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Abstract: Federated learning has become a prevalent distributed training paradigm, in which local
devices collaboratively train learning models without exchanging local data. One of the most domi-
nant frameworks of federated learning (FL) is FedAvg, since it is efficient and simple to implement;
here, the first-order information is generally utilized to train the parameters of learning models. In
practice, however, the gradient information may be unavailable or infeasible in some applications,
such as federated black-box optimization problems. To solve the issue, we propose an innovative
zeroth-order adaptive federated learning algorithm without using the gradient information, referred
to as ZO-AdaFL, which integrates the zeroth-order optimization algorithm into the adaptive gradient
method. Moreover, we also rigorously analyze the convergence behavior of ZO-AdaFL in a non-
convex setting, i.e., where ZO-AdaFL achieves convergence to a region close to a stationary point
at a speed of O(1/T) (T represents the total iteration number). Finally, to verify the performance
of ZO-AdaFL, simulation experiments are performed using the MNIST and FMNIST datasets. Our
experimental findings demonstrate that ZO-AdaFL outperforms other state-of-the-art zeroth-order
FL approaches in terms of both effectiveness and efficiency.

Keywords: black-box optimization; convergence rate; federated learning; gradient information;
zeroth-order adaptive algorithm

MSC: 68W40

1. Introduction

In the last few years, machine learning has received a lot of significant attention
and enthusiasm. Deep learning especially has been successful in a range of applications,
including ChatGPT, which is a notable example [1]. In deep learning, deep neural network
models can be trained by using numerous data. Nevertheless, most of the data are generated
and owned by personal devices like smartphones and PCs. The conventional method is
to collect and transmit data to a central point, such as a data center. However, the data
may leak the privacy of users during the process of transmission. Hence, it is difficult to
train machine learning models by transmitting data from all users to the central server (CS),
since the privacy and security of data need to be protected [2–4]. To mitigate this issue,
FL is proposed in [5,6], where the raw data of the participating devices are kept locally;
they participate in global machine learning model training in a collaborative manner by
uploading local models instead of uploading data directly to the CS.

Because of its superiority, recently, a variety of optimization algorithms have been de-
voted to FL. One of the most popular FL approaches is the FedAvg algorithm [5]. Moreover,
its variants have also been effectively discussed and understood recently [7–9]. Nonetheless,
the aforementioned algorithms update the model parameters using stochastic gradient
descent (SGD), which results in slow training and suboptimal performance. For this reason,
adaptive gradient methods [10,11] were introduced in [12], which presents FedYogi and
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FedAdaGrad, respectively. Meanwhile, their convergence behaviors were also analyzed
rigorously. Despite this progress, however, these algorithms need to have access to the
gradient information during the training process. Nevertheless, this information might be
unavailable in some real-world scenarios such as federated black-box optimization [13]
and federated hyperparameter tuning [14]. Therefore, existing federated adaptive gradient
methods are unsuitable for these scenarios.

One of the most popular gradient-free methods is the zeroth-order optimization
algorithm, which has been successfully used in handling a variety of problems in the
real world. The gradient information is expensive or infeasible, but the computation of
objective functions is only available in these scenarios. Such examples include the black-
box adversarial attack on structured prediction [15], reinforcement learning [16], and deep
neural networks (DNNs) [17–19]. Due to its success, zeroth-order optimization has made
great progress in recent years. Nesterov and Spokoiny [20] introduced a zeroth-order degree
decrease (ZO-GD) algorithm by using a two-point Gaussian stochastic gradient estimator.
Moreover, each gradient approximation requires only O(1) different function values. To
improve the performance of zeroth-order optimization, a zeroth-order stochastic variance
reduction algorithm known as ZO-SVRG was presented by Liu et al. [21]. Soon after, the
ZO-AdaMM method was introduced in [22] as a zeroth-order adaptive momentum method
for black-box optimization. The aim of this method is to reduce the large variance caused
by the gradient estimator. Furthermore, an analysis of the convergence performance of
ZO-AdaMM was also provided. The aforementioned efforts were made for the centralized
machine learning framework. Nevertheless, the design and analysis of the zeroth-order
optimization algorithm for the federated learning framework are still limited. Very recently,
Fang et al. [23] presented the FedZO algorithm; several years ago, a federated zeroth-order
optimization algorithm was presented, in which the zeroth-order gradient is integrated
into federated learning. The SGD-based update rule is used in FedZO, which suffers from
slow training speed. However, algorithmic and theoretical developments for federated
adaptive zeroth-order optimization are still barely understood, to our knowledge.

Aspiring to remedy this gap in the research, this paper develops a communication
efficient zeroth-order adaptive federated learning, referred to as ZO-AdaFL, under a non-
convex setting. In each round of communication, ZO-AdaFL adopts the stochastic gradient
estimator for multiple local model updates. Then, the adaptive gradient method is used
to achieve a global update without first-order information. Meanwhile, multiple local
iterations are implemented at each round of communication in ZO-AdaFL, which can
reduce the communication overheads and is suitable in dealing with federated learning
with numerous participants. Moreover, we also provide a theoretical guarantee for ZO-
AdaFL for non-convex objective functions. This paper’s main contributions are summarized
in the following points:

• We propose an algorithm for federated learning that aims to enhance communication
efficiency, called zeroth-order adaptive federated learning (ZO-AdaFL), which inherits
the framework of the FedAdam algorithm. Moreover, ZO-AdaFL only queries the
values of objective functions without using gradient or Hessian information.

• We establish the convergence analysis of the proposed ZO-AdaFL algorithm under the
non-convex setting. In particular, we prove that ZO-AdaFL achieves a convergence
rate of O(1/T) with K local iterations and full device participation, where T represents
the total number of iterations.

• We conduct various experiments to validate the performance of ZO-AdaFL. The
experimental results show that ZO-AdaFL is effective and efficient compared with
state-of-the-art federated zeroth-order learning methods.

