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1. Introduction

Much attention has been paid to the derivations of incidence rings, including ordinary
and Lie derivations and Jordan derivations (see [1–9]). We point to a very informative
introduction in [9] with a history of derivation studies and an extensive list of references.
Note that other important linear maps of incidence rings are also systematically studied:
automorphisms, anti-automorphisms, and involutions (see [10–14]).

This paper is devoted to the derivations of the incidence algebra I(X, R) for an arbitrary
preordered set X and an arbitrary algebra R over some commutative ring T. The initial
stage of research into the derivations of incidence rings can be found in the book [15].
The final result of this stage is Theorem 7.1.4 [15]. It describes the derivations of the
R-algebra I(X, R), where X is a partially ordered set and R is a commutative ring (see
Corollary 6 of the given paper).

Later, various questions about the derivations of incidence rings were considered in
interesting informative papers [2,6]. The first paper is devoted to additive derivations of
the F-algebra I(X, F), where X is a finite partially ordered set and F is a field. In this case,
the set X is considered in the standard way as a directed graph. In the paper [6], the author
studied the derivations of finitary incidence rings. Such rings are more general objects
compared to incidence rings. Theorem 5 in [6] reveals the structure of the Lie algebra of the
outer derivations of a finitary incidence ring.

In our previous papers, we used and developed an approach that has proven itself
to well describe the automorphisms of formal matrix rings with zero trace ideals [16,17].
Namely, an incidence algebra is written as a splitting extension of some ideal M by means
of some subring L. In other words, there is a direct decomposition of I(X, R) = L ⊕ M.
Here, L is the product of square matrix rings over R and M is the product of rectangular
matrix groups over R. We note that the ideal M is contained in the Jacobson radical of the
ring I(X, R), while M is a nilpotent ideal in the case of a formal matrix ring. The derivations
of the algebra I(X, R) are represented by certain 2 × 2 matrices with respect to the direct
sum L ⊕ M. This helps greatly when studying the derivations of the algebra I(X, R).

The final result of this work is Theorem 4, which states that any derivation of the
algebra I(X, R) can be written as a sum of an inner derivation, an additive derivation,
and a ring derivation. The nature of the action of each of these three derivations on the
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elements of the algebra I(X, R) is completely clear. Therefore, we can claim that Theorem 4
satisfactorily describes the derivations of the algebra I(X, R).

Incidence algebras were defined by Rota in his well-known paper [18] as a tool for
solving some problems of combinatorics and, above all, for studying generalizations of
the Möbius inversion formula in number theory in a unified way. Over time, incidence
algebras themselves, regardless of their applications in combinatorics and other areas
of mathematics, have turned out to be a meaningful algebraic object. Many works are
dedicated to them, including the book [15].

In this paper, we consider only associative rings with a non-zero unit.
If S is a ring (or an algebra), then M(n, S) is the usual ring of all n × n matrices with

values in S.
Using Der S, we denote the group (or the module) of the derivations of the algebra S;

In(DerS) is the subgroup of inner derivations; Out S is the group of outer derivations of the
algebra S, i.e., Out S is the quotient group Der S/In(DerS).

2. On Preordered Sets

We briefly outline some initial information about preordered sets (one can get ac-
quainted with them in more detail in [15]).

Let X be an arbitrary set, and let ≤ be a reflexive and transitive relation on X. In this
case, the system ⟨X,≤⟩ is called a preordered set, and ≤ is a preorder on X. If the relation ≤
is also antisymmetric, then ⟨X,≤⟩ is a partially ordered set.

We further assume that ⟨X,≤⟩ is a preordered set. For any two elements x, y ∈ X, we
denote by [x, y] the set of {z ∈ X | x ≤ z ≤ y}. It is called an interval in X. An interval of the
form [x, x] is denoted by [x]. There are the following two useful properties of intervals:

(a) For any y, z ∈ [x], we have the relation [y, z] = [x].
(b) If x < y, then s < t for arbitrary elements s ∈ [x] and t ∈ [y].

We define a binary relation ∼ on X by setting x ∼ y ⇔ x ≤ y and y ≤ x. It is clear that
∼ is an equivalence relation on X. The corresponding equivalence classes have the form [x]
for all possible x ∈ X. It follows from (b) that the preorder relation ≤ is consistent with the
equivalence relation ∼. Consequently, the induced relation ≤ appears on the quotient set
X = X/ ∼, and ⟨X,≤⟩ is a partially ordered set.

A directed graph can be associated with the preordered set X, as well as with the
partially ordered set X (we do not take into account the loops that arise in this case). It is
more convenient to proceed from the set X. When necessary, we consider X as a simple
graph correlated with the directed graph X. At the same time, we use standard concepts of
graph theory: a connected component, a semipath, and its length.

We agree that all intervals in X are finite. In this case, X is called a locally finite
preordered set.

For an interval in a locally finite partially ordered set, the length of the interval is the
largest of the chain lengths in this interval.

In what follows, we denote by x the elements of a partially ordered set X, i.e., equiva-
lence classes of the form [x]. In other words, to denote the class [x], we use some represen-
tative of it. This should not lead to confusion. In a particular situation, it is always clear
what elements of which set (X or X) we are talking about.

3. Some Ideals and Subbimodules in Incidence Algebras

Starting from this section, the symbol R denotes an algebra over some commutative
ring T. However, the ring T itself is almost never used.

An incidence algebra is a certain ring of functions. Let ⟨X,≤⟩ be an arbitrary lo-
cally finite preordered set. We set I(X, R) = { f : X × X → R | f (x, y) = 0, if x ̸≤ y}.
The functions are added pointwise. The product of the functions f , g ∈ I(X, R) is given by
the relation:

( f g)(x, y) = ∑
x≤z≤y

f (x, z) · g(z, y) (∗)
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for any x, y ∈ X. Since X is a locally finite set, it is possible to write z ∈ X in (∗) instead
of x ≤ z ≤ y. For any t ∈ T and x, y ∈ X, we also assume (t f )(x, y) = t f (x, y). As a
result, we obtain a T-algebra I(X, R), called the incidence algebra or an incidence ring, of the
preordered set X over the ring R. In what follows, the specific algebra I(X, R) is denoted
by the symbol K.

