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1. Introduction and Results

In this paper, we assumed that the reader is familiar with the notations of the Nevan-
linna theory (see, e.g., [1,2]).Let f(z) and «(z) be two meromorphic functions in the complex
plane. If T(r, ) = S(7, f), then a(z) is called a small function of f(z).

In 1959, W.K. Hayman first considered the value distribution of differential polyno-
mials in his seminal paper, and proved that if f is a transcendental meromorphic function
and /(> 3) isan integer, then ¥ = f ! f " — ahas infinitely many zeros for a finite non-zero
complex value a (see [3]). Moreover, Hayman conjectured that the conclusion remains
valid for the cases | = 1,2 ([4]). In 1979, Mues [5] confirmed the case | = 2, and Bergweiler
and Eremenko [6], Chen and Fang [7] proved the case | = 1 in 1995. Since then, there
was a lot of research on the value distribution of differential polynomials. Sons [8] and
Hennekemper [9] generalized Hayman’s result, and obtained the value distribution of
¥ =fr(f )y (f0) —aforn > 2,k >1and (f*5)*) —qforn > 2,k > 1, respectively.
Zhang [10] also investigated the simple differential polynomial f?f’ — 1 and give a precise
inequality T(r, f) < 6N(r,1; f>f') + S(r, f). Huang and Gu [11] generalized the result by
using f*) instead of f.

From the above, we know that the results on the zeros of differential polynomials
have three forms. The first is purely qualitative: for example, ¥ has infinitely many zeros.
The second is the “semi”-quantitative: for example, limsup N(r,0;'¥)/T(r, f) > 0 (see [12]).
The third is quantitative; that is, the characteristic function estimated by a counting function
(or reduced counting function).

It is natural to consider the characteristic function estimated by a reduced counting
function for the results of Zhang [10], and Huang and Gu [11]. In 2011, J. F. Xu et al. [13]
proved the inequality T(r, f) < MN(r,1; f2f0)) + S(r, ), where M = 6 except for k = 2,
M = 10. Later, Karmakar and Sahoo [14] found the coefficient is also 6 when k = 2 for
the inequality. Moreover, they improved the result of Xu et al., and obtained a unified
inequality for /(> 2),k(> 1). That is, if f is a transcendental meromorphic function,
and [(> 2),k(> 1) are any integers, then T(r, f) < ﬂéﬁﬁ(r,l;flf(k)) +S(r, f).

Another question is whether or not the differential polynomial takes the small function
infinite times. This is a difficult question. Xu and Yi [15] gave a precise inequality for
@f*f' — 1, and proved T(r, f) < 6N(r,1; f>f') + S(r, f), which also generalized a result
of Q.D. Zhang [16] that proved the inequality by the counting function. Recently, Xu and
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Ye [17] obtained an inequality that T(r, f) < 6N(r,1; f2f"?) + S(r, f). Also, Chakraborty,
Saha and Pal [18] extended the inequality by replacing ) by ()", but there is the
restriction on f with no simple pole, where [(> 2),n(> 1), k(> 1) are integers and obtained
T(r, f) < 525 N(r,1; f/(f®)") + S(r, f). Later, Chen and Huang refined the coefficient of
the result of Chakraborty, Saha and Pal, but there is another restriction of f with finite order.

Theorem 1 ([19]). Let f be a transcendental meromorphic function with finite order in the complex
plane, 1(> 2),n(> 1), k(> 1) be integers and a be a non-zero constant. Then,

T(r,f) < MN(r,a: f'(f)") +S(r, f),
where M = min{%ﬁ}.

A natural question is raised as to whether the above inequality still holds if one gets
rid of some restrictions on f. Moreover, the constant a is replaced by a small function of f.
Now, we consider the characteristic function estimate of more general forms ¢f!(fK))" —a
for a non-zero constant a, integers [ > 2,n > 1, and k > 1, and obtain its quantitative result
as follows:

Theorem 2. Let f be a transcendental meromorphic function and ¢(# 0) be a small function of f,
1(>2),n(>1),k(> 1) be integers, and a be a non-zero constant. Then,

T(r,f) < MN(r,a; ' (f*)") + S(r, f),

where M =5ifl =2and M = %ifl > 3.