The remaining work is organized as shown below. Section 2 introduces related work.
We propose zeroth-order adaptive federated optimization in Section 3. In Section 4, we
present the convergence analysis. We carefully verify our theoretical analysis through
experiments in Section 5. We present the conclusion of this paper and discuss future work
in Section 6. The notation interpretation is shown in Table 1.
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Table 1. Notation summary table.

Notation Definition

m The number of clients.
Mt The subset of randomly selected participating clients.
|Mt| The number of randomly selected participating clients.
|Y| The size of the data point subset owned by the i-th client.
Di, |Di| The dataset and dataset size of client i.
fµ(x) Client’s loss function.
d Dimension of the model parameters.
∥·∥ The ℓ2 norm of vectors.
(·)T and (·)H The transpose and the conjugate transpose.
m and v The first-order and second-order momentum parameters.
∇̂F Unbiased gradient estimator.
ηl , α Stands for the local step and the global step, respectively.

K, T Represents the number of local iterations and the total number of global iterations,
respectively.

Throughout this paper, we use R and E[·] to denote the real number set and the
expectation operator, respectively. Scalars, vectors, and matrices are denoted by regular
letters, bold lower-case letters, and bold upper-case letters, respectively. The notation
diag(x) is used to represent a diagonal matrix with the diagonal entries determined by x.

2. Related Work

In this section, we give a brief overview of related work on SGD, adaptive gradient
methods, federated learning, zeroth-order optimization, respectively.

2.1. SGD and Adaptive Gradient Methods

SGD [24] is a popular method for training machine learning models, but it can be sensitive
to parameter settings and slow to converge when dealing with heavy-tailed stochastic gradient
noise. To address these issues, adaptive gradient methods like AdaGrad [25], RMSProp [26],
and AdaDelta [27] can be used. Adam [10] and its variant AMSGrad [11] have been proposed.
These methods are widely used in training deep neural networks and other variants [28–30]
also have a crucial role in enhancing various aspects of the adaptive gradient method.

2.2. Federated Learning

FL is an innovative machine learning approach first mentioned by Google [5] in 2016 to
address issues such as data privacy protection, security, and centralized processing bottle-
necks. The technique allows data to be stored and models to be trained on local devices, but
it also raises challenges in terms of communication efficiency, privacy protection, and device
selection. To address these challenges effectively, FL [6] has now attracted considerable
attention from the research community. Federated averaging (FedAvg) [5], as a classical
framework, has strongly contributed to the rapid development of the field of FL through
the periodic SGD updating of averages. Stich [31] provided a concise theoretical conver-
gence guarantee for local SGD. Following the FedAvg algorithm, numerous other first-order
optimization algorithms have been presented, e.g., FedProx [8], FedNova [7], and SCAF-
FOLD [32]. Furthermore, Reddi et al. [12] have also introduced a few adaptive federated
optimization approaches in recent years, such as FedAdagrad, FedYogi, and FedAdam. These
optimization approaches aim to yield even faster convergence to address the convergence
problems of FedAvg. However, the mainstream first-order optimization algorithms have the
following problems: the learning rate is too low, resulting in the too-slow convergence of
the loss function; the learning rate is too high, which may affect the convergence and lead
to fluctuations in the loss function on the minimum value, or even divergence, and is more
sensitive to the parameters; the loss function is prone to converging to the local optimum,
and it is difficult to jump out of the saddle point. To further reduce the communication
overhead, several second-order optimization algorithms were proposed, such as GIANT [33],
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FedDANE [34], FedNL [35], and FedNew [36]. The second-order optimization algorithm
accelerates the first-order gradient descent by using the curvature correction of the second-
order derivative of the objective function. Compared to the first-order optimizer, it converges
faster, highly approximates the optimal value, and the descent path is geometrically more
consistent with the true optimal descent path. Although first-order and second-order opti-
mization algorithms have made significant contributions to federated learning, they may not
be suitable for scenarios where derivative or Hessian information is unavailable or large-scale
datasets need to be trained. In such cases, zeroth-order optimization algorithms can be more
effective. Zeroth-order optimization algorithms are advantageous due to their computational
efficiency, independence from the gradient problem, and ability to adapt to non-smooth and
discrete objective functions. Therefore, using zeroth-order optimization algorithms in these
situations can be more efficient and effective.

2.3. Zeroth-Order Optimization

The ZO algorithm commonly uses a gradient estimator, such as the one-point or two-
point gradient estimator, to approximate the full-gradient. The one-point gradient estimator
estimates the gradient ∇̂ f (x) by evaluating the function f (·) at a random nearby location to
the point x [37,38]. On the other hand, the two-point gradient estimator uses two stochastic
function queries to compute the finite difference [20,39]. ZO stochastic gradient descent
(ZO-SGD) [40] and ZO stochastic coordinate descent (ZO-SCD) [41] are able to converge
quickly in unconstrained stochastic optimization problems with a convergence rate of
O(
√

d/
√

T); the number of optimization variables is d with T iterations. To enhance the
iteration complexity of ZO algorithms, the variance reduction technique has been applied
to ZO-SGD and ZO-SCD, resulting in stochastic-variation-reduced ZO algorithms, with
an enhanced convergence rate in T, i.e., O(d/T) [21,42,43]. Several recent works [13,44]
have concentrated on the study of distributed zeroth-order optimization. In particular,
the authors of [44] have developed a ZONE algorithm using the primal–dual technique.
However, ZONE requires O(T) sampling complexity per iteration. More comprehensive
discussion on distributed zeroth-order optimization methods can be found in [45,46].

3. Zeroth-Order Adaptive Federated Optimization

Most federated optimization algorithms that utilize SGD to update the model have
loss function values that are slow to change in some dimensions. They tend to fall into local
minima and at saddle points in high-dimensional spaces, which leads to larger variance
values of the loss function and hinders the algorithm’s convergence speed. In this paper, we
devote much attention to two-point gradient estimators that aim to make the variance of the
loss function smaller, thus speeding up the convergence of the algorithm and improving the
complexity bounds of the ZO algorithms. Firstly, we analyze the non-convex optimization
problems of FL; secondly, we propose an FL optimization algorithm called ZO-AdaFL. An
overview flowchart of the ZO-AdaFL algorithm is shown in Figure 1.