We introduce some special functions from I(X, R). For a given x ∈ X, we set
e[x](t, t) = 1 for all t ∈ [x] and e[x](z, y) = 0 for the remaining pairs (z, y). The system
{e[x] | x ∈ X} consists of pairwise orthogonal central elements in L idempotents (the ring L
is defined in the next paragraph). According to the agreement, we write ex instead of e[x] at
the end of Section 2.

We define a subring L and an ideal M in K. We set L = { f ∈ K | f (x, y) = 0, if x ̸∼ y}
and M = { f ∈ K | f (x, y) = 0, if x ∼ y}. We have a T-module direct sum K = L ⊕ M,
i.e., the ring K is a splitting extension of the ideal M with the use of the subring L. The ideal
M is naturally considered as an L-L-bimodule. In addition, M is a nonunital algebra.

Let us have an arbitrary interval [x]. We denote by R[x] the set of functions f ∈ K for
which f (z, y) = 0 if z ̸∼ x or y ̸∼ x. As in the case of idempotents ex, we write Rx instead
of R[x]. The following relations:

Rx = exKex = exLex

are true. We conclude that Rx is a ring with identity element ex. If we go to the restrictions
of functions from K to [x]× [x], then, in fact, Rx is the algebra of all functions [x]× [x] → R
with pointwise addition and the product of the convolution type as in (∗). We choose any
numbering of the interval [x] : [x] = {x1, . . . , xn}. After that, if the functions f ∈ Rx match
the matrix ( f (xi, xj)), then we come to the isomorphism of the algebras Rx ∼= M(n, R).
Now, we take two different intervals [x], [y] and set

Mxy = { f ∈ K | f (s, t) = 0, if s ̸∼ x or t ̸∼ y}.

Then, Mxy = exKey, and therefore, Mxy is an Rx-Ry-bimodule. The relation Mxy = exMey
is also true.

We clarify that Mxy = 0 if x ̸≤ y. For x < y, there is a canonical isomorphism:

Mxy ∼= M(n × m, R), n = |[x]|, m = |[y]|,

with respect to the above isomorphisms Rx ∼= M(n, R) and Ry ∼= M(m, R). After identify-
ing all algebras Rx with M(n, R) and bimodules Mxy with M(n × m, R), it becomes clear
that the actions of the rings Rx and Ry on Mxy will be ordinary matrix multiplications. It is
also clear that Mxy is an L-L-bimodule. The action of L on Mxy is reduced to the action of
Rx on the left and Ry on the right.

We note once again that we mean [x] and [x][y] in the subscripts of Rx and Mxy,
respectively (see Section 2).

The product ∏x,y∈X Mxy has the L-L-bimodule structure. Exactly, if f ∈ L and (gxy) ∈
∏x,y∈X Mxy, then

f (gxy) = ( fxgxy) and (gxy) f = (gxy fy), (1)

where fx = ex f ex and fy = ey f ey.

Proposition 1. There are canonical algebra isomorphisms L ∼= ∏x∈X Rx, as well as L-L-bimodule
isomorphisms and algebra isomorphisms M ∼= ∏x,y∈X Mxy.

Proof. We define the mapping ω : L → ∏x∈X Rx, assuming ω( f ) = ( fx) for each f ∈ L,
where fx = ex f ex. Then, ω is an algebra isomorphism.

The mapping ε : M → ∏x,y∈X Mxy, ε(g) = (gxy), where gxy = exgey, is an isomor-
phism of L-L-bimodules and algebras.
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In what follows, we do not distinguish the corresponding objects with respect to the
isomorphisms ω and ε.

Remark 1. The algebra K can be viewed as an algebra of functions and as an abstract ring
represented as a splitting extension of L ⊕ M. These two approaches can be called “functional” and

“abstract”; they are, of course, equivalent. We use both of these approaches.

4. Representation of Derivations by Matrices

We use all the material of Sections 1–3. In particular, the incidence algebras I(X, R)
are usually denoted by the letter K. We do not impose any preconditions on the locally
finite preordered set X, the ring R, which is a T-algebra, and the algebra K itself.

A description of the derivation group of the algebra K is obtained (Section 7). We note
that, in Sections 4–6, we consider that K is either an incidence algebra or a formal matrix
algebra with zero trace ideals. Proofs are carried out for incidence algebras, but they allow
the transfer to formal matrix algebras (with appropriate corrections). The technique of
working with formal matrix algebras with zero trace ideals is well reflected in [16,17].

Let A be an algebra over some commutative ring T. A mapping d : A → A is called a
derivation of the algebra A if d is a linear mapping, i.e., an endomorphism of the T-module
A, and d(ab) = d(a)b + ad(b) for all a, b ∈ A. All derivations of the algebra A form a
T-module. We denote it by Der A.

For an element c ∈ A, we define a mapping dc from A to A by assuming that
dc(a) = ac − ca, a ∈ A. Then, dc is a derivation called inner. One says that dc is defined
by an element c. Inner derivations of the algebra A form a submodule of the T-module
Der A. We denote it by In (Der A). To designate the factor module Der A/In (Der A), we
use the symbol Out A. The elements of Out A are called outer derivations of the algebra A,
and Out A is the module of the outer derivations of the algebra A.

There is a notion of a derivation in more general form. Let M be an A-A-bimodule.
A derivation of the algebra A with values in the bimodule M is the homomorphism of
T-modules d : A → M, which satisfies the equality d(ab) = d(a)b + ad(b) for all a, b ∈ A.
Such a derivation d is said to be inner if there is an element c ∈ M such that d(a) = ac − ca,
a ∈ A.

It is known that the T-module Der A has the structure of a Lie algebra. In this algebra,
the multiplication ◦ is defined by the relation d1 ◦ d2 = d1d2 − d2d1. Here, we focus on the
additive structure of this algebra.

We assume that the algebra A is a splitting extension of its ideal M with the use
of some of the algebra L, i.e., A = L ⊕ M, where ⊕ is the sign of the group direct sum.
The ideal M is a natural L-L-bimodule. Additionally, M is a non-unital algebra.

