enhancement (NE) module, the Self-Supervised Learning (SL) module, and the Alignment
Refinement (AR) module. This enabled an evaluation of their respective contributions to the
model’s overall performance. The study analyzed the performance of three configurations:
the model with only the NE module (only NE), the model with only the SL module (only
SL), and the model with only the AR component (only AR).

Experiments were conducted to investigate the impact of the absence of each com-
ponent on the model’s performance by removing them individually. The configurations
tested included the model without the NE component (w/o-NE), the model without the SL
component (w/o-SL), and the model without the AR component (w/o-AR).

The experimental results are detailed in Table 3, where the optimal results in each
column are highlighted in bold, and the suboptimal results are underlined.

Table 3. Network alignment comparison of four real-world datasets.

Dataset Metrics BM Only NE Only SL Only AR w/o-NE w/o-SL w/o-AR MANNA

Douban
Online/Offline

MAP 0.6288 0.6389 0.6382 0.7133 0.7217 0.7161 0.6606 0.7223

Precision@1 0.5250 0.5313 0.5331 0.6190 0.6270 0.6234 0.5501 0.6273

Precision@5 0.7496 0.7558 0.7603 0.8229 0.8363 0.8256 0.7800 0.8371

Precision@10 0.8283 0.8354 0.8435 0.8792 0.8882 0.8882 0.8623 0.8980

Allmovie/Imdb

MAP 0.7772 0.7796 0.7846 0.9349 0.9374 0.9345 0.7899 0.9375

Precision@1 0.7112 0.7149 0.7363 0.9117 0.9152 0.9124 0.7819 0.9160

Precision@5 0.8545 0.8576 0.8646 0.9629 0.9635 0.9596 0.8815 0.9648

Precision@10 0.8918 0.8933 0.8998 0.9681 0.9689 0.9650 0.9041 0.9700

Flickr/Myspace

MAP 0.0218 0.0222 0.0274 0.0283 0.0332 0.0249 0.0232 0.0350

Precision@1 0.0075 0.0075 0.0112 0.0150 0.0150 0.0075 0.0075 0.0262

Precision@5 0.0187 0.0187 0.0225 0.0225 0.0375 0.0262 0.0300 0.0449

Precision@10 0.0262 0.0262 0.0412 0.0524 0.0562 0.0524 0.0337 0.0712

The experimental findings suggest that across the three datasets, the comprehensive
model achieves the highest performance. Among all the variant models, the one lacking
the Network Enhancement (NE) component (w/o-NE) demonstrates the most superior
performance. Specifically, the integration of the NE component singularly enhances the
model’s efficacy on the douban online/offline and allmovie/imdb datasets. Conversely, on
the flickr/myspace dataset, the inclusion of the NE component does not enhance accuracy,
potentially due to the scarcity of attribute features in this dataset. The incorporation of the
Self-Supervised Learning (SL) component universally improves the model’s performance
across all three datasets, indicating that modifying the distance between pseudo-anchor
nodes aids in the extraction of node features that are more aligned with the network align-
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ment task. The Alignment Refinement (AR) component contributes most significantly to
the enhancement of alignment performance. For the douban dataset, the model comprising
solely the AR component outperforms the Base Model (BM) with improvements of approx-
imately 13.4% in MAP, 17.1% in Precision@1, 10.1% in Precision@5, and 6.0% in Precision@10.
On the allmovie/imdb dataset, the only AR model surpasses the BM with enhancements of
around 20.3% in MAP, 28.2% in Precision@1, 12.7% in Precision@5, and 8.6% in Precision@10.
On the flickr/myspace dataset, the only AR model exceeds the BM with significant gains
of approximately 29.8% in MAP, 46.7% in Precision@1, 19.8% in Precision@5, and 100% in
Precision@10. The removal of the AR component in isolation results in a notable degrada-
tion of the model’s performance. Overall, the AR component’s iterative refinement of the
similarity matrix, which reinforces the neighborhood consistency of matched node pairs,
emerges as the most effective strategy for enhancing alignment accuracy. While the NE
module and the SL module also contribute to performance improvement, their impact is
relatively less pronounced compared to the AR component.

