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Abstract: This study introduces a deep learning surrogate model designed to predict the evolution of
the mean pressure coefficient on the back face of a Windsor body across a range of yaw angles from
2.5◦ to 10◦. Utilizing a variational autoencoder (VAE), the model effectively compresses snapshots
of back pressure taken at yaw angles of 2.5◦, 5◦, and 10◦ into two latent vectors. These snapshots
are derived from wall-modeled large eddy simulations (WMLESs) conducted at a Reynolds number
of ReL = 2.9× 106. The frequencies that dominate the latent vectors correspond closely with those
observed in both the drag’s temporal evolution and the dynamic mode decomposition. The projection
of the mean pressure coefficient to the latent space yields an increasing linear evolution of the two
latent variables with the yaw angle. The mean pressure coefficient distribution at a yaw angle of 7.5◦

is predicted with a mean error of e = 3.13% when compared to the WMLESs results after obtaining
the values of the latent space with linear interpolation.

Keywords: surrogate models; deep learning; variational autoencoder; computational fluid dynamics;
wall-modeled large eddy simulations; car aerodynamics

MSC: 76G25

1. Introduction

Road vehicles are constantly in a yawed free stream flow because they are either
cornering, receiving a lateral wind gust, or overtaking other vehicles [1]. Hence, the parallel
flow assumption is an unrealistic and invalid idealization of the conditions that the vehicle
will find on the road. It is known that regardless of the vehicle shape, the drag force
increases linearly for yaw angles in the range of 0◦ ≤ δ ≤ 15◦ [2]. This drag augment is
completely independent of the zero-yaw drag, thereby making it impossible to extrapolate
the performance in crossflow conditions from the parallel flow case [2]. Thus, manufacturers
need to assess the aerodynamic behaviors of their cars at several yaw angles to know how
the flow changes with the direction of the incident velocity.

The aerodynamic evaluation of a new vehicle entails a combination of computational
fluid dynamics simulations and wind tunnel testing [3]. Both methodologies are highly
expensive, and their costs limit the amount of geometries and flow conditions that can be
tested. Surrogate models can be used to overcome those limitations and obtain a more
complete picture of the aerodynamic performance when the direction of the incident
velocity changes.

Surrogate models are data-driven computational techniques used in various scientific
and engineering fields to approximate complex systems or functions. These models serve
as simpler substitutes for both experiments and more computationally intensive processes,
thus providing quicker, yet sufficiently accurate results [4]. As they reduce the resource
requirements for design exploration, they are mainly utilized to estimate the optimum
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product solution or as instrumental tools to evaluate the performance in the initial stages
of development [5,6].

There are some studies in the literature that present models that are able to evaluate
the forces and moments evolutions with the yaw angle. For instance, Gong et al. [7] built a
surrogate model based on the Kriging interpolation technique that finds the optimal wind
deflector geometry in a tractor trailer to reduce drag in crosswind situations. Similarly,
Ghoreyshi et al. [8] developed a model that is able to predict the forces and moments
changes with the Mach number, angle of attack, and side slip angle of an aircraft, and
Zhang et al. [9] presented a model to predict the derailment coefficient of a train in cross-
flows. However, up to the authors’ knowledge, there are no models that can evaluate the
changes in the flow magnitudes with the yaw angle.

This work then aims to develop a surrogate model to compute the dependence of the
flow field with the direction of the incident velocity. In particular, it is focused on the case of
squared rear-end vehicles, because they are the most popular type of automobile. Not only
is freight transport done on square-back trucks and lorries, but there is also an important
customer interest in square- and estate-back cars, such as sport utility vehicles (SUVs)
and station wagons [10,11]. Their growing popularity is based on their maximized cargo
space; however, those geometries have been proven as the least aerodynamically efficient.
Taking the DrivAer model [12] as an example, the drag coefficient of its estate-back version
(CD = 0.314) is significantly higher than the one of the same vehicle with a notchback
(CD = 0.294) or fastback (CD = 0.265) rear end [13].