We know that every incidence algebra is such an extension. A formal matrix algebra
with zero trace ideals also can be represented in the form of an indicated splitting extension
(see [16,17]).

We take an arbitrary derivation d of the algebra A = L ⊕ M. Every additive endomor-

phism, d, can be represented by the matrix
(

α γ
δ β

)
with respect to the direct decomposition

A = L ⊕ M. Here,

α : L → L, β : M → M, γ : M → L, δ : L → M

are T-module homomorphisms and

d(a + b) =
(

α γ
δ β

)(
a
b

)
=

(
α(a) + γ(b)
δ(a) + β(b)

)
for all a ∈ L and b ∈ M.

We do not distinguish a derivation d and the matrix corresponding to it. We write a
“triangular derivation d” if γ = 0, and a “diagonal derivation d” if γ = 0 = δ.
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In the case of triangular derivations, it is possible to obtain very meaningful informa-
tion about the group Der A. We will soon see that, for incidence algebras and formal matrix
algebras with zero trace ideals, this is always the case.

So, let x + y, s + t ∈ A = L ⊕ M. We write down the relation:

d((x + y)(s + t)) = d(x + y) · (s + t) + (x + y) · d(s + t). (∗∗)

Sequentially assigning values to arguments:

y = 0 = t, x = 0 = s, x = 0 = t, s = 0 = y

and calculating the left and right parts in (∗∗), we obtain the equalities:

α(xs) = α(x)s + xα(s), δ(xs) = δ(x)s + xδ(s),

γ(ys) = γ(y)s, γ(xt) = xγ(t),

β(yt) = β(y)t + yβ(t) + γ(y)t + yγ(t),

β(xt) = α(x)t + xβ(t) + δ(x)t,

β(ys) = β(y)s + yα(s) + yδ(s).

The first two relations mean that α is a derivation of the algebra L and δ is a derivation of
the algebra L with values in the bimodule M. It follows from the third relation that γ is an
L-L-bimodule homomorphism.

The converse is also true. Let

α : L → L, β : M → M, γ : M → L, δ : L → M

be T-module homomorphisms such that the above relations hold. Then, the transformation

of the algebra A defined by the matrix
(

α γ
δ β

)
, i.e.,

(
α γ
δ β

)(
x
y

)
=

(
α(x) + γ(y)
δ(x) + β(y)

)
, x ∈ L, y ∈ M,

is its derivation.
Now, we will see that any derivation of an incidence algebra or a formal matrix algebra

with zero trace ideals is triangular. As established in Section 3, an incidence algebra is a
splitting extension of L ⊕ M. A formal matrix algebra with zero trace ideals has a similar

property; see [16,17]. Next, the letter K denotes one of these two algebras. Let d =

(
α γ
δ β

)
be some derivation of the algebra K.

Lemma 1. The relation γ = 0 holds.

Proof. We assume that K is an incidence algebra. We assume that γ ̸= 0, where, as we
know, γ is an L-L-bimodule homomorphism M → L. There is an idempotent ex such that
ex(γM) = γ(ex M) ̸= 0. Next, we have

γ(ex M) = exγ(ex M) ⊆ exL = Rx and γ(ex M) ⊆ Rx.

The last inclusion leads to contradictory relations

0 = γ(ex Mex) = γ(ex M)ex ̸= 0.

Therefore, γ = 0.
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Remark 2. In the above proof, we implicitly use the fact that the algebra K has at least two distinct
idempotents ex (they appeared in Section 3). Otherwise, the situation is degenerating, i.e., K is
simply some matrix ring M(n, R).

We summarize this section.

Corollary 1. Every derivation d of an incidence algebra or a formal matrix algebra with zero trace

ideals is triangular, d =

(
α 0
δ β

)
. Here, α is a derivation of the algebra L, β is a derivation of the

algebra M, and δ is a derivation of the algebra L with values in the bimodule M.

5. Some Properties of Derivations

As was shown in the previous section, the letter K denotes either an incidence algebra
or a formal matrix algebra with zero trace ideals. However, the notation used in this case
refers to incidence algebras. By Corollary 1, every derivation of both algebras is triangular.
We usually mean the equality K = L ⊕ M.

We focus on inner derivations of the algebra K. We denote by In0(Der K) (respectively,
In1(Der K)) the submodule of inner derivations defined by elements of L (respectively, M).

Lemma 2. There is a direct sum:

In (Der K) = In0(Der K)⊕ In1(Der K).

Proof. It is not quite obvious that the defined submodules have a zero intersection. Let
b ∈ L, c ∈ M, and db = dc (these symbols are defined in Section 4). For any x ∈ X,
the relations:

db(ex) = exb − bex = dc(ex) = exc − cex

hold. Therefore,
exc − cex = 0, exc = cex = excex = 0.

Therefore, c = 0 and db = dc = 0.

Now, we define one homomorphism and several derivation modules. Namely, we
denote by f the module homomorphism Der K → Der L such that f (d) = α for every

derivation d =

(
α 0
δ β

)
. Ker f consists of derivations of the form

(
0 0
δ β

)
. The image of

this homomorphism is denoted by Ω. Next, let Λ be the submodule of diagonal derivations,

i.e., derivations of the form
(

α 0
0 β

)
. The derivations, which are representable by matrices(

0 0
0 β

)
, are called additive. The letter Ψ denotes the submodule of all additive derivations,

and Ψ0 is the submodule of the inner derivations defined by the central elements of the ring

L. The last of the submodules is the submodule Φ, equal to
{(

α 0
δ β

) ∣∣∣ α ∈ In (Der L)
}

.

The following inclusions hold:

Ker f ⊆ Φ, Ψ ⊆ Φ, In0(Der K) ⊆ Λ,

In1(Der K) ⊆ Ker f , In (Der K) ⊆ Φ.

As will be seen from the following, information about the submodules introduced is
extremely important for understanding the structure of the entire module Der K.

We highlight the following research directions on the problem of finding the structure
of the derivation module Der K:

1. Calculation of the module Ω.
2. Calculation of the submodules Ψ and Ψ0.
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3. Calculation of the submodule Φ.

If
(

α 0
δ β

)
is a derivation of the algebra K, then α is a derivation of the algebra L.