4.6. Hyper-Parameter Sensitivity Analysis

This section analyzes the impact of three parameters on the experimental results:
embedding dimensionality, number of epochs, and the ratio of pseudo-anchor nodes. The
target parameter is changed while keeping all other parameters constant.

First, we analyzed the influence of different embedding dimensions (5, 10, 25, 50,
100, 150, 200) on model performance. The experimental results are presented in Figures 3
and 4. Figure 3 shows the trends in the MAP value as the embedding dimensionality
increases. Similarly, Figure 4 displays the performance of the Precision@10 value under the
same conditions. According to the analysis, the model performs optimally with an em-
bedding dimensionality of 150 for the douban online/offline and allmovie/imdb datasets.
However, for the flickr/myspace dataset, the model’s performance becomes unstable as
the embedding dimensionality increases. The MAP value reaches its peak at an embed-
ding dimensionality of 100, while the Precision@10 value is best at 200. The fluctuation
in performance can be attributed to the sparse network structure and insufficient node
attribute information.
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Next, we analyzed the effects of varying the number of epochs for the graph neural
network. The experimental setup involved setting the number of epochs to 10, 20, 30, 40,
50, 100, and 150. The results of this experiment are depicted in Figures 5 and 6. Figure 5
shows the MAP metric, while Figure 6 shows the Precision@10 metric, as in the previous
experiment. The results indicate that the model achieved satisfactory performance with
a relatively low number of epochs across all three datasets. However, the optimal point
varies for each dataset. The douban online/offline and allmovie/imdb datasets achieve
their optimal performance at 40 epochs. After this point, performance slightly declines
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with additional epochs. On the flickr/myspace dataset, the model’s performance plateaus
at 30 epochs, with only slight improvements observed thereafter.
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Finally, we analyzed the impact of the varying ratios of pseudo-anchor nodes on
experimental outcomes. The experiment involved setting the ratio of pseudo-anchor nodes
to 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.6. The results of this investigation are visualized
in Figures 7 and 8. As with the previous experiments, Figure 7 represents the MAP,
while Figure 8 represents the Precision@10. The visualizations show that the model’s
performance improves with an increase in the proportion of pseudo-anchor nodes across all
three datasets. The model’s alignment performance, as measured by the MAP, is marginally
enhanced with the increase in the proportion of pseudo-anchor nodes in the douban
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online/offline and allmovie/imdb datasets, although the improvement is not significant.
In the flickr/myspace dataset, the model’s performance plateaus at a pseudo-anchor node
proportion of 0.1. Further increases in this proportion lead to a decline in performance,
as shown by Precision@10. This phenomenon may be attributed to the sparse and locally
clustered network structures in the flickr/myspace datasets. Achieving matching neighbor
consistency in network structures is challenging. An increase in the proportion of pseudo-
anchor nodes may introduce excessive noise, potentially interfering with the alignment
algorithm’s performance.
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5. Conclusions

This paper proposes MANNA, an unsupervised network alignment framework that
overcomes the limitations of anchor node unavailability and network noise sensitivity.
MANNA aligns nodes across different networks without the need for predefined anchor
nodes by leveraging the capabilities of the Graph Neural Network (GNN) and the Matched
Neighborhood Consistency (MNC) principle. Our method has shown significant improve-
ments in both alignment accuracy and robustness compared to state-of-the-art methods.
This was validated through a comprehensive suite of experiments on various datasets.

The key innovation of MANNA is its ability to derive rich node representations
through multi-order embeddings and iteratively refine alignment outcomes by consistently
reinforcing neighborhood structural consistency. The use of pseudo-anchor nodes in self-
supervised learning reduces reliance on anchor nodes and establishes a robust framework
for model training under noisy conditions.

Although our approach is effective, there is still potential for further research. For
instance, progress could be made by developing adaptive strategies to determine the
optimal number of pseudo-anchor nodes across different network architectures. Integrating
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attention mechanisms with node-embedding techniques could improve their descriptive
abilities.
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