Remark 1. Obviously, Theorem 2 improves the results of Xu et al. [13], Karmakar and Sahoo [14],
Xu and Ye [17], Chakraborty, Saha and Pal [18], and Chen and Huang [19]. The coefficient reduced
to 5 when'l :2,orﬁwhenlz 3.

The deficient function is an important definition in the value distribution theory. It is
a generalization of the deficiency. It is natural to estimate the deficient small function a(z)
with respect to f'(f(¥))(z). We obtain the following result, which improves Corollary 1.1
in [19].

Corollary 1. Let f be a transcendental meromorphic function and a(# 0) be a small function of f.
1(>2),n(>1),k(> 1) are integers. Then,

1

®("‘rfl(f(k))n) <1- m,

for M = min{%,S}.

Remark 2. Let a(% 0) be a small function of f, then we have &(a, f'(f%))") < 1. From this, we
can obtain a Picard-type theorem. If f(z) is a transcendental meromorphic function and a(# 0)
is a small function of f, then f'(f%))" — « = 0 has infinite solutions. In 1939, Titchmarsh [20]
considered the differential equation ff' = — sinz and obtained the solution f = =+ sinz. Many
authors consider the nonlinear differential equation including the differential polynomial f" f*).
For example, Zhang and Yi [21] studied the differential equation f(z) f'(z) = % sin2z, and obtained
the solutions of the equation as f(z) = +sinz, +icosz. They also consider the corresponding
perturbed equation f(z)f'(z) = 1 sin2z + p(z), where p(z) # 0 is a polynomial, and proved that
the equation does not possess an entire solution. In fact, the two differential equation include the
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differential polynomial f f'. Many differential equation can be considered by using the differential
polynomial to instead of the derivative (see [22-26]).

This paper is organized as follows. The lemmas will be used for the proofs of
Theorems 2 and 3 in Section 2. The proof of Theorem 2 is placed in Section 3, and an
application to the sum of deficiency function is in Section 4. At last, we give a conclusion in
Section 5.

2. Lemmas

In order to prove our results, we need the following lemmas.

Lemma 1 ([27]). Let f be a non-constant meromorphic function, and let My [f], Ma[f] be two
quasi-differential polynomials in f, satisfying f" My [f] = Ma[f]. If the total degree of M;|f] is
inferior or equal to n, then

m(r, My[f]) = S(r, f)-

Lemma 2 ([19]). Let f be a transcendental meromorphic function and ¢(# 0) be a small function
of f. Then, ¢ f1(f )" is not equivalent to a constant, where 1(> 2),n(> 1), k(> 1) are integers.

Lemma 3 ([19]). Let f be a transcendental meromorphic function, and let ¢(z)(% 0) be a small
function of f, and a be a non-zero constant. Suppose that H = ¢f' (f*®))" — a, where 1(> 2),
n(>1), k(> 1) are integers. Then,

(n+DTUj)‘<N0j)+N(;J+nNkL;J+nHWHﬂn}) 0
N, 55) = Nolr, ) + S0 ),

1 ; , .
where Ny(r, ﬁ) denotes the counting function of the zeros of H', which are not zeros of f or H.

Remark 3. When | = 2, the above lemmas have been proved by Chen and Huang in [19]. When
I > 3, we can obtain the results in the similar way (see also [13,15,17,28,29]).

Lemma 4 ([2]). Let f be a transcendental meromorphic function and b;,i = 0,1, ...,n be small

functions of f. If
buf" +by_1f" -+ b =

thenb; =0,i=0,1,...n.
In the following, we will give some notations for the next lemmas.