Since L is the product of algebras Rx, x ∈ X (Proposition 1), we need information about
derivations of ring products. They are arranged quite simply.

Proposition 2. Let Si, i ∈ I, be some algebras, S = ∏i∈I Si, and let d be a derivation of the algebra
S. Then, d(Si) ⊆ Si for any i ∈ I. In addition, d acts on the product ∏i∈I Si coordinatewise, and
there is a module isomorphism Der S ∼= ∏i∈I Der Si.

Proof. We denote by ei the identity element of the ring Si. Then,

d(ei) = d(ei)ei + eid(ei) ∈ Si.

For any element a ∈ Si, we have

d(a) = d(eia) = d(ei)a + eid(a) ∈ Si.

Therefore, d(Si) ⊆ Si, and we can set di = d|Si , where di ∈ Der Si.
The coordinatewise action of the derivation d means that d(a) = (di(ai)) for any

element a = (ai) ∈ S.
We take an arbitrary element a = (ai) ∈ S. We fix a subscript k ∈ I and write down

a = ak + b, where b ∈ (1 − ek)S. With the use of the idempotent 1 − ek, it is easy to obtain
that the derivation d leaves the ring ∏i ̸=k Si in place. We write down

d(a) = d(ak) + d(b), d(a) = (ci) = ck + g. where g ∈ (1 − ek)S.

Then, d(ak) = ck, which confirms the fact of the coordinate action of d.
Now, suppose that, for each i, we have a derivation di of the algebra Si. Assuming

d(a) = (di(ai)) for the element a = (ai) ∈ S, we obtain a derivation d of the algebra S.
From all the above, we obtain that we have the canonical isomorphism Der S ∼=

∏i∈I Der Si.

For an algebra L equal to ∏x∈X Rx, we can write down the following useful fact.

Corollary 2. If d =

(
α 0
δ β

)
is a derivation of the algebra K, then for the derivation α of the

algebra L, all assertions of Proposition 2 are true. Therefore, relations α(ex) = 0 and d(ex) = δ(ex)
are true for every x ∈ X.

In the rest of the section, we pay attention to diagonal derivations. For them, Corollary
1 allows for amplification.

Corollary 3. Let d =

(
α 0
0 β

)
be a derivation. Then, α is a derivation of the algebra L, β is a

derivation of the algebra M, and the relations:

β(xt) = α(x)t + xβ(t), β(ys) = β(y)s + yα(s)

hold for all x, s ∈ L and y, t ∈ M. The converse is also true. If some endomorphisms α and β of

T-modules L and M, respectively, satisfy the above properties, then
(

α 0
0 β

)
is a derivation of the

algebra K.
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Proposition 3. A derivation d =

(
α 0
δ β

)
is a diagonal derivation if and only if d(ex) = 0 for

every x ∈ X.

Proof. The derivation d is diagonal if and only if exd(a)ey = 0 for all a ∈ L and all non-
equivalent x, y ∈ X.

We assume that d(ex) = 0 for every x ∈ X. Then, for any a, b ∈ L, we have

d(exa) = d(ex)a + exd(a) = exd(a) and similarly d(bey) = d(b)ey.

We obtain
exd(a)ey = d(exa)ey = d(exaey) = d(0) = 0.

Now, let d be a diagonal derivation. Then,

d(ex) = α(ex) + δ(ex) = α(ex) = 0.

Corollary 4. If d =

(
α 0
0 β

)
, then the relation:

β(excey) = exβ(c)ey, where c ∈ M

holds.

Proof. Taking into account Corollary 3 and Proposition 3, we write down the relations:

β(excey) = α(ex)cey + exβ(c)ey + excα(ey) = exβ(c)ey.

Proposition 4. We take an arbitrary diagonal derivation d =

(
α 0
0 β

)
of the algebra K. For the

derivation β of the algebra M, we have an inclusion βMxy ⊆ Mxy for all x, y ∈ X. In addition, β
acts coordinatewise on the product ∏x,y∈X Mxy.

Proof. The inclusion βMxy ⊆ Mxy follows from the relation Mxy = ex Mey and Corollary
4. We can map a vector (βxy) to the derivation β, where βxy = β|Mxy . We show that,
for b = (bxy) ∈ M = ∏x,y∈X Mxy, we have β(b) = (βxy(bxy)), which means that β acts
coordinatewise. Let β(b) = (cxy) for all x, y. We verify that βxy(bxy) = cxy for all x, y. We
fix elements x, y and write down M = Mxy ⊕ N, where N is the product of all bimodules
Mst besides Mxy. Let b = bxy + f , where f ∈ N. Then,

β(b) = β(bxy) + β( f ), where β(bxy) ∈ Mxy.

In addition, we write down

β(b) = cxy + g, where cxy ∈ Mxy, g ∈ N.

By Corollary 4, we have exβ( f )ey = β(ex f ey) = 0. Therefore, β( f ) has the zero projection
in Mxy. We obtain that βxy(bxy) = cxy, which is required.

The rest of the inclusion follows from what has already been said.

6. Main Decompositions and Isomorphisms for Module Der K

As before, K denotes an incidence algebra I(X, R) or a formal matrix algebra with
zero trace ideals represented in the form K = L ⊕ M, as in Section 3. We preserve the
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previously accepted notation. It is important that the derivations of the algebra K are
triangular (Corollary 1).

We recall one more very useful equality from Lemma 2:

In (Der K) = In0(Der K)⊕ In1(Der K).

We also recall that the modules listed below appeared at the beginning of Section 5.
It is great that the derivations of the algebra K can be diagonalized in a certain sense.

Theorem 1. There are the following module relations:

1. Der K = In1(Der K)⊕ Λ.
2. Ker f = In1(Der K)⊕ Ψ.
3. Φ = In (Der K) + Ψ = In1(Der K)⊕ (In0(Der K) + Ψ).

Proof. 1. For a derivation d =

(
α 0
δ β

)
of the algebra K, we define a function g ∈ I(X, R),

by setting

g(x, y) =

{
d(ey)(x, y), if x ≤ y,
0, if x ̸≤ y.

We also can write g = (gxy) = (d(ey)xy). In addition, g ∈ M, since d(ey) ∈ M (Corollary 2).
So, gxy = d(ey)xy.