Uploading 

local models 

differences

ZO-AdaFL

The gradient 

estimator

The Adam 

optimizer 

Local Model Uploading Global Model Update

ServerServer

O(1/T) 

convergence 

rate

Non-convex 

setting

...... ......

Selected clients

......

Selected clients

K-step stochastic zeroth-order 
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Figure 1. The ZO-AadFL algorithm overview flowchart.



Mathematics 2024, 12, 1148 5 of 21

3.1. Problem Formulation

In FL, general FL algorithms have difficulty solving complex optimization models
without gradients or where obtaining gradients is costly. This scenario occurs in many real-
world applications, including—but not limited to—federal black-box attacks on DNNs [13].
The objective function in FL is typically non-convex due to the heterogeneity of client data.
Furthermore, the problem of federated black-box attacks on DNN models is non-convex.
Meanwhile, considering the practical application scenario of large-scale device participation
and black-box attacks in FL, this paper aims to study the non-convex optimization problem
in FL; the specific problem is described here:

min
x∈Rd

f (x) =
1
m

m

∑
i=1

fi(x), (1)

where m is the total number of clients, x ∈ Rd represents the model parameter with dimen-
sion d, and f (x) represents the global loss function on the CS. In Equation (1), fi(x) is a
local non-convex loss function and is a measure of the expectation of risk above locally
distributed data, denoted by fi(x) = Eξ∼Di [Fi(x; ξ)], where ξ ∼ Di represents a random
variable, ξ, uniformly sampled from Di; Fi(x; ξ) denotes the loss relative to ξ which is
evaluated at the model parameter x.

In the FedAvg, an optimization solution is proposed for the problem involved in
problem Equation (1). During the t-th iteration, the CS provides client i in the chosen subset
Mt with the model xt. Using the learning rate ηl , the client i performs the K steps of the
SGD update locally to obtain the local model xi

t,K. Each client can perform model updates
based on local data and send the model parameter differences ∆i

t = xi
t,K − xt back to the CS.

Then, the differences in the global model, denoted as ∆t, are updated by the CS through
the simple averaging of the local model differences, ∆i

t. The global model xt+1 is updated
using the function xt+1 = xt + ∆t, which is the same approach as that taken for the direct
average local model xi

t,K, i.e., xt+1 = xt +
1
n ∑i∈St(x

i
t,K − xt) =

1
n ∑i∈St xi

t,K.
FedAdam was then proposed among several adaptive optimization methods in feder-

ated learning [12]. FedAdam replaces FedAvg’s SGD approach by introducing the Adam
optimizer as a global update rule that can better accommodate different local variances ∆i

t
and average them out to ∆t. The CS then uses the Adam optimizer to perform an accurate
and fast update of the global model based on this global variance ∆t:

mt = β1mt−1 + (1− β1)∆t, (2)

vt = β2vt−1 + (1− β2)∆2
t , (3)

xt+1 = xt + αt
mt√
vt + ϵ

, (4)

where ∆t serves as a pseudo gradient, and the global update can be considered as a single-
step Adam update that uses ∆t. There have also been a number of algorithm variants pro-
posed that make subtle modifications to the variance term vt, including FedAdagrad [12],
FedYogi [12] and FedAMSGrad [47]. In order to prevent the vt term from becoming too
small and causing instability in the optimization process, stability is ensured by adding ϵ
to Equation (4).

3.2. ZO-AdaFL Algorithm

As shown in Algorithm 1, this section proposes a general zeroth-order algorithm for an
adaptive federated optimization framework. The ZO-AdaFL algorithm aims to eliminate
gradient dependence and focuses on reducing the model exchange frequency. To achieve
these goals, in each round of communication, the ZO-AdaFL algorithm cleverly employs a
gradient estimator and performs a K-step stochastic zeroth-order updating strategy. Each
round of our ZO-AdaFL algorithm has the following four parts.
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Broadcast Global Model: The CS chooses any collection of clients from the M clients
for training at the beginning of round t, denoted as Mt. Subsequently, each client in
collection Mt obtains a current global model parameter xt in a broadcast from the CS.

Local Model Update: Each selected client, i ∈ Mt, then trains its own local model
parameters, xi

t,K, using K-steps of stochastic zeroth-order updating at a learning rate of ηl .
Specifically, at the k-th iteration of the t-th round, client i computes a two-point stochastic
gradient estimator [45], as shown below.

∇̂Fi(xi
t,k; ξ i

t,k) = (d/µt)[Fi(xi
t,k + µtut,k; ξ i

t,k)− Fi(xi
t,k; ξ i

t,k)]ut,k, ∀i ∈ [m], (5)

where xi
t,k denotes the local model of client i, and ξ i

t,k is a personalized update of client i
in each iteration. Specifically, ξ i

t,k is a random variable obtained by sampling a local data
distribution Di of client i at the k-th iteration of the t-th round. ut,k is a random direction
vector obtained by evenly sampling on the unit sphere Sd of dimension d. µt denotes the
magnitude of the movement in that random direction, i.e., the positive step size.

Afterwards, client i performs a stochastic zeroth-order update to update its local
model, as follows:

xi
t,k+1 = xi

t,k − ηl∇̂Fi(xi
t,k; ξ i

t,k), k ∈ [K], (6)

where ηl represents the learning rate. Client i obtains a new local model parameter xi
t,K

through a total of k iterations.
Local Model Uploading: After the local training is completed, all of the clients from

Mt obtain the updated part of the local model parameters, i.e., ∆i
t = xi

t,K − xt, i ∈Mt. Then,
they upload them to the CS.

Global Model Update: The CS aggregates ∆i
t to obtain ∆t after it receives the local

model update from the selected client i, i.e., ∆t = 1
|Mt | ∑i∈Mt ∆i

t. ∆t acts as a pseudo
gradient to calculate momentum mt and variance vt, following Equations (2) and (3).
Subsequently, the CS obtains the new global model, that is, xt+1 = xt + αt

mt√
v̂t+ϵ

, where
v̂t = max(v̂t−1, vt). Note that this is the same as the AMSGrad update rule [11], which
addresses Adam’s non-convergence problem [10] by using non-decreasing vt.