Suppose that H(z) = ¢f2(f))" — g and

H'(2)

he) = Sy = O FFO) +20f FO)" +mgf (FO)TFEH, 9(2) = 5,

where n(> 1), k(> 1) are integers. Also, let

W (z)

)2 4 QZ(H/(Z)

(Z) ) + a3(
)z+a7(<l)’( N H'(z) ¢'(z) h(z) ¢'(2)
9(2) 9(2)

)+ as(
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where a’s are defined by

a = —2n® — 4n* + 513 +10n% + 8n;

ay = —2(n +1)(15n* + 7213 + 10012 + 48n);
a3 = —2(n+1)%(n® + 8n? + 14n — 4);

ay = 2(n +1)(15n* + 73n% + 94n? + 28n — 8);
as = 4(n +1)(n* + 51 +9n? + 6n);

ag = —(36n* + 3n% — 961> + 101n — 42);

a7 = 4(n+1)(—2n* 4+ n3 + 27n% 4 20n — 4);
ag = —2(n+1)(7n® + 161 + 10n + 4);

ag = 2(n+1)(9n3 + 131 — 14n + 8),

when k = 1, and are defined by

ap = 3b° — b* — 58b% + 12b% — 40b — 32;

ay = —b® + 15b° — 42b* — 43603 — 40b% — 32b;

a3 = 4b(b — 2) (b + 2b);

ay = 2b%(b —2)(b3 — 5b* — 4);

as = 4b(b* + b3 — 20b% — 12b — 16);

ag = (b —2)(6b° — 19b* — 6163 + 58b% — 48b + 64);
a7 = b(b—2)(—b*+b> +20b);

ag = —2b(5b* — 37b% + 88b% — 36b + 32);

ag = 4b(b — 2)(3b® — 13b% + 8b — 4),

when k > 2, where b = nk +n + 2.

We define w(f,zg) =1, w(f,zg) = 1if zg is a pole of f(z) with multiplicity I. Other-
wise, w(f,z0) =0, w(f,zp) =0.

!

H
Lemma 5 ([17], Lemma 4). Under the hypothesis of Theorem 2 and supposing that h(z) = —

f 7
forany zo € C, we have
w(fz)+w(lz)<w(iz)+w(q)z)+a)(lz) )
fIO h/Of fh/() 740 (PIO'
Lemma 6 ([17], Lemma 5). Under the hypotheses of Theorem 2, if zg € C and G(zo) = 0, then
1
w((P/ZO) S ZW((P,ZO) + (U(;/ZO)/ (3)
w(lz)<w(lz)+2w( z)—i—w(lz) 4)
H’ 0) > n’ 0 ?, 20 q)/ 0/

Lemma 7. Let f be a transcendental meromorphic function, and let ¢(z)(# 0) be a small function
of f, where a is a non-zero constant. Then, G(z) # 0.

Proof. Suppose that G(z) = 0; then, from Lemma 6, we have
N(r,00;¢) < 2N(r,00;¢) + N(r,0; ¢) = S(r, f), (5)
and

N(r,0;H) <2N(r,00;¢)+ N(r,0;¢9)+ N(r,0;h) 6
= N(r,0;h) + S(r, f). ©)
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It follows from Lemma 2 that H is not identically constant. Let
a _ fO . H H
2 = T e
By the lemma of the logarithmic derivative, we have
1 (k) H H
(n+2)m(r, J7) < m(r, @)+ mf(r, (ff)”) +m(r, f”*z) +m(r, ﬁ)
= N(r,oo;II__II) N(r, 00; II__II/)—l—S(r,f) )
= N(r,00;f)+ N(r,0;H) — N(r,0; H') + S(r, ).
From (7), we have
(1 2m(r, £) < N(r,e9:f) + N(,0;H) = N, 0:f) + (1 ). ®
From Lemma 5, we have
N(r,0; f) + N(r,0;h) < N(r,0;hf) + N(r,00; ¢) + N(r,0; ). 9)
From (8) and (9), we have
(n+2)m(r, 11,) +N(r,0; f) < N(r,00; f) + N(r, 0; H) — N(r, 0;1) + S(r, ). (10)
From (6) and (10), we have
(n+ 1)m(r,]1c) < N(r,0;H) — N(r,0;h) + S(r, f) = S(r, f). (11)
From (5) and (11), we have
1H
T(r,¢) =m(r,¢)+ N(r,00;¢) = m(r, fﬁ) + N(r,00;¢) W)
1 H’
< m(r, 7) + m(r,ﬁ) +S(r, f) =S(r, f).
Note that "
T fe
h/ B H/ 4)/ B 4)/
Substituting the above two equalities into G(z) yields
(a1 + a3 + as) f2¢° + (a2 + aq) f'¢ + [(a2 + 203 + a4 + 05)% + (as + ﬂ9)%]f¢
, , (13)
@2 v a4 a R an Gy + L) =0