The chosen car model for the study is the Windsor body [14], which has a simplified
geometry that mimics a squared rear-end vehicle (represented in Figure 1), and the target
flow magnitude to predict with the surrogate model is the pressure on the back face of the
automobile. The two reasons behind this choice are that all studies made on square-back
cars (see for instance [15–23]) indicate that it is the principal contributor to the drag force
and that there is a linear drag increase under crossflows [2] due to a lower base pressure
footprint close to the leeward side of the vehicle [24].

Figure 1. Geometry of the Windsor body.

The objective of the surrogate model is to learn the temporal dynamics of the back
pressure at the yaw angles of δ = [2.5◦, 5◦ and 10◦] and then be able to predict the mean
back pressure at any yaw angle inside this range. Having such a fast prediction tool is
relevant to understanding the evolution of the drag force and optimizing the vehicle shape
to have a lower fuel consumption and greenhouse gases emissions.

The data have been obtained by means of wall-modeled large eddy simulations
(WMLESs) at a Reynolds number of ReL = U∞L/ν = 2.9× 106, where L is the length of the
car, U∞ is the free stream velocity, and ν is the fluid kinematic viscosity. The choice of such
a high-fidelity CFD methodology is because the AutoCFD3 workshop [25] proved it as the
only computational method able to correctly predict the drag force and the back-pressure
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dynamics on the Windsor body. In fact, having such a surrogate model gains importance,
as no lower fidelity method can compute the correct mean back-pressure distribution.

Due to the complexity of the full-order model, the surrogate has been built on a
reduced space, as suggested by [6,26]. Similar approaches have already been followed in
the literature to optimize a UAV geometry [27], to predict the bidimensional flow around
an airfoil at different Mach numbers and angles of attack [28], and to model the 2D mean
flow at the hub height of a wind turbine given the inflow condition and the number of
turbines in the wind farm [29].

In this work, the dimensionality reduction has been conducted by employing deep
learning methodologies, as they outperform classical model order reduction techniques as
the proper orthogonal decomposition [30], thanks to their ability to capture the nonlinear-
ities of turbulent flow [31]. In particular, unsupervised learning algorithms, i.e., autoen-
coders (AEs), have shown excellent results for feature extraction in turbulent flows [32–34].

Among the different autoencoder architectures reported in the literature for model
order reduction (for a list with recent relevant examples, please refer to Table 1), this
work employs a convolutional neural network (CNN) variational autoencoder (VAE).
The rationale behind this selection is the VAE capability to map the input data into an
informative and smooth distribution of the latent space that allows for the generation of
new samples.

Table 1. List of relevant examples of unsupervised learning algorithms for model order reduction in
fluid mechanics.

Citation Methodology

Eivazi et al. [32] CNN-AE and LSTM for snapshots prediction
Murata et al. [35] Introduction of modal decomposing CNN-AE
Fukami et al. [36] Introduction of hierarchical AE for modal decomposition
Zhang [37] Physics-assimilated CNN-AE
Akkari et al. [38] VAE for model order reduction
Hines and Bekemeyer [39] Graph NN AE for surface pressure prediction
Eivazi et al. [40] beta-VAE for orthogonal modal decomposition
Wang et al. [34] beta-VAE and transformers for snapshots prediction

The rest of the manuscript is organized as follows: Section 2 provides a description of
the mathematical model and numerical implementation used to generate the training and
validation data for the surrogate model; Section 3 presents a summary of the flow evolution
with the yaw angle in the Windsor body, together with a validation of the simulations
with the data from the experiments of Varney et al. [41] at the same Reynolds number;
Section 4 presents a description of the implementation and training process of the neural
network used for the surrogate model; and, finally, Section 5 shows the capabilities of the
surrogate model.

2. Mathematical Description and Numerical Implementation

Wall-modeled large eddy simulations of the Windsor body (Figure 1) have been per-
formed at a Reynolds number of ReL = LU∞/ν = 2.9× 106 and assuming incompressible
flow at the yaw angles δ = [2.5◦, 5◦, 7.5◦, and 10◦]. The results at δ = 7.5◦ have been used
to validate the interpolation capabilities of the surrogate model.