For every x ∈ X, the relation gex = d(ex)ex holds. We write down the element g in the
form (d(ey)ey)y∈X . We also use a similar form for other elements. If x ̸= y, then

exey = 0, 0 = d(exey) = d(ex)ey + exd(ey), exd(ey) = −d(ex)ey.

We set d′ = d + dg, where dg is the inner derivation of the algebra K defined by the element
g (the designation dg was given at the beginning of Section 4). To verify that d′ is a diagonal
derivation, we make the following transformations:

exg = ex(d(ey)ey)y ̸=x = (exd(ey)ey)y ̸=x =

= −((d(ex)ey)ey)y ̸=x = −(d(ex)ey)y ̸=x.

Next, we have the relation:

dg(ex) = exg − gex = −(d(ex)ey)y ̸=x − d(ex)ex =

= −(d(ex)ey)y∈X = −d(ex).

We obtain that d′(ex) = 0 and d′ is a diagonal derivation by Proposition 3. Thus, d = −dg + d′,
where dg ∈ In1(Der K), d′ ∈ Λ. We take an arbitrary derivation d from the intersection
In1(Der K) ∩ Λ. Let d = dg, where g ∈ M. It follows from Proposition 3 that d(ex) = 0 for
all x. Therefore, we obtain:

exg − gex = 0 and exg = exgex = 0 for any x.

Therefore, g = 0, d = 0, and we have proven 1.
2. The assertion follows from 1 and the relations:

In1(Der K) ⊆ Ker f and Ker f ∩ Λ = Ψ.
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3. We take an arbitrary derivation d =

(
α 0
δ β

)
from Φ. Let an inner derivation α of

the algebra L be defined by an element c ∈ L. Then, we have d − dc ∈ Ker f , where dc is
the inner derivation of the algebra K defined by the element c. Thus,

d ∈ In0(Der K) + Ker f , Φ = In0(Der K) + Ker f =

= In0(Der K) + (In1(Der K)⊕ Ψ) = In (Der K) + Ψ.

It remains to verify that In1(Der K) ∩ (In0(Der K) + Ψ) = 0. Let db = da + γ, where

db ∈ In1(Der K), da ∈ In0(Der K), γ ∈ Ψ.

Since da, γ ∈ Λ, we have db ∈ Λ. Therefore, if db =

(
0 0
δ β

)
, then δ = 0. Thus,

f b − b f = 0 for all elements f ∈ L. In particular, exb − bex = 0. Therefore, exb = exbex = 0
for any x. Consequently, b = 0 and db = 0. The equality Φ = In1(Der K)⊕ (In0(Der K)+Ψ)
is proven.

We gather several useful equalities and isomorphisms.

Proposition 5. The following relations and isomorphisms hold:

1. Ψ ∩ In (Der K) = Ψ ∩ In0(Der K) = Ψ0.
2. Λ/(In0(Der K) + Ψ) ∼= Ω/In (Der L).
3. Φ/Ker f ∼= In0(Der K)/Ψ0 ∼= In (Der L).
4. Φ/In (Der K) ∼= Ψ/Ψ0.

Proof. 1. We only verify the inclusion Ψ∩ In (Der K) ⊆ Ψ0. We take an arbitrary derivation
d, equal to d1 + d0, where d ∈ Ψ, d1 ∈ In1(Der K), d0 ∈ In0(Der K). Let d1 be defined by an
element c ∈ M, and let d0 be defined by an element a ∈ L. Then, d is defined by an element
a + c.

For any element b ∈ L, we have d(b) = (bc − cb) + (ba − ab). Since d ∈ Ψ, we
have ba − ab = 0. Consequently, a ∈ C(L), i.e., a is a central element of L. We also have
bc − cb = 0. In particular, exc − cex = 0 for all x. Similar to the end of the proof of Theorem
1(3), we obtain c = 0. So, d1 = 0 and d = d0. Since a ∈ C(L), we have d ∈ Ψ0.

2. First, we remark that the submodule In (Der L) is contained in Ω. We denote
by π the canonical epimorphism Ω → Ω/In (Der L). The kernel of the homomorphism
π f |Λ : Λ → Ω/In (Der L) is equal to Φ ∩ Λ = In0(Der K) + Ψ (see the proof of
Theorem 1(3)).

3. By considering Theorem 1 and 1, we write down the relations:

Ψ/Ker f ∼= (In0(Der K) + Ψ)/Ψ ∼= In0(Der K)/(In0(Der K) ∩ Ψ) =

= In0(Der K)/Ψ0 ∼= In (Der L).

4. Again, taking into account Theorem 1 and 1, we have the relations:

Φ/In (Der K) = (In (Der K) + Ψ)/In (Der K) ∼= Ψ/(In (Der K) ∩ Ψ) ∼= Ψ/Ψ0.

The following statement is directly derived from Theorem 1 and Proposition 5.

Corollary 5. The following isomorphisms are true:

1. Der K/Ker f ∼= Ω ∼= Λ/Ψ.
2. Der K/Φ ∼= Ω/In(Der L).
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In conclusion of the section, we note that the module Ω is studied in the next section.

7. Structure of Modules Der K and Out K

In Section 7, the letter K denotes only some incidence algebra (and not the incidence
algebra or a formal matrix algebra, as in Sections 4–6).

It is essentially used here in the sense that all Rx are ordinary matrix rings and all Mxy
are ordinary matrix groups. Therefore, it is impossible to directly transfer the results of
Section 7 to formal matrix algebras.

We formulate a number of questions concerning the structure of the modules Ω, Der K,
and Out K:

1. Which derivations from Der L belong to Ω?
2. What is the structure of the modules Ω and Ω/In(Der L)?
3. What is the structure of the modules Der K and Out K?

Satisfactory answers to all three questions will be given.

Proposition 6. Let H be some T-algebra, and let α and γ be derivations of H. An endomorphism
β of the T-module H such that

β(ab) = α(a)b + aβ(b) = β(a)b + aγ(b) for all a, b ∈ H

exists if and only if γ − α is an inner derivation.