If k = 1, we have ay + a4 = 2n* — 10n® — 52n% — 56n — 16. If

2n* — 101 — 52n% — 561 — 16 = 0,

thenn = —2,—1,4 + /5. Note that n > 2isa positive integer. Therefore, a; + a4 # 0.
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Ifk > 2, wehave ay + ag = b° +10b* + 36b> 4 56b° + 32b. Noting that b = nk+n+2 >

6, we immediately obtain a; + a4 # 0.
!

H
Obviously, ¢ # 0, otherwise o= f¢ = 0; thatis, H = C. This contradicts Lemma 2.
Hence, we can obtain the following relation from (13):

= ;CH(Z) + fen(z) + frpe(2), (14)

where c1;(i = 1,2,3) are small functions of f. Differentiating both sides of (14) gives

f'= ;,cﬂ(z) + fen(2) + fgen(2) + Feleu(z),

where c;(i = 1,2,3,4) are small functions of f. Continuing the above process, we obtain

f® = ;CM(Z) + fealz) + fPoea(z) + -+ o (2), (15)

where ¢;(i = 1,2, - -,k + 2) are small functions of f.
From (15), we have

1
H(z) = Gl’fz(f(k))n —a= 904’nkc’13k+2fnk+n+2 +-o Gl’fzﬁcllﬁ —4a.

Let us take the derivative of above equality; from the equation H' = f¢F, the coeffi-
cient of f in H' — f¢H is a¢. By Lemma 4, we have a¢ = 0. Notice thata # 0 and ¢ # 0,
which is a contradiction. Hence, G(z) # 0.

This completes the proof of Lemma 7. [

Lemma 8. Let f(z), H(z), h(z) and G(z) be stated as the above. Then, all simple poles of f(z) are
the zeros of G(z).

Proof. Suppose that zj is a simple pole of f(z), then
¢(z) = B{1+x(z — 20) + y(z — 20)* + O((z — 20)°)},

f(z) = . jlzo {1+co(z—20) +c1(z—20)®> +O((z — 20)°)},

where AB # 0, x,y, cg, c1 are constants. Next, we consider two cases.
Case 1. k = 1. We have

_1\n An+2
HE) = o) - = TSR 0k e 40—
+ [c% +y+2cox+ (2—n)c1](z — 20)2 +0((z— 20)3)},
_F(z _ (-A)"'B
") =T T e
+ [2ny + (21 — 1)cox — 2n(n — 2)c1](z — 20)2 4+ O((z — 20)°) }.

{2n+ 2+ [2nco+ (2n — 1)x](z — zp)

Therefore, we have

If;((j)) - i G-

+ (26 + 2% =2y + (2n — 4)er] (z — 20)* + O((z — 20)°)},
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Wz) -1 2nco+ (2n —1)x
h(z) _z—zo{2n+2_ 2n+2 (z =)
4 dn?ct + (2n —1)a2
b L R A O DY - 2)e; — gz — )2

2n+2
+0((z—20)%)},

2n +2

A (2y — x*)(z — z0) + O((z — 20)?),

2
) T (@ —120)2 {(2n+2)? = (4n +4) (200 + ) (z — 20)

+ (81 +12)c3 + (4n + 5)x + 4dcox + (4n +4)(2n — 4)c;
— (81 +8)yl(z — 20)* + O((z — 20)*)},

/
1
) =2 )2~{2n+2+[2c%+x2+(2nf4:)clny](zfzo)2
— 20

+0((z —20)%)},

/ 2
(};1((5))) = E 120)2 {(2n +2)% — [4nco + (4n — 2)x](z — z0)
4n?(4n +5)c3 + (4n +5)(2n — 1)2x2 + (8n% 4 12n + 16)cox
+1 (21 +2)2
+8n(n —2)c1 — 8ny|(z — 29)> + O((z — z0)%)},