Large eddy simulations were performed here by solving the spatially filtered incom-
pressible Navier–Stokes equations:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂uiuj

∂xj
− ν

∂2ui
∂xj∂xj

+ ρ−1 ∂p
∂xi

= − ∂Tij
∂xj

(2)
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where (·) represents the filtered variables. In the above equations, xi are the spatial
coordinates (or x, y, and z), ui (or u, v, and w) stands for the velocity components, and p is
the pressure. ν and ρ are the kinematic viscosity and the density of the fluid, respectively.
The rhs term in Equation (2) defines the subgrid stresses; its anisotropic part is given as

Tij −
1
3
Tkkδij = −2νsgsS ij (3)

where the large-scale rate-of-strain tensor S ij is evaluated as S ij = 1
2
(

gij + gji
)
, with

gij = ∂ui/∂xj and δij being the Kronecker delta. An appropriate expression for the subgrid
scale (SGS) viscosity (νsgs) has to be introduced to close the above equations. In this
work, the chosen SGS viscosity model is the local formulation of the integral-length-scale
approximation (ILSA) used as in Lehmkuhl et al. [42]

The above equations were numerically solved using SOD2Ds (Spectral high-Order
coDe 2 solve partial Differential equations) [43], thereby involving a low-dissipation spectral
element method (SEM) code. SOD2Ds are based on a spectral-element version of Galerkin’s
finite element method continuous model, with a modified version of Guermond’s entropy
viscosity stabilization [44]. The aliasing effects of the reduced order integration caused by
employing SEM integration for convective terms are countered with the skew-symmetric
splitting presented by Kennedy and Gruber [45]. The time advancement algorithm is based
on an explicit second-order Adams–Bashforth for the convection terms and an implicit
second-order Crank–Nicolson for the diffusion terms. The fractional step method [46] is
used to solve the coupled velocity pressure system using a conjugate gradient solver as an
iterative solver of the final linear system.

The computations have been performed on the domain shown in Figure 2. A uniform
velocity profile is fixed at the inlet boundary, with the velocity components depending
on the yaw angle, δ, as [u, v, w]∞ = U∞[cos(δ), sin(δ), 0]. Zero gradients are imposed at
the outlet regions, and a slip boundary condition is imposed on the top wall. The back
face of the car is treated as no-slip due to the geometric separation in the trailing edges;
however, the rest of the body and the ground are considered as slip walls with a wall model
implemented following the methodology from Owen et al. [47]. In this case, the Reichardt
wall law [48] is used with an exchange location in the 5th node [49].

The cases have been solved on a computational grid made of fourth-order hexahedra,
with 125 nodes each. The mesh has been generated following the guidelines of the finest
grid provided in the 3rd Automotive CFD Workshop (AutoCFD3) [25], as it showed
accurate results for the wall-modeled LES methodology. The resulting grid has a total
amount of 135.2 million points, with most of them concentrating on the car and ground
surfaces, as well as on the wake of the vehicle. The surface of the car has been refined to
ensure that the nondimensional wall normal distance of the first grid point is in the range
of 30 ≤ y+ ≤ 60, where y+ = uτy/ν, with the skin friction velocity being uτ =

√
τw/ρ,

and where τw = ∇u · n. A refinement region (depicted as A in Figure 3) extending from
x/L = −0.15 to x/L = 5 and from y/L = −0.66 to y/L = 0.66 is added in the ground
surface to ensure that this requirement is also met in the section that interacts with the flow
under the body and with the wake of the car.

The wake of the car has also been specially refined to guarantee a correct resolution
of the base pressure. The near-wake refinement (depicted as B in Figure 3) extends from
x/L = 1 to x/L = 2.8 and from y/L = −0.54 to y/L = 0.54, with a maximum element
length of ∆ = 0.04 L. On the other hand, the far-wake refinement (depicted as C in Figure 3)
extends from x/L = 2.8 to x/L = 5.0 and from y/L = −0.66 to y/L = 0.66, with a
maximum element length of ∆ = 0.08L. Both regions grow from the ground (z/L = 0) and
go up to z/L = 0.4.

The grid resolution in the near wake has been verified with an a posteriori analysis
of the Kolmogorov length scales η = 4

√
ν3/ε, where ε is the dissipation rate. The resulting

ratio between the mesh size, ∆, in the near wake refinement region and the Kolmogorov
scale, η, is within 2 ≤ ∆/η ≤ 5. Taking into account that the peak in the dissipation
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spectrum is around ∆/η ≈ 24, the present grid resolution is fine enough to be considered a
well-resolved LES in the near wake for the analyzed Reynolds number [50].