Proof. We assume that the indicated endomorphism β exists. By giving the elements a and
b in turn a value of 1, we obtain the relations:

β(c) = β(1)c + γ(c) = α(c) + cβ(1)

for every c ∈ H. Therefore, (γ − α)(c) = cβ(1)− β(1)c. In other words, γ − α is the inner
derivation defined by the element β(1).

Now, let γ − α be the inner derivation defined by the element d ∈ H. Then,

(γ − α)(c) = cd − dc and dc + γ(c) = α(c) + cd

for any c ∈ H. We define an endomorphism β of the T-module H by setting

β(c) = α(c) + cd = dc + γ(c), c ∈ H.

For arbitrary elements a, b ∈ H, we have

β(ab) = α(ab) + abd = dab + γ(ab) =

= α(a)b + aα(b) + abd = dab + γ(a)b + aγ(b).

We also have
α(a)b + aβ(b) = α(a)b + aα(b) + abd,

β(a)b + aγ(b) = dab + γ(a)b + aγ(b).

These equalities imply the required result.

For positive integers k and ℓ, we set

P = M(k, R), Q = M(ℓ, R), H = M(c, R), where c = LCM (k, ℓ),

and finally, V = M(k × ℓ, R). Let ℓ′ = c/k and k′ = c/ℓ.
The ring H can be represented as a ring of block matrices in two ways: as a ring of

block matrices over P of order ℓ′ and as a ring of block matrices over Q of order k′. It is
also a P-Q-bimodule of block matrices over V of size ℓ′ × k′.
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Let α and γ be derivations of the algebras P and Q, respectively. They induce deriva-
tions α and γ of the algebra H, respectively. Namely, α(A) = (α(aij)) for any matrix
A = (aij) ∈ H, aij ∈ P, and similarly for γ. The derivations α and γ are called ring block
derivations (they are also called induced derivations). We keep the notation α and γ for them.
This agreement is already in effect in the following proposition, which extends Proposition
6 for matrix rings.

Proposition 7. If α ∈ Der P and γ ∈ Der Q, then the existence of an endomorphism β of the
T-module V such that the relations:

β(pa) = α(p)a + pβ(a) and β(aq) = β(a)q + aγ(q)

hold for all p ∈ P, q ∈ Q, and a ∈ V is equivalent to the property that γ − α is an inner derivation
of the algebra H.

Proof. Let β be a T-endomorphism of the module for which the equalities written in the
proposition are fulfilled. It is clear that β induces a (block) endomorphism β of a T-module
H, where β(A) = (β(Aij)) for each matrix A = (Aij) from H. It is assumed that the
matrix A is represented in block form, i.e., Aij are ℓ′ × k′ blocks. For β, the equalities from
Proposition 6 hold. So, γ − α is the inner derivation of the algebra H.

Now, we assume that γ − α is an inner derivation of the algebra H. We denote by β
the endomorphism of the module H, which exists by Proposition 6.

Let e1, . . . , eℓ′ and f1, . . . , fk′ be diagonal matrix units corresponding to two block
partitions of matrices from H. We have α(ei) = 0 for i = 1, . . . , ℓ′ and γ( f j) = 0 for
j = 1, . . . , k′, and β satisfies the equalities from Proposition 6. Therefore, the endomorphism
β induces an endomorphism on the T-module ei H f j for any unequal i and j. Multiplications
in H are made in block form (this applies to all three block decompositions). Therefore,
the restriction of β to ei H f j, i.e., in fact, on V, satisfies the equalities from the proposition.

The derivation α of the algebra L is contained in Ω exactly when there is a derivation
of β of the algebra M satisfying the equalities from Corollary 3. Before Proposition 1,
the formulas of the bimodule multiplication in M and the multiplication in M are given.
Given these formulas and the fact of the coordinate action of β (Proposition 4), it is not
difficult to make sure that β satisfies the equality:

β(cd) = β(c)d + cβ(d), (2)

where c ∈ Mxz, d ∈ Mzy, and x < z < y, and the relations

β(ac) = α(a)c + aβ(c), β(db) = β(d)b + dα(b), (3)

where a ∈ Rx, c, d ∈ Mxy, and b ∈ Ry.
Let nx be the order of the matrices from the rings Rx. We set cxy = LCM(nx, ny) for all

x, y ∈ X such that x < y. We denote by Hxy the matrix ring M(cxy, R). It can be represented
as a block matrix ring over the rings Rx and Ry and as an Rx-Ry-bimodule of block matrices
over Mxy. For the derivations of rings Rx and Ry, we assume ring (block) derivations of
the rings Hxy.

Proposition 8. A derivation α = (αx) of the algebra L = ∏x∈X Rx is contained in the module Ω
if and only if αy − αx is an inner derivation of the algebra Hxy for all x, y ∈ X such that x < y.

Proof. Necessity: If α ∈ Ω, then there is derivation
(

α 0
0 β

)
such that β satisfies the

relations (3) by Corollary 3. By Proposition 7, αy − αx ∈ In (Der Hxy).
Sufficiency: By Proposition 7, there exists an endomorphism βxy of the T-module Mxy

for any x and y such that the relations (3) hold.
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Let β be an endomorphism of the T-module M, which maps an element (dxy) to
(βxy(dxy)) for every (dxy) ∈ M = ∏x,y∈X Mxy. This β satisfies two relations from Corollary

3. In order for the transformation
(

α 0
0 β

)
of the algebra K = L ⊕ M to be its derivation, it

remains to verify that β is a derivation of the algebra M. Thus, it comes down to checking
the equality (2).

We fix three elements x, z, y such that x < z < y. We introduce for consideration
one more matrix ring. We set H = M(d, R), where d = LCM(nx, nz, ny). The ring H is
a block matrix ring over each of the rings Hxz, Hzy, Hxy, Rx, Rz, and Ry. It can also be
considered as a bimodule of block matrices over each of the bimodules Mxz, Mzy, and Mxy.
The derivations αx, αz, and αy are considered ring (block) derivations of the algebra H.
The T-endomorphisms βxz, βzy, and βxy are considered as (block) endomorphisms of the
bimodule H. The last ones satisfy the relations with respect to derivations αx and αz, αz
and αy, and αx and αy (of the type recorded in Proposition 6).