Algorithm 1 Zeroth-Order Adaptive Optimization for Federated Learning (ZO-AdaFL)

Require: initial model x1, local step size ηl , global step size αt, smoothing parameter µ > 0,
β1, β2, ϵ.

1: m0 ← 0, vt ← 0
2: for t = 1, 2, . . . , T do
3: Randomly sample a subset Mt from m.
4: The CS broadcasts the global model xt to the subset Mt of clients
5: xi

t,0 = xt
6: for every client i ∈Mt in parallel do
7: for k = 0, 1, . . . , K− 1 do
8: Compute local stochastic gradient estimator: ĝi

t,k = ∇̂Fi(xi
t,k; ξ i

t,k) by Equation (5)
9: Perform local update: xi

t,k+1 = xi
t,k − ηl ĝi

t,k
10: end for
11: Compute the local model updates: ∆i

t = xi
t,K − xt

12: end for
13: The CS aggregates the local model updates: ∆t =

1
|Mt | ∑i∈Mt ∆i

t

14: Update mt = β1mt−1 + (1− β1)∆t
15: Update vt = β2vt−1 + (1− β2)∆2

t
16: Option: v̂t = max(v̂t−1, vt), update xt+1 = xt + αt

mt√
v̂t+ϵ

17: end for
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4. Convergence Analysis

The presentation in this section is about the theoretical convergence results of ZO-
AdaFL. We focus on the setting of non-convex loss functions. In order to perform the
convergence analysis, we need some assumptions. These assumptions are presented below.

Assumption 1 (Smoothness). Each loss function on the i-th worker Fi(x) is L-smooth, i.e.,
∀x, y ∈ Rd, ∣∣Fi(x)− Fi(y)− ⟨∇Fi(y), x− y⟩

∣∣ ≤ L
2
∥x− y∥2.

Assumption 1 also implies the L-gradient Lipschitz condition, i.e., ∥∇Fi(x)−∇Fi(y)∥ ≤
L∥x− y∥. Assumption 1 is a standard assumption in non-convex optimization problems,
which has been also adopted in [10,11,48,49].

Assumption 2 (Bounded Gradient). Each loss function on the i-th worker Fi(x) has Gzo bounded
stochastic gradient on ℓ2, i.e., for all ξ, we have ∥∇Fi(x, ξ)∥ ≤ Gzo.

The assumption of bounded gradient is usually adopted in adaptive gradient meth-
ods [10,11,28,50].

Assumption 3 (Unbiasedness). The stochastic gradient ∇Fi(x, ξ) is an unbiased estimate of
∇ fi(x), i.e.,

Eξ [∇Fi(x, ξ)] = ∇ fi(x), ∀x ∈ Rd, ∀i ∈ [m].

Assumption 4 (Bounded Variance). Each stochastic gradient on the i-th worker has a bounded
local variance, i.e., for all x, i ∈ [m], we have E

[
∥∇ fi(x, ξ) − ∇Fi(x)∥2] ≤ σ2

l , and the loss
function on each worker has a global variance bound, 1

m ∑m
i=1 ∥∇Fi(x)−∇ f (x)∥2 ≤ σ2

h , where σl
and σh represent the local stochastic gradient variance and global variance, respectively.

Assumption 4 is commonly applied in FL optimization issues [12,48,49]. The bounded
local variance reflects the stochastic gradient stochasticity for each client, and the bounded
global variance reflects the heterogeneity of the dataset across devices. When the value of
the local variance is 0 (i.e., σh = 0), it represents a setting where the dataset for each client
has the same distribution, i.e., independent and identically distributed (i.i.d.).

Here, we show the convergence results of ZO-AdaFL using an all-hands-on-deck
scheme, where each client participates in the communication round and the model update,
denoted as |Mt| = m, ∀t ∈ [t]. Before proving the convergence results of ZO-AdaFL, several
auxiliary lemmas are introduced.

Lemma 1. Under Assumption 1, using the ZO-AdaMM update rule [22], we have

E[ fµ(zt+1)− fµ(z1)] ≤
T

∑
t=1

E[⟨∇ fµ(xt), zt+1 − zt⟩] (7)

+
4Lg + 5Lgβ2

1
2(1− β1)2

T

∑
t=1

E[∥xt+1 − xt∥2].

Proof. See Appendix A.

Lemma 2. Suppose Assumptions 1–4 hold. Then, according to the ZO-AdaMM update rule [22],
for the first term of Lemma 1, we have
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T

∑
t=1

E[⟨∇ fµ(xt), zt+1 − zt⟩]

≤ αtβ1ηlKG2
zo

1− β1

T

∑
t=1

E
[∥∥∥∥V̂−1/2

t − V̂−1/2
t−1

∥∥∥∥
1

]

−
3
√

2αtη
3
l L2dK3 −

√
2αtηlK

2

T

∑
t=1

E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
−

αtη
3
l L2dK3T
√

2ϵ
(σ2

l + 3σ2
h )−

αtη
3
l K3µ2d2L4T

4
√

2ϵ
(8)

− αt
√

2(1− β2)Gzo

ϵ

T

∑
t=1

E[∥∆t∥2]

+

√
2αtηl

2Km2

T

∑
t=1

E
[∥∥∥∥ 1

4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]
.

Proof. See Appendix B.

Lemma 3. Then, with Assumptions 1–4 and ηl ≤ 1
3KL
√

d
, for the second term of Lemma 1, we have

4L + 5Lβ2
1

2(1− β2
1)

T

∑
t=1

E[∥xt+1 − xt∥2]

≤
T

∑
t=1

α2
t d

4L + 5Lβ2
1

2(1− β2
1)

1− β1

1− β2

1
1− γ

. (9)

Proof. The proof follows from Lemma 2.4 in [22].