/
M\ _ 1 nt2+ 1 [47120(2) + (21 — 1)%x% + 4cox
(z —zp)? 2n +2 2n +2

+4n(n—2)c; — 4nyl(z — 20)* + O((z — 20)*) },

H(z) h(z) = (z _120)2 {(211 + 2)2 — [(61’! — 4)60 + (4n — 1)x} (Z _ ZO)

(8n2 + 61 +4)x% + (6n +2)cox
2n+2
— (8n+4)y)(z = 20)* + O((z — 20)°)},

+ [(6n 4+ 4)c3 +

&) o) ~ 7= (@ Dt [+ 4y — 200 — (2n + 1))z~ 20)

+0((z-20)")},

H'(z) ¢'(2) -1
H

+(2n—4)(4n+2)y
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LA A

-1
h(z) ¢(z) Z_ZO{(2n+2)x+ [(4n + 4)

dn®> +10n -3 ,
-

P J(z —20) + O((z — 20)%) },

Putting the above equalities into G(z) and making some easy calculations, we have
G(z) = O(z — zp), and z; is a zero of G(z).
Case 2. k > 2. We have

H(z) = of>(f0)y" —a = (_é)jkiglzf::;lg {1+ (2co + x)(z — 20)

+ (c% 4 2cox 4 2¢1 +y)(z — 20)? + O((z — 20)*) },

-1 nk+1 k! nAn+1B
h(z) = ( (lZO()niwﬂ

+ [(nk +n —1V)cox + (nk +n —2)cy + (nk + n)yl(z — 20)> + O((z — 20)®) }.

{nk+n+2+[n(k+1)co+ (nk+n+1)x](z — zp)

Using the two above equalities, we obtain
H'(z) -1
H(z) z-—2z

+ (26§ + 2% — o1 — 2y](z — 20)* + O((z — 20)°) },

{nk+n+2—(2co+x)(z — zp)

W(z) -1 (nk+mn)co+ (nk+n+1)x
h(z) 7z—zo{nk+n+2_ nk+n+2 (z = 20)
+{(nk—l—n)zc%—o—(nk+n+1)x+4c0x _ 2(nk+n-2)

(nk +n+2)? nk+n+2

yl(z—20)* +O((z— 20)°)},

1

_ 2(nk +n)
nk+n+2

(V= —
H(z) (z—z0)

+ [4(nk +n +3)cd + (2nk + 21 4 5)x% 4 4cox

—4(nk+n+2)(y +2c1))(z—20)* +O((z — 20))},

2{(nk+n+2)2 —2(nk+n+2)(2co+ x)(z — zo)

V=G _120)2 {nk +n+2 — 2§ + 2% — 4e1 = 29](z — 20)* + O((z — 20)*)},

G’ = _1Z0)2{(nk+ n+2)2 — [2(nk + n)co + (nk +n + 1)x](z — zo)

N (2nk + 2n + 5) (nk + n)2c3 + 2(nk + n) (nk +n + 1)x?

(nk +n+2)?
nk+n+1, (nk +n 4+ 1)x? + 4cox
+(7nk+n+2)c0x+ TS 4(nk+n—2)cq

= 2(nk + n)y)(z — z0)* + O((z — 20)*)},
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(nk + n)2c§ + (nk +n +1)%x% + 4cox
(nk +n+2)?

J(z = 20)* +0((z — 20)%)},

N nk+n+2—
O = =z 2ol

_ 2(nk+n—2)cy +2(nk +n)y
nk+n+2

H(z) h(z) = (z _120)2 {(nk +n +2)% — [(3nk + 3n + 4)co + (2nk + 21 + 3)x](z — z)

2(nk+n+1)
nk+n+2
—2(3nk +3n +2)c; —4(nk+n+1)y](z — z0)* + O((z — 20))},

+ [(3nk +3n +4)c3 + (nk+n+2+ )% + 3cox

<fp'<<§>) )? = 2% +2x(2y — x%)(z — z0) + O((z — 20)?),

((Z)’((j)) ) =2y — x2 4 O(z — z0),
H'(z) ¢'(z) _ —1
) o2 Z_ZO{(nk+n+2)x

+ [(2nk + 21 4 4)y — 2cox — (nk +n +3)x%](z — z9) + O((z — 20)?)},

W(z)¢'(z) -1 nk +n

) gla) ~ z_z KT DX [k on )y = e o
7(nk+n+2)2+nk+n+12 B RY
A IKE L2 ) 4 O((= -~ 20))

Putting the above equalities into G(z), and making some easy calculations, we again
obtain G(z) = O(z — zp). Hence, the simple pole is the zero of G(z). O

3. The Proof of Theorem 2

Proof of Theorem 2.