The differences αz − αx, αy − αz, and αy − αx are inner derivations of the algebra H.
Naturally, they induce (in the sense disclosed in the proof of Proposition 6) the same
mappings βxz, βzy, and βxy as appeared above.

Let inner derivations αz − αx, αy − αz, and αy − αx be defined by elements dxz, dzy,
and dxy of the algebra H, respectively. Then, dxy = dxz + dzy. We write out from the proof
of Proposition 6 how endomorphisms βxz, βzy, and βxy act:

βxz(a) = αx(a) + adxz = dxza + αz(a),

βzy(b) = αz(b) + bdzy = dzyb + αy(b),

βxy(c) = αx(c) + cdxy = dxyc + αy(c),

where a, b, c ∈ H.
We verify the following relation:

βxy(ab) = βxz(a)b + aβzy(b) (∗ ∗ ∗)

in H for arbitrary a, b ∈ H. To do this, we transform the right part of the equality (∗ ∗ ∗) to
the left part:

βxz(a)b + aβzy(b) = αx(a)b + adxzb + aαz(b) + abdzy =

= αx(a)b + a(dxzb + αz(b)) + abdzy =

= αx(a)b + a(αx(b) + bdxz) + abdzy =

= αx(a)b + aαx(b) + abdxz + abdzy =

= αx(a)b + aαx(b) + abdxy =

= αx(ab) + abdxy = βxy(ab).

The equality (∗ ∗ ∗) is proven. The multiplications occurring in it are performed over blocks.
This implies that the relation (2) holds.

We pass to the question of the structure of the modules Ω and Der K. The concept of a
ring derivation of the algebra M(n, R) is actually already given above. We clarify that, if
α ∈ Der R, then the derivation of the algebra M(n, R), which maps the matrix (aij) to the
matrix (α(aij)), is called a ring (or induced) derivation. The following result is known.

Theorem 2 ([4]). Every derivation of the matrix algebra M(n, R) is the sum of a ring derivation
and an inner derivation.

Let ε be some derivation of the algebra R. Then, ε provides a ring derivation εx of the
algebra Rx for every x ∈ X. We denote by εL the derivation (εx) of the algebra L. For any
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x, y ∈ X with x < y, the derivation ε similarly induces a mapping εxy on the bimodule Mxy.
Let εM = (εxy) be an endomorphism of the T-module M, which acts coordinatewise. We

set ε =

(
εL 0
0 εM

)
. It follows from Corollary 3 or Proposition 8 that ε is a derivation of the

algebra K.
The derivations εL, εM, and ε are also called ring derivations. We denote by D the

submodule of all ring derivations of the algebra L. We denote the submodule of all ring
derivations of the algebra K by the same letter D. It is clear that D ⊆ Λ and D ∩ Ψ = 0 in
Der K, and the module D is canonically isomorphic to Der R. Next, let D0 be the submodule
in Der L consisting of ring derivations εL of the algebra L such that ε ∈ In (Der R). Let D0
denote a similar submodule in Der K. These submodules are isomorphic to In (Der R).

One simple result will be useful to us.

Lemma 3. If d is a ring derivation and an inner derivation of the algebra M(n, R), then it is
defined by a scalar matrix. In other words, d is a ring derivation defined by an inner derivation of
the algebra R.

We can use Lemma 3 to directly verify the following lemma.

Lemma 4. 1. There is an isomorphism D/D0 ∼= Out R in Der L.
2. D0 = D ∩ In (Der L) is true in Der L.
3. In Der K, we have D0 = D ∩ In0(Der K) = D ∩ (In0(Der K) + Ψ):

(Ψ ⊕ D) ∩ In0(Der K) = Ψ0 ⊕ D0.

We recall that, in Section 2, we agreed to consider a preordered set X as a directed graph.
We formulate the main result of this paper. It contains complete information about the

structure of the derivation of modules Der K and Out K.

Theorem 3. Let X be a connected set. For the algebra K, where K = I(X, R), we have the following
relations and isomorphisms:

1(a). Ω = D + In (Der L), Ω/In (Der L) ∼= Out R.
1(b). Λ = In0(Der K) + (Ψ ⊕ D), Der K = In (Der K) + (Ψ ⊕ D) =

= In1(Der K)⊕ (In0(Der K) + (Ψ ⊕ D)).

2. Out K ∼= Ψ/Ψ0 ⊕ Out R.

Proof. 1(a). We take an arbitrary derivation α = (αx) in Ω. It follows from Theorem 2 that,
for every x ∈ X, we have αx = ρx + µx, where ρx is a ring derivation and µx is an inner
derivation of the algebra Rx. We form derivations ρ = (ρx) and µ = (µx) of the ring L and
obtain the relation α = ρ + µ in Der L. Since α, µ ∈ Ω, we have ρ ∈ Ω.

We will prove the following property: up to an inner derivation, it is possible to obtain
that ρx = ρy for all x, y ∈ X.

We fix some element t ∈ X. We take an arbitrary element x ∈ X and choose a semipath
from t to x in X. By applying Proposition 8 several times or by applying the induction with
respect to the length of the selected semipath, we can obtain that ρx = ρt + νx for some
inner ring derivation νx. We limit ourselves to a short comment. Equalities of the form
ρs = ρz + νs arise in the ring Hsz (see Proposition 8). We set c = LCM(nt, nz1 , . . . , nzm , nx),
where z1, . . . , zm are the vertices of the selected semipath from t to x. Then, all ring
derivations that appear can be considered as derivations of any ring Rx.

Now, we obtain αx = ρx + µx = ρt + (νx + µx) for every x ∈ X. By setting
γ = (νx + µx) and ρ = (ρx), we obtain α = ρ + γ, where ρ ∈ D, γ ∈ In (Der L).
Therefore, the relation Ω = D + In (Der L) is proven. By using Lemma 4, we obtain
Ω/In (Der L) ∼= D/D0 ∼= Out R.
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1(b). Let d =

(
α 0
0 β

)
∈ Λ. Then, α ∈ Ω, and we have α = ρ + γ, where ρ ∈ D

and γ ∈ In (Der L) (see 1(a)). Derivations ρ and γ induce a ring derivation and an inner
derivation, respectively (it is contained in In0(Der K)). We keep the designations ρ and γ for
them. We denote by ψ the difference d − ρ − γ. Then, d = γ + ψ + ρ, where γ ∈ In0(Der K),
ψ ∈ Ψ, and ρ ∈ D. This leads to the first equality and also leads to the second equality if
we take into account Theorem 1.