(a)

(b)
Figure 2. Isometric (a) and top (b) views of the domain used for the numerical simulations.

Figure 3. Schematic view of the three refinement regions of the mesh, with A being the surface
refinement on the ground, B being the volume refinement in the near wake, and C being the volume
refinement in the far wake.

All simulations have been run along 60 convective time units, t = L/U∞, once the
initial transient has been washed out, thus collecting up to 660 snapshots of the back
pressure per studied yaw angle for the training process of the surrogate model.

3. Flow Field Results

Figure 4 represents the instantaneous flow for the four yaw angles using isocontours
of the Q criterion [51]. A relevant example of the differences between the four cases is that
the A pillar vortex (depicted as A) follows the trajectory of the free stream velocity, and it
interacts with a larger part of the upper trailing edge of the body as the yaw angle increases.
Another difference that can be appreciated is that the vortex shed from the leeward corner
of the bumper (depicted as a B) separates from the body and follows the direction of the free
stream velocity at δ = 7.5◦ and δ = 10◦; however, it is embedded in the wake at δ = 2.5◦

and δ = 5◦.
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(a)

(b)

(c)

(d)

(e)

Figure 4. Cont.
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(f)

(g)

(h)
Figure 4. Instantaneous representation of the flow using Q criterion [51] isocontours colored with the
velocity magnitude at Q∗ = Q/U2

∞ = 500 for δ = 2.5◦ (a,b) and δ = 5◦ (c,d). The highlighted areas
with A and B represent the windward A pillar vortex and the bumper leeward vortex, respectively.
Instantaneous representation of the flow using Q criterion [51] isocontours colored with the velocity
magnitude at Q∗ = Q/U2

∞ = 500 for δ = 7.5◦ (e,f) and δ = 10◦ (g,h). The highlighted areas with A
and B represent the windward A pillar vortex and the bumper leeward vortex, respectively.

Apart from affecting the A pillar and bumper vortices, the yaw angle has a significant
impact on the recirculation region. In the case of square-back bluff bodies in a yawed free
stream flow, the wake is dominated by two hairpin vortices: one on the leeward side and one
on the windward side [15]. Figure 5 compares the stream lines on a horizontal plane located
at z/L = 0.186 for the four simulated yaw angles. It shows that the vortex on the leeward
side (depicted as L) dominated the recirculation and gained intensity over the windward
vortex (depicted as W) as the yaw angle increased. Moreover, the core of both the vortices
and the saddle point of the recirculation (depicted as S) got closer to the car as the yaw
angle increased. Figure 6 plots the recirculation length in the symmetry plane of the car at
z/L = 0.186 and the cross-stream velocity in a line crossing the wake at x/L = 1.156 at the
same height to confirm the trend identified by Lorite-Díez et al. [52] in a square-back Ahmed
body, i.e., the recirculation length decreases with the yaw angle, and the recirculation bubble
is deflected towards the leeward side of the wake. In Figure 6, the experimental results from
Varney et al. [41] at the same Reynolds number are also plotted. The streamwise velocity
was coincident with the experiments inside the recirculation region, and the cross-stream
velocity also presented a reasonable agreement with the experimental results.
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(a)

(b)

(c)

(d)
Figure 5. Representation of the recirculation with streamlines of the velocity vector at a horizontal
plane at z/L = 0.186 for δ = 2.5◦ (a), δ = 5◦ (b), δ = 7.5◦ (c), and δ = 10◦ (d). The core of the leeward
and windward vortices are depicted as L and W, respectively. The saddle point of the recirculation is
depicted as S. The background plane is colored with the streamwise component of the velocity.
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1.0 1.2 1.4 1.6
x/L

0.2

0.0

0.2
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0.6

0.8

u/
U

0.50 0.25 0.00 0.25 0.50
y/L

0.3

0.2

0.1

0.0

0.1

v/
U

= 2.5 = 5.0 = 10.0

Figure 6. Streamiwse velocity on a line extending from the back face of the car at the symmetry
plane of the car at z/L = 0.186 (left) and cross-stream velocity on a line crossing the wake of the
car at x/L = 1.156 and at z/L = 0.186 (right). The data depicted as crosses are those obtained
experimentally by Varney et al. [41].