When! =2,n > 1,k > 1, we consider two cases.

Case 1. First, we suppose that k > 2. From Lemmas 7 and 8, we have G # 0 and the
simple pole of f(z) is the zero of G(z). Set

B= 9 F(FO) +20f ()" 4 ngf ()10 — (s 1T

Then, f = fa%/ and i = —1BH. For G(z), we notice that the poles of G(z) with
multiplicities are two at most, which come from the multiple poles of f(z), or from the
zeros of H(z), or from the zeros of h(z), or from the zeros of ¢(z). Since ¢(z) is a small
function of f(z), we ignore its zeros and poles here.

Now, we consider the poles of BG. The zeros of h are either the zeros of H or the zeros
of B. From the above discussion, we can find that the multiple poles of f with multiplicity
q(> 2) are the zeros of B with multiplicity of 4 — 1. Hence, the poles of BG only come from
the zeros of F and the multiplicity is at most 3. Thus,

N(r,00; BG) < 3N(r,0; H).
Noting m(r,G) = S(r, f) and m(r, B) = S(r, f) from Lemma 1, we have

m(r,BG) = S(r, f)-
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Therefore, o
T(r,BG) <3N(r,0;H) + S(r, f).
Since the simple poles of f are the zeros of BG, we obtain
Ni(r,00; f) < N(r,0; BG) < T(r, BG) < 3N(r,0; H).
It follows from the above equality and double (1) that

2(n+2)T(r, f) + Ni(r,00; f)+ < 2N(r,00; f) +2N(r,0; f) + 5N(r,0; H) + 21Ny (7, 0; f)
+ 21kN (141 (, 0; f) = 2No(r, 0; H') + S(r, f),

which leads to

(1) + 200+ Dy, £) 4 m(r, )+ [N(r,09:) + Ni (1,1 ) = 2,3 )]
F2[N(1,0;£) = N(r,0; f)] +21[N(r,0; f) = Ny (r,0:f) = KNpa (r,0: )] 10
< 5N(r,0; H) — No(r,0; H') + S(r, f).
Note that
N(r, 005 £) + Nu(r, 00 f) — 2N(r, 00, £) = 0, N(r,0; )~ N(r,0; ) >
and
N(r,0; £) = Nig (1,0; £) = KNG (1,0 £) = Nigya (7,0; ) — kN(i 4 (1,0; ) >
so we immediately obtain
T(r, f) < 5N(r,0; H) + S(r, ).

Case 2. Suppose that k = 1. Set

- H
B=g'f(f)" +20(f)" +nof ()" f" = @f ()" -
Similarly to Case 1, we obtain the same conclusion.

When [ > 3, from Lemma 3, we have

(I=2)T(r, f) +(”+1)m(h]1c) +m(r, f) + [N(r,00; f) = N(r, 0; f)]
+[N(r,0; f) = N(r,0; f)] +n[N(r,0; f) = Ny (r,0; f) = kN 1.1 (r, 0; f)]
< N(r,0; H) — No(r,0; H") + S(r, f).
Note that
N(r,00; f) = N(r,00;f) >0, N(r,0;f) = N(r,0; ) > 0,
and
N(r,0; f) = Niy(r, 0; f) = kN (141.(r, 0; f) = Ny (7,0; f) = kN (0, ) =

so we immediately obtain

T(r, f) < %N(nO;H) +S(r, f).
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This completes the proof of Theorem 2. [

4. An Application

It is well-known that, for the nonconstant meromorphic function f, Z da, f) <2
acC

at most countable many deficient values of f. For the function f¥), Mues [5] posed the
conjecture: Y- d(a,f) <1 (k > 1). Yamanoi [30] confirmed Mues conjecture for k = 1.
C

ac
Fang and Wang [31] considered for any k > 1, and obtained the result

Ejé(mf“04+ fi Y 5(hf00 <1

acC j=k+1beC/{0}

For the differential polynomial, it is natural to consider the deficiency relations of
n
the differential polynomial. Jiang and Huang [32] gave a result for f' ( f (k)) — a, where

I(>2),n(>2),k(>2) and a € C. In this paper, we improve the result where /(> 2), n(>
1), k(> 1) and a is a small function of f.