2. With the use of Theorem 1 and Lemmas 2 and 4, we obtain the relations:

Out K =
In1(Der K)⊕ Λ

In1(Der K)⊕ In0(Der K)
∼=

In0(Der K) + (Ψ ⊕ D)

In0(Der K)
∼=

Ψ ⊕ D
(Ψ ⊕ D) ∩ In0(Der K)

=

=
Ψ ⊕ D

Ψ0 ⊕ D0
∼= Ψ/Ψ0 ⊕ D/D0 ∼= Ψ/Ψ0 ⊕ Out R.

We extend Theorem 3 to the incidence algebras I(X, R), where X is an arbitrary
preordered set. As always, let K = I(X, R), and let Xi, i ∈ I, be all connected components
of the set X. We have K = ∏i∈I Ki, where Ki = I(Xi, R). Next, by considering Proposition
2, we obtain the relations:

Der K = ∏
i∈I

Der Ki, In (Der K) = ∏
i∈I

In (Der Ki),

Out K = ∏
i∈I

Out Ki

and similar relations for In0(Der K) and In1(Der K).
The symbols Li, Mi, Λi, Ωi, Ψi, and Di have a clear meaning in relation to the algebra

Ki. Again, the equalities L = ∏i∈I Li and M = ∏i∈I Mi and similar equalities are valid for
the remaining modules Λ, Ω, Ψ, and D.

With the use of the above relations, it is not difficult to prove the following theorem.

Theorem 4. For an arbitrary incidence algebra K, there are the following relations:
1(a). Ω = D + In (Der L), Ω/In (Der L) ∼= ∏|I| Out R.
1(b). Λ = In0(Der K) + (Ψ ⊕ D),

Der K = In (Der K) + (Ψ ⊕ D) = In1(Der K)⊕ (In0(Der K) + (Ψ ⊕ D)).
2. Out K ∼= Ψ/Ψ0 ⊕ ∏|I| Out R.

As noted in the Introduction, in the paper [6], the structure of the Lie algebra of the
outer derivations of a finitary incidence algebra was found (this algebra is the factor algebra
of the algebra of derivations by the ideal of inner derivations). It has been proven (Theorem
5)that this algebra is equal to the semidirect product of two Lie algebras. Moreover, one
of the factors is some first cohomology group associated with the set X. In Item 2 of
Theorem 4 of this work, the structure of the module of outer derivations of the incidence
algebra is given. Item 2 is actually a consequence of Item 1(b), which contains complete
information about the structure of the module of derivations of an arbitrary incidence
algebra. In addition, Item 2 does not use the first cohomology group.

Corollary 6 ([15]). Let X be a partially ordered set, and let R be a commutative ring. We consider
only derivations of the R-algebra K. Then, we have the following relations and isomorphism:

Ω = 0, D = 0, Ψ0 = In0(Der K), Der K = In1(Der K)⊕ Ψ, Out K ∼= Ψ/Ψ0.
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Example 1. It is convenient to illustrate the main concepts and results of the paper if we turn to the
incidence ring I(X, R) for a finite set X. So, let X be a finite preordered set. Note that the elements
of the set X admit a numbering x1, . . . , xn such that xi ≤ xj implies i ≤ j ([15], Lemma 1.2.5). We
assume that this is the chosen numbering of elements from X. Let B = (bij) be a Boolean matrix of
order n corresponding to the set X. It is implied that

bij =

{
1, xi ≤ xj;
0, xi ̸≤ xj.

Let us put
M(n, B, R) = {(cij) ∈ M(n, R) | bij = 0 ⇒ cij = 0}.

Then, M(n, B, R) is a subring of M(n, R). If f is an arbitrary function from I(X, R), then
we associate with it the matrix ( f (xi, xj)), in which the element f (xi, xj) is at position (i, j).
This correspondence leads to the ring isomorphism I(X, R) ∼= M(n, B, R). For a finite set X,
the incidence ring is usually called the structural matrix ring; see [14]. Sometimes, this ring is
immediately defined as the ring M(n, B, R). If we go to the ring M(n, B, R), then the material of
our paper can be interpreted in a more familiar matrix language.

8. Conclusions

In the paper, we found the structure of the module of the derivations of the incidence
algebra I(X, R) for an arbitrary preordered set X and any T-algebra R (Theorems 3 and 4).
As a corollary, the structure of the module of outer derivations of this algebra is indicated.

The ideas, results, and proof techniques of this paper can serve as an example for
studying other derivations of incidence rings. For example, we can consider Lie and Jordan
derivations, as well as derivations of higher orders. In addition, all this can be used to
study the derivations of various generalizations of incidence rings.

Thus, the authors plan to continue the study of additive derivations begun in [2].
The purpose of this study is to calculate the dimensions of the spaces of additive derivations
and inner additive derivations.

There is a class of objects that are more general than incidence algebras. We are
talking about reduced-incidence algebras. A specific reduced-incidence algebra is a certain
subalgebra of the incidence algebra. It is defined using some equivalence relation on the set
of all intervals of the partially ordered set X. This subalgebra consists of functions that are
constants on equivalence classes. Reduced-incidence algebras are much more complex than
incidence algebras. The theory of reduced-incidence algebras is presented in the book [15].
Finding the structure of the module of the derivation of reduced-incidence rings seems to
be a very promising problem.

Another area for the research of this paper may turn out to be reduced-incidence coal-
gebras (including ordinary-incidence coalgebras), bialgebras, and Hopf-incidence algebras
(these objects can be found in the book [15]). The derivation of any coalgebra induces
the derivation of the algebra dual to it. For a reduced-incidence coalgebra, the dual alge-
bra is canonically isomorphic to some reduced-incidence algebra. This opens the way for
applying the results of this paper to the study of derivations of various incidence coalgebras.
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