Figure 7 shows that the changes in the recirculation came together with a decrease
in the base pressure coefficient, where CPb = (p− p∞)/(0.5ρU2

∞) [53]. It is important to
see how as the yaw angle augmented, a larger and more intense suction region developed
on the leeward side of the vehicle’s rear face. This led to an expansion of the area with
higher Reynolds stresses from the windward to the leeward side [24]. Figure 8 plots the
evolution of the pressure coefficient on the symmetry plane of the vehicle and a horizontal
plane at z/L = 0.249. The pressure coefficient on the upper and lower faces of the car
remained constant along the range of yaw angles studied. The most relevant suction peak
was located on the lower face of the car at the transition between the nose and the floor.
The upper side presented a wide suction region in the transition between the windscreen
and the roof of the car. However, there was an increase in the pressure difference between
the windward and leeward sides. The suction of the windward A pillar was reduced, and
there was a clear augment in the suction at the leeward A pillar. Both results agree with the
data from Varney et al. [41], who also showed that the changes in the yaw angle are too
small to have an effect in the vertical direction, but they are relevant in affecting the lateral
and longitudinal motions.

(a) (b)

(c) (d)

Figure 7. Pressure coefficient on the back face of the car, together with the turbulent kinetic energy on
a plane located at z/L = 0.15 for δ = 2.5◦ (a), δ = 5◦ (b), δ = 7.5◦ (c), and δ = 10◦ (d).
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The greater suction in the back face of the car and the bigger pressure difference
between the windward and leeward faces led to a linear increase of the drag and side
forces [2,54], which is depicted in Figure 9. Both force coefficients agree with the ones
obtained experimentally by Varney et al. [41]. The drag coefficient mismatch between their
results and the ones computed in the present study relies on the lower blockage ratio of the
computational domain (1.07%) compared with the one of the wind tunnel, which increased
from 4.5% for δ = 2.5◦ to 6.2% for δ = 10◦ [55].

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.5

1.0

0.5

0.0

0.5

1.0

C P

Upper
Lower

(a)

0.2 0.4 0.6 0.8 1.0
x/L

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C P

Leeward
Windward

(b)

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.5

1.0

0.5

0.0

0.5

1.0

C P

Upper
Lower

(c)

0.2 0.4 0.6 0.8 1.0
x/L

0.8

0.6

0.4

0.2

0.0

C P

Leeward
Windward

(d)

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.5

1.0

0.5

0.0

0.5

1.0

C P

Upper
Lower

(e)

0.2 0.4 0.6 0.8 1.0
x/L

1.0

0.8

0.6

0.4

0.2

0.0

C P

Leeward
Windward

(f)
Figure 8. Pressure coefficient value at the symmetry plane of the car for δ = 2.5◦, 5◦, 10◦ (a,c,e)
and pressure coefficient on a horizontal plane at z/L = 0.249 for the same angles (b,d,f). The data
represented in points are those obtained experimentally by Varney et al. [41].
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(b)
Figure 9. Comparison of the drag, CD (a), and side CS (b), force coefficients with the ones obtained
experimentally by Varney et al. [41].

4. Deep Learning Surrogate Model Definition

To build the surrogate model, the most important features in the back pressure at
δ = [2.5◦, 5◦ and 10◦] have been learned by a variational autoencoder [56]. An autoencoder
(AE) is a deep neural network (DNN) with an architecture that is suitable for unsupervised
feature extraction. Autoencoders are built in two parts: First, an encoder E maps the input
data x to a low-dimensional latent space z with d dimensions and z ∈ Rd. Then, a decoder
D projects the low-dimensional data back to the reference space x̃. The model is trained by
optimizing its parameters w to minimize the reconstruction loss Lrec between the input
and the reconstructed data.