Theorem 1. Suppose Assumptions 1–4 hold. If the local learning rate satisfies ηl ≤ min
{

1
3KL
√

d
,

ϵ

2K
√

2αtηl
√

1−β2Gzo

}
, then, under the condition of the full participation of the devices, the iterates of

ZO-AdaFL in Algorithm 1 satisfy

E[∥∇ fµ(xt)∥2] ≤ 2
√

β2η2
l K2G2 + ϵ

[ f 0
µ − f ∗µ

AT
+

Φ
T
−Ψ

]
, (10)

where A =
√

2(3η2
l L2dK2 − 1), Φ = β1G2

zod
(1−β1)

√
ϵ
, and Ψ = 1

A

[
η2

l L2dK2
√

2ϵ
(σ2

l + 3σ2
h ) +

η2
l K2µ2d2L4

4
√

2ϵ
+

√
2(1−β2)Gzoηl σ

2
l

mϵ − αtd
4L+5Lβ2

1
2ηl K(1−β2

1)

1−β1
1−β2

1
1−γ

]
. Moreover, as the communication rounds increase,

ZO-AdaFL converges to the neighborhood of a solution.

Proof of Theorem 1. See Appendix C.

Remark 1. Equation (10) shows that the upper bound of the minimum gradient squared mint∈[T]
E[∥∇ f (xt)∥2] in the global model sequence is closely related to the total number of steps T, and it
decreases as T → ∞. Additionally, the convergence rate of the algorithm depends on σl and σh. In
the scenario where each worker has the same data distribution (i.e., i.i.d.), the global variance is zero
(σh = 0), and the variance term Ψ will be reduced, relying less on the number of local steps K.

Remark 2. Note that, compared with FedAdam [12], our theoretical analysis of ZO-AdaFL im-
proves upon previous work by providing a comprehensive analysis of ZO-AdaFL with a non-zero
momentum term. In contrast, the analysis in reference [12] only focuses on the scenario where
β1 = 0.
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5. Simulation Results

In this section, we introduce the results of our simulated experiments, evaluating
the performance of the ZO-AadFL algorithm, which is proposed for federated black-box
attacks. We verify the effectiveness of our ZO-AadFL under federated black-box attacks
and the faster convergence speed of ZO-AadFL with the involvement of large-scale devices
through different experimental setups.

5.1. Federated Black-Box Attack

Deep-learning-based image classification algorithms are mostly trained under carefully
made datasets. For images outside the dataset or slightly modified images, the recognition
ability of the network is often affected to some extent. Under this phenomenon, adversarial
attacks begin to be included in the examination of network model robustness. By adding
different noises or transforming certain areas of the image to generate antagonistic samples,
the samples attack the network model to achieve the purpose of confusing the network.
Since the black-box possesses the characteristic of not being able to directly observe the
gradient information of the function, we need to solve the black-box attack optimization
problem with zeroth-order optimization. We consider a well-trained DNN classifier model
with a testing accuracy of 99.4% on the standard MNIST dataset [13], and let this model
simulate a federated black-box model. The federated black-box attack aims to jointly
produce a universal adversarial perturbation that makes the perturbation image visually
imperceptible, but this can mislead the classifier.

5.2. Experiment Setup

In this experiment setting, we randomly selected 200 samples from the training set
of digit class “4”, and then distributed |Di| = 60 samples to each client i. The number of
clients was set to N = 50. Moreover, v0 = v̂0 = 10−5 and m0 = 0, β1 = 0.9, β2 = 0.99,
ϵ = 10−8. The learning rate and step size were set to αt = 0.02 and ηl = 0.001, respectively.

5.3. Experimental Results and Analysis

In the experiment, we observed the influence of a different number of local iterations
and the number of participating clients on the convergence of ZO-AdaFL algorithm. The
results are shown in Figure 2.

In Figure 2a, we demonstrate the effect that the number of local iterations has on
the convergence performance of ZO-AadFL when the total number of clients involved
m = 50. Specifically, the relationship between the black-box attack loss and the number
of communication rounds is presented by changing the number of local iterations K ∈
{10, 50, 100}. As shown in Figure 2a, as K increases, the attack loss of the ZO-AadFL
algorithm decreases and the convergence rate tends to accelerate. It is worth noting that the
ZO-AadFL algorithm converges to different losses for different K; this is because, with the
non-convex nature of the federated black-box attack problem on DNN models, multiple
saddle points exist. As a result, the ZO-AadFL algorithm may become trapped in any of
these saddle points. In addition, Figure 2b shows the black-box attack losses of ZO-AadFL
for different numbers of participating clients when the number of local iterations is K = 50.
Specifically, the relationship between attack losses and communication rounds is presented
by changing the number of participating clients m ∈ {10, 30, 50}. It can be observed that
the ZO-AadFL is able to effectively reduce attack losses and produce a better convergence
effect with the increase in m, because the more clients participate in training, the higher the
precision of model training.

We further verified the effectiveness of the proposed ZO-AdaFL algorithm, and com-
pared the performance of our algorithm with those of three baseline algorithms—i.e., the
DZOPA [13], FedZO [23], and ZONES [44] algorithms—on training MNIST and FMNIST
datasets, respectively, with the CNN model. The results are depicted in Figure 3. We
compared communication rounds and the black-box attack loss for several algorithms on
each dataset.
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Figure 2. Black-box attack loss for the ZO-AadFL algorithm vs. communication rounds. (a) Influence
of number of local iterations. (b) Influence of number of participating clients.

For the MNIST experiments, Figure 3a shows the convergence result of ZO-AdaFL
and other ZO optimization baselines. In the initial stage, the attack loss of each algorithm
is high. As the number of communication rounds increases, the attack loss of all algorithms
gradually decreases. Furthermore, our ZO-AdaFL algorithm’s loss decreases at a faster
rate and ultimately reaches the lowest loss value. Note that—although DZOPA and FedZO
have similar final performances—the DZOPA algorithm does not perform as well as FedZO
when the number of communication rounds is low. Throughout the experiment, although
the attack loss of the ZONES algorithm is always kept at a relatively lower level than
that of FedZO, it is more volatile and less stable. Compared with the FedZO algorithm,
the ZO-AadFL algorithm reduces the attack loss faster and has better convergence in the
first 100 rounds. Based on the comparative analysis of the experimental results of the
FedZO algorithm and the ZO-AadFL algorithm, we find that the loss of the ZO-AadFL
algorithm is smaller than that of the FedZO algorithm, both in the initial and final stages.
In contrast, ZO-AadFL significantly outperforms the other three baselines in terms of final
black-box attack loss. This suggests that ZO-AadFL can be an ideal solution for zeroth-order
optimization algorithms in the absence of first-order information.
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Figure 3. Test training loss for different algorithms on MNIST and FMNIST datasets. (a) Training loss
for different algorithms on MNIST dataset. (b) Training loss for different algorithms on FMNIST dataset.