Theorem 3. Let f be a transcendental meromorphic function in C, (> 2),n(> 1),k(> 1) be
positive integers and a; be small functions of f,i=1,2,...,q. Then,

d 1
gy
;?@mfg )= T

n
Proof. Letp = ¢f! (f(k)) . By Lemma 1.7 in [2], we have

Bin(eg2s) =o( Bty oo

(N 1
<m <,g¢ b) ((P,,>+S(r,f>
< T(r,¢") —N(r,0;¢") + S(r, f)

< N(r,00;¢") +m(r,¢") — N(r,0;¢") +S(r, f)
< N(r,00;¢) +2N(r, 00;¢) +m(r,¢) — N(r,0;¢") + S(r, f).
By Lemma 1 in [31], we see that
q
Zm(r,(l)_b> < T(r,¢) +2N(r,00;¢) — N(r,00;p) + S(r, f)
i=1

< T(r,¢) + N(r,00; f) + S(r, f)
<T(r,¢) +T(r, f) +S(r. f).

Leta; =b;/¢(i =1,...,q). Note that

N(r b ) = N(r,ai £ (F9)") + 5(r, ),
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By Theorem 2 and Corollary 1, it follows from inequality (22) that

1 m(r, 545 )
5(a;, l — liminf} " — 7%/
= oS (0)") = limis ; T(r,¢)

M&

<1+ liminf ;E:g +5(r, f)
1 N(r,a;9)
<1- 5 (1m0 )

1
=1- m(é(a,qb) —-1)

1 I-1
<1-— — _
<t 5w )
L1
nk+n+1

This completes the proof of Theorem 3. [J

5. Conclusions

In this paper, we mainly consider the estimation of the characteristic function by the
reduced counting function. In the Nevanlinna theory, the second main theorem is the most
important theorem, where the characteristic function T(r, f) is bounded by three reduced
counting functions. Also, we know that the characteristic function T(r, f) is bounded by
two counting functions, considering the derivative of f in Hayman’s inequality, but the
coefficients of the two counting functions seems too large, not as excepted as those ones
which equal 1 in Nevanlinna’s second function main theorem. For this sake, Hayman [1]
asked whether or not the coefficients of N(r,0; f) and N(r, 1; f¥)) in the inequality are best.
L. Yang [2] answered this question, and gave a small coefficient 1 + % Recently, Fang and
Wang [31] obtained a more precise coefficient 1 s, and one counting function N(r,0; f)
is replaced by the reduced function N(r,0; f) usmg the result of Yamanoi [30]. In this
direction, it is natural to study the characteristic function T(r, f), which is bounded by one
counting function, considering the product of a meromorphic function f and its derivative
(differential monomials or differential polynomials). Yi [33] give a quantitative estimation
for the differential polynomial f!(f())" —a(I > 3,1,k > 1) using the reduced counting
function; the coefficients is ﬁ Lahiri and Dewan [34] also obtained a similar result using
the counting function. For the case | = 2, Zhang [10] and Huang and Gu [11] determined
that a quantitative result T(r, f) < 6N(r,1; f2f(K)) + S(r, f) holds for k = 1 and k > 2,
respectively. Jiang and Huang [32] also obtained an estimate for f'(f*))" —a(I,n,k > 2)

by counting function using the result of Yamanoi [30]; the coefficients is ﬁ That is,

T(r,f) < ﬁN(r, a; fL(F%)") 4 S(r, ). However, the key of their proof is the result of
Yamanoi, which is that the counting function cannot be replaced by the reduced counting
function. Our results mainly consider the quantitative estimation for the differential
polynomial using the reduced counting function. They improve and generalize the existing
literature ([14,19,28,35-40]).
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