Kingma and Welling [56] proposed an evolution of vanilla AEs, known as variational
autoencoders (VAEs), to map the input data into an informative and smooth distribution of
the latent space. This solution overcomes the limitations of vanilla AEs when generating
new data due to their fixed and noninformative latent space representation. In this study,
a Gaussian distribution has been used; therefore, the input data are projected through E
to a mean µ and a standard deviation σ. The latent space distribution is sampled by a
normally distributed random number ε, z = µ + σ ⊙ ε. The loss function of a variational
autoencoder includes a penalization from latent space information with the Kullback–
Leibler (KL) divergence, DKL, which is defined as follows:

L(x) = Lrec −
1
2

d

∑
i=1

(
1 + log(σ2

i )− µ2
i − σ2

i

)
(4)

The VAE architecture used in this work is presented in Figure 10. The input data have been
formed by snapshots of the pressure coefficient on the back face of the car, with ny = 352 points
in the horizontal direction and nz = 256 points in the vertical direction. The baseline
architecture was taken from previous works on autoencoders to compress fluid flow
data [34,36,40,57]. All of them captured the flow features with five convolutional layers.
For the current application, applying a filter with a kernel size that reduces the dimension
of the input data yielded more robust results than using pooling layers for dimensionality
reduction. Hence, to halve the output data dimension in each layer, a kernel size of (4× 4)
with a padding of 1 and a (2× 2) stride was used. The first layer has a filter size of 16, and
doubles at each layer to preserve the patterns in the data. After the last convolutional layer,
the extracted features are flattened and fed to a fully connected layer of length l = 128 so
that the dimension is reduced smoothly. The final step of the encoder is mapping the
features onto two fully connected layers in parallel of dimension d, with one of them
representing the mean µ and the other the variance σ of the latent distribution. In the
current study, d was set to d = 2. The sizes of the filter, the fully connected layer, and the
latent space were the minimum ones to obtain coherent reconstructions of the mean back
pressure coefficient.
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(352, 256, 16)

(176, 128, 32)

(88, 64, 64)

(44, 32, 128)

(22, 16, 256) 90112
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µ

σ

ε

d

µ+ σ ⊙ ε

d

(a)

µ+ σ ⊙ ε

d
128

90112 (22, 16, 256)

(44, 32, 128)

(88, 64, 64)

(176, 128, 32)

(352, 256, 16)

(b)
Figure 10. Encoder (a) and decoder (b) architectures. The output size of each layer is indicated
under the corresponding block in the format (height × width × channels). The color coding for each
layer is as follows: 2D convolution layer , 2D transpose convolution layer , fully connected layer ,

reshape , and tanh activation function .

The decoder has been designed symmetrically, where fully connected layers are fed
from the latent distribution, and then the data are reshaped to the same output of the
last convolutional layer of the encoder. Five transposed convolutional layers were used
to reconstruct the original data by increasing the spatial dimension progressively. All
layers were followed by a batch norm layer [58] before applying the nonlinear activation
function, which in this study is the hyperbolic tangent (tanh) function, as it was the best
performing one for the studied data. All the layers in the model were initialized with the
Xavier uniform scheme [59].

The reconstruction loss Lrec was taken as the mean squared error (MSE), and the model
parameters w were updated using the Adam algorithm [60]. To ensure the convergence of
the loss function, the model was trained for 300 epochs, with a learning rate lr scheduled
to follow a decay from 5× 10−4 as

lri =
lri−1

1 + 1× 10−4 · i (5)

where i is the current epoch number. To prevent w from overfitting, an early-stopping
scheduler was set to the total loss L(x) when it no longer improved [61].
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A percentage of 80% of the total 1980 collected snapshots for δ = [2.5◦, 5◦ and 10◦]
have been used to train the autoencoder, while the remaining 20% were reserved as a
validation set to assess possible overfitting of the model to the seen data. To ensure that
the model did not have a bias to any of the angles, the training and validation datasets
have been created with the same number of snapshots from each yaw angle case. Apart
from that, the mean value of the back pressure at the three angles was also added to the
training set to ensure that the VAE could reproduce it correctly. The reader is referred to
Algorithm 1 for a detailed description of the training process of the variational autoencoder.
The evolution of the training and validation losses during the training process of the VAE
is depicted in Figure 11. It is important to point out that each wall-modeled LES simulation
took 960 h in 2300 CPU Intel Xeon Platinum 8160, and the training of the model took 3 h
and 51 min on a GPU AMD Radeon Instinct M150. Once the model is trained, the inference
to obtain the mean base pressure distribution at another yaw angle is immediate.