For FMNIST experiments, Figure 3b shows the convergence result of ZO-AdaFL
and other ZO optimization baselines. Obviously, our ZO-AadFL algorithm converges
with the number of algorithmic communication rounds grown. Furthermore, the final
black-box attack loss performance of ZO-AadFL algorithm is better than FedZO and
DZOPA algorithms. However, compared to the ZONES algorithm, our algorithm has a
higher attack loss rate. To further analyze the reasons for this phenomenon, we provide
additional experimental results about the attack success rate and the distortion loss against
600 communication rounds in Table 2. It is important to note that all algorithms start with
no perturbation. Consequently, the attack loss gradually decreases with the number of
algorithmic communication rounds, which grows till it converges to zero, demonstrating
a successful attack. Meanwhile, there is a possibility of an increase in distortion loss. In
these circumstances, if the algorithm can quickly converge to where the optimal trade-off
between zero attack loss and low distortion loss is reached, then the algorithm achieves
optimal attack performance. In other words, there exists a trade-off between attack loss and
perturbation distortion. Combining Figure 3b and Table 2, the ZONES algorithm achieves
better attack loss performance due to its higher disturbance loss compared to our proposed
algorithm. However, the success rate of our proposed algorithm in attacking is higher.
Moreover, our proposed algorithm sacrifices disturbance loss to achieve lower attack loss
and higher attack success rate, compared to the DZOPA and FedZO algorithms.
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Table 2. Summary of attack success rate and distortion loss for universal attack against under T = 600
iterations on the FMNIST dataset.

Methods DZOPA [13] FedZO [23] ZONES [44] ZO-AdaFL

Attack success rate 48.36% 83.72% 76.28% 89.66%
Distortion loss 8.60 8.95 44.82 23.23

6. Conclusions and Future Work

In this paper, we propose a zeroth-order adaptive optimization algorithm for FL,
named ZO-AdaFL, which is the first application of zeroth-order optimization and adaptive
optimization to FL. ZO-AdaFL adopts the zero-order optimization algorithm of estimating
the gradient by function values to approximate the gradient to solve the FL black-box
optimization problem, and the adaptive algorithm avoids FL falling into a local optimum
under the non-convex setup condition of full device participation. The convergence speed
of the ZO-AdaFL algorithm is also guaranteed. We also analyze the convergence behavior
of the ZO-AdaFL algorithm theoretically and prove its convergence rate, O(1/T), in a
non-convex setting. The experiments conducted on a variety of benchmarks confirmed our
theoretical analysis. In this work, we assume that evaluation on fi(x) can be made in the
absence of noise or error, which may limit the applicability of this result, since—in many
practical scenarios—the functional values are obtained through some noisy measurement
procedures. Because the variance of the stochastic gradient estimator can be unbounded, in
the future, we hope to further incorporate the idea of variance reduction to minimize the
constraints. Meanwhile, a distributed zero-order algorithm can be investigated on this basis.
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Appendix A

Proof. Before we can prove it, we need to introduce a sequence auxiliary variable, {zt}t≥0,
which is very common in adaptive methods.
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zt =

{
xt, t = 0
xt +

β1
1−β1

(xt − xt−1), t ≥ 1.
(A1)

According to the smoothness of function f , we can obtain

fµ(zt+1)− fµ(zt)

≤ ⟨∇ fµ(zt), zt+1 − zt⟩+
Lg

2
∥zt+1 − zt∥2

≤ ⟨∇ fµ(xt), zt+1 − zt⟩+
Lg

2
∥zt+1 − zt∥2

+ ⟨∇ fµ(zt)−∇ fµ(xt), zt+1 − zt⟩

≤ ⟨∇ fµ(xt), zt+1 − zt⟩+
Lg

2
∥zt+1 − zt∥2 (A2)

+
1
2
(

1
Lg
∥∇ fµ(zt)−∇ fµ(xt)∥2 + Lg∥zt+1 − zt∥2)

≤ ⟨∇ fµ(xt), zt+1 − zt⟩+ Lg∥zt+1 − zt∥2 +
1
2

Lg∥zt − xt∥2.

Suppose x0 = x1 and t ≥ 1, we have

zt = xt +
β1

1− β1
(xt − xt−1)

=
1

1− β1
xt −

β1

1− β1
xt−1, (A3)

and thus

zt+1 − zt

=
1

1− β1
xt+1 −

β1

1− β1
xt −

(
1

1− β1
xt −

β1

1− β1
xt−1

)
=

1
1− β1

xt+1 −
1

1− β1
xt −

β1

1− β1
xt +

β1

1− β1
xt−1

=
1

1− β1
(xt+1 − xt)−

β1

1− β1
(xt − xt−1). (A4)

We further obtain

∥zt+1 − zt∥2

≤ 2
(1− β1)2 ∥xt+1 − xt∥2 +

2β2
1

(1− β1)2 ∥xt − xt−1∥2. (A5)

Substituting Equation (A5) into Equation (A2), we obtain

fµ(zt+1)− fµ(zt)

≤ ⟨∇ fµ(xt), zt+1 − zt⟩+ Lg∥zt+1 − zt∥2 +
1
2

Lg∥zt − xt∥2

≤ ⟨∇ fµ(xt), zt+1 − zt⟩+
2Lg

(1− β1)2 ∥xt+1 − xt∥2

+
2Lgβ2

1
(1− β1)2 ∥xt − xt−1∥2 +

Lg

2
∥ β1

1− β1
(xt − xt−1)∥2

= ⟨∇ fµ(xt), zt+1 − zt⟩+
2Lg

(1− β1)2 ∥xt+1 − xt∥2

+
5Lgβ2

1
2(1− β1)2 ∥xt − xt−1∥2. (A6)



Mathematics 2024, 12, 1148 14 of 21

Summing t from 1 to T and take expectation, we can obtain

E
[ T

∑
t=1

(
fµ(zt+1)− fµ(zt)

)]

≤ E
[ T

∑
t=1

(
⟨∇ fµ(xt), zt+1 − zt⟩+

2Lg

(1− β1)2 ∥xt+1 − xt∥2

+
5Lgβ2

1
2(1− β1)2 ∥xt − xt−1∥2

)]
≤

T

∑
t=1

E[⟨∇ fµ(xt), zt+1 − zt⟩]︸ ︷︷ ︸
T1

+
4Lg + 5Lgβ2

1
2(1− β1)2

T

∑
t=1

E[∥xt+1 − xt∥2]︸ ︷︷ ︸
T2

. (A7)

The proof is now complete.

Appendix B

Proof. For the first term in Equation (A7), we have

T

∑
t=1

E[⟨∇ fµ(xt), zt+1 − zt⟩]

=
T

∑
t=1

E
[〈
∇ fµ(xt),−αtV̂−1/2

t ∆t

− β1αt

1− β1

(
V̂−1/2

t − V̂−1/2
t−1

)
mt−1

〉]
=

T

∑
t=1

E
[〈
∇ fµ(xt),−

β1αt

1− β1

(
V̂−1/2

t − V̂−1/2
t−1

)
mt−1

〉]
︸ ︷︷ ︸

T11

−
T

∑
t=1

E
[〈
∇ fµ(xt), αtV̂−1/2

t ∆t

〉]
︸ ︷︷ ︸

T12

(A8)

where

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1

1− β1
(xt − xt−1)

=
1

1− β1
(αtV̂−1/2

t mt)−
β1αt

1− β1
V̂−1/2

t−1 mt−1

=
αt

1− β1
V̂−1/2

t [β1mt−1 + (1− β1)∆t] (A9)

− β1αt

1− β1
V̂−1/2

t−1 mt−1

= −αtV̂−1/2
t ∆t −

β1αt

1− β1

(
V̂−1/2

t − V̂−1/2
t−1

)
mt−1.
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Here, we recall the notation V̂t =diag(v̂t) = diag(max(v̂t−1, vt, ϵ)).

T12 = E
[〈
∇ fµ(xt), αt

∆t√
v̂t

〉]
≤ αtE

[〈
∇ fµ(xt),

√
2∆t√

vt + ϵ

〉]
=
√

2αtE
[〈
∇ fµ(xt),

∆t√
β2vt−1 + ϵ

〉]
(A10)

+
√

2αtE
[〈
∇ fµ(xt),

∆t√
vt + ϵ

− ∆t√
β2vt−1 + ϵ

〉]
.

where the first inequality follows by the fact that v̂t ≥ vt+ϵ
2 . For the first term in Equation (A10),

we can obtain Equation (A11).

√
2αtE

[〈
∇ fµ(xt),

∆t√
β2vt−1 + ϵ

〉]
=
√

2αtE
[〈 ∇ fµ(xt)√

β2vt−1 + ϵ
, ∆t + ηlK∇ fµ(xt)− ηlK∇ fµ(xt)

〉]

=−
√

2αtηlKE
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+
√

2αtE
[〈 ∇ fµ(xt)√

β2vt−1 + ϵ
, ∆t + ηlK∇ fµ(xt)

〉]
(A11)

=−
√

2αtηlKE
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+
√

2αt

〈 ∇ fµ(xt)√
β2vt−1 + ϵ

,E
[
− 1

m

m

∑
i=1

K−1

∑
k=0

ηl ĝ
i
t,k + ηlK∇ fµ(xt)

]〉

=−
√

2αtηlKE
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+
√

2αt

〈 ∇ fµ(xt)√
β2vt−1 + ϵ

,E
[
− ηl

m

m

∑
i=1

K−1

∑
k=0

ĝi
t,k +

ηlK
m

m

∑
i=1
∇ f i

µ(xt)

]〉
.

√
2αt

〈 ∇ fµ(xt)√
β2vt−1 + ϵ

,E
[
− ηl

m

m

∑
i=1

K−1

∑
k=0

ĝi
t,k +

ηlK
m

m

∑
i=1
∇ f i

µ(xt)

]〉

=
√

2αt

〈 ∇ fµ(xt)√
β2vt−1 + ϵ

,E
[
− ηl

m

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k) +

ηlK
m

m

∑
i=1
∇ f i

µ(xt)

]〉

=
√

2αt

〈√
ηlK∇ fµ(xt)

4
√

β2vt−1 + ϵ
,−

√
ηlK

4
√

β2vt−1 + ϵ

1
Km

E
[ m

∑
i=1

K−1

∑
k=0

(∇ f i
µ(x

i
t,k)−∇ f i

µ(xt))

]〉

=

√
2αtηlK

2
E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+

√
2αtηl

2Km2 E
[∥∥∥∥ 1

4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0

(∇ f i
µ(x

i
t,k)−∇ f i

µ(xt))

∥∥∥∥2]

−
√

2αtηl
2Km2 E

[∥∥∥∥ 1
4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]

≤
√

2αtηlK
2

E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+

√
2αtηl
2m

m

∑
i=1

K−1

∑
k=0

E
[∥∥∥∥∇ f i

µ(xi
t,k)−∇ f i

µ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
(A12)

−
√

2αtηl
2Km2 E

[∥∥∥∥ 1
4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]

≤
√

2αtηlK
2

E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+

√
2αtηl L2

2m

m

∑
i=1

K−1

∑
k=0

E
[∥∥∥∥ xi

t,k − xt
4
√

β2vt−1 + ϵ

∥∥∥∥2]

−
√

2αtηl
2Km2 E

[∥∥∥∥ 1
4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]
.
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We further analyze the last item in Equation (A11). According to the properties
of the gradient estimator ([51] Lemma 4.2), E[ĝi

t,k] = ∇ f i
µ(xi

t,k). Thus, we can obtain
Equation (A12), where the third equality follows from ⟨x, y⟩ = 1

2 [∥x∥2 + ∥y∥2 − ∥x− y∥2],
the first inequality holds by applying Cauchy–Schwarz inequality; the second inequality
follows from Assumption 1.

According to ([23], Lemma 2), when ηl ≤ 1
3KL
√

d
, we have

1
m

m

∑
i=1

K−1

∑
k=0

E[∥xi
t,k − xt∥2] (A13)

≤3η2
l dK3∥∇ fµ(xt)∥2 + η2

l dK3(σ2
l + 3σ2

h ) +
d2K3L2

4
η2

l µ2.

By substituting Equation (A13) into Equation (A12), we obtain Equation (A14).

√
2αt

〈 ∇ fµ(xt)√
β2vt−1 + ϵ

,E
[
− ηl

m

m

∑
i=1

K−1

∑
k=0

ĝi
t,k +

ηlK
m

m

∑
i=1
∇ f i

µ(xt)

]〉

≤
√

2αtηlK
2

E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
−
√

2αtηl
2Km2 E

[∥∥∥∥ 1
4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]
+

√
2αtηl L2

2
√

β2vt−1 + ϵ

(
3η2

l dK3E[∥∇ fµ(xt)∥2] + η2
l dK3(σ2

l + 3σ2
h ) +

d2K3L2

4
η2

l µ2
)

(A14)

≤
√

2αtηlK + 3
√

2αtη
3
l L2dK3

2
E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+

αtη
3
l L2dK3
√

2ϵ
(σ2

l + 3σ2
h ) +

αtη
3
l K3µ2d2L4

4
√

2ϵ

−
√

2αtηl
2Km2 E

[∥∥∥∥ 1
4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]
.

For the second term in Equation (A10), we have

√
2αtE

[〈
∇ fµ(xt),

∆t√
vt + ϵ

− ∆t√
β2vt−1 + ϵ

〉]
≤
√

2αt∥∇ fµ(xt)∥E
[∥∥∥∥ 1√

vt + ϵ
− 1√

β2vt−1 + ϵ

∥∥∥∥ · ∥∆t∥
]

≤αt
√

2(1− β2)Gzo

ϵ
E[∥∆t∥2], (A15)

where the last inequality from ([52], Lemma C.1). Since f has Gzo-bounded stochastic
gradients, for any x and ξ, we have ∥∇ f (x, ξ)∥ ≤ Gzo.

By substituting Equations (A11), (A14), and (A15) into Equation (A10), we obtain

T12 ≤
−
√

2αtηlK + 3
√

2αtη
3
l L2dK3

2
E
[∥∥∥∥ ∇ fµ(xt)

4
√

β2vt−1 + ϵ

∥∥∥∥2]
+

αtη
3
l L2dK3
√

2ϵ
(σ2

l + 3σ2
h ) +

αtη
3
l K3µ2d2L4

4
√

2ϵ

+
αt
√

2(1− β2)Gzo

ϵ
E[∥∆t∥2] (A16)

−
√

2αtηl
2Km2 E

[∥∥∥∥ 1
4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]
.
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Now, let us analyze T11

T11 =E
[〈
∇ fµ(xt),−

β1αt

1− β1

(
V̂−1/2

t − V̂−1/2
t−1

)
mt−1

〉]
=− αtE

[〈
∇ fµ(xt),

β1

1− β1

(
V̂−1/2

t − V̂−1/2
t−1

)
mt−1

〉]
≤αtE

[
∥∇ fµ(xt)∥

∥∥∥∥ β1

1− β1

(
V̂−1/2

t − V̂−1/2
t−1

)
mt−1

∥∥∥∥]
≤αtβ1ηlKG2

zo
1− β1

E
[∥∥∥∥V̂−1/2

t − V̂−1/2
t−1
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1

]
. (A17)

Thus, we have Equation (A18).

T1 =
T

∑
t=1

E[⟨∇ fµ(xt), zt+1 − zt⟩]

≤ αtβ1ηlKG2
zo

1− β1

T

∑
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E
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1

]
−

3
√
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l L2dK3 −

√
2αtηlK

2

T
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4
√
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−
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3
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+

√
2αtηl

2Km2

T

∑
t=1

E
[∥∥∥∥ 1

4
√

β2vt−1 + ϵ

m

∑
i=1

K−1

∑
k=0
∇ f i

µ(x
i
t,k)

∥∥∥∥2]
.

At this point, the proof has been completed.

Appendix C

Proof of Theorem 1. By combining Lemmas 1, 2, and 3, we can obtain
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1
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−
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+
T
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α2
t d

4L + 5Lβ2
1

2(1− β2
1)

1− β1

1− β2

1
1− γ

. (A19)

By submitting ([52], Lemma C.2, Lemma C.5) into Equation (A19), and using the

fact that (
√

β2K2G2 + ϵ)−1∥x∥ ≤
(√

β2η2
l K2G2 + ϵ

)−1

∥x∥ ≤ ∥ x√
β2vt+ϵ

∥ ≤ ϵ−1/2∥x∥, we

have Equation (A20). The last inequality holds due to additional constraint of local learning

rate ηl with the inequality
( √

2αtηl

2Km2
√

β2K2G2+ϵ
− αt
√

2(1−β2)Gzoη2
l

m2ϵ

)
≥ 0, we have the constraint

ηl ≤ ϵ

2K
√

2αtηl
√

1−β2Gzo
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E[ fµ(zT+1)]− fµ(z1)
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√
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. (A20)

Then, we can obtain
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. (A21)

Therefore,

E[∥∇ fµ(xt)∥2] ≤ 2
√

β2η2
l K2G2 + ϵ

[ f 0
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, (A22)

where A =
√

2(3η2
l L2dK2− 1), Φ = β1G2
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