Algorithm 1: Training of a CNN variational autoencoder

1 Initalize parameters w with Xavier uniform scheme [59];

2 LearningRate = 5× 10−4;

3 iepoch = 0;

4 repeat

5 Update learning rate (Equation (5));

6 for batch in DataTraining do

7 µ, σ, ε← E(batch); // Encode the data batch to a Gaussian distribution

8 z← µ + σ ⊙ ε; // Compute the latent vectors

9 recBatch← D(z); // Reconstruct the batch using the decoder

10 Lrec ←MSE(batch, recBatch);

11 Compute the training loss Ltr (Equation (4))

12 Update the parameters w using the Adam algorithm [60]

13 end

14 Ltr ←mean loss of all training batches;

15 for batch in DataValidation do

16 µ, σ, ε← E(batch)

17 z← µ + σ ⊙ ε

18 recBatch← D(z)
19 Lrec ←MSE(batch, recBatch)

20 Compute the validation loss Lva (Equation (4))

21 end

22 Lva ←mean loss of all validation batches;

23 if EarlyStopp(Lva, prevLoss, Ltr) then

24 break; // Early stopping to prevent overfitting [61]

25 end

26 prevLoss← Ltr;

27 iepoch← iepoch + 1;

28 until iepoch = f inalEpoch;
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Figure 11. Evolution of the training and validation losses. Early stopper was activated at the 117th epoch.

5. Deep Learning Surrogate Model Properties and Capabilities

The evaluation of the trained variational autoencoder as a surrogate model for the
yaw angle dependence of the back pressure of the Windsor body entails three different
parts: reproducing the training data, interpolating the mean back pressure at another yaw
angle (δ = 7.5◦), and extracting the temporal dynamics of a dataset.

Figure 12 illustrates the reconstruction of the mean back-pressure coefficient at
δ = [2.5◦, 5◦, 10◦], together with the original field. The mean relative error on all points is
defined as

e =
|CPbVAE − CPb|

|CPb|
(6)

where the original and the reconstruction was lower than e ≤ 1% for all three angles.
The error was concentrated on two symmetric vertical lines close to y/L = −0.09 and
y/L = 0.09. Those lines are seen in Figure 12 as small discontinuities in the pressure field
resulting from the encoding and decoding process in the VAE.

The value of the two latent vectors obtained when projecting the mean back pressure
through the encoder had a strong linear dependence on the yaw angle (Figure 13). Both
of the latent vectors had a linear increasing tendency with the yaw angle as the one seen
for the drag and side force coefficients (Figure 9). Thus, it is possible to interpolate the
value of the latent vectors to any angle between 2.5◦ ≤ δ ≤ 10◦ with a linear regression.
The correlation between the regression and the original data was calculated at R2 = 0.9510
for the first latent vector z1 and R2 = 0.997 for the second latent vector z2. Moreover,
the reconstruction of the base pressure distribution was unaffected when the regression
results were taken as the zi for δ = 2.5◦, δ = 5◦, and δ = 10◦.

To illustrate the capabilities of the surrogate model, in Figure 14, the reconstruction
of the mean back pressure after decoding the z1 and z2 values computed with the linear
regressions for δ = 7.5◦ is shown. The mean relative error between the interpolated field
and the WMLES results was e = 3.13%. This result proves that the model was not overfitted
to the training angles and could generate new samples for the unseen angles. The base
pressure distribution obtained with the surrogate model yielded a contribution to the total
drag force of CDb = 0.284. This result is fully in agreement with that contribution obtained
with the baseline CFD simulation at CDb = 0.276. Both results, i.e., the back-pressure
distribution and base pressure, are fully satisfactory, especially when considering the low
cost of the evaluation of the model for a new yaw angle and the high accuracy with respect
to the baseline CFD results.
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(a)

(b)

(c)
Figure 12. Comparison between the reconstruction (left) and original (right) mean pressure coefficient
at δ = 2.5◦ (a), δ = 5◦ (b), and δ = 10◦ (c).
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Figure 13. Linear regression of the mean values of each latent vector. Z1[δ] = 0.211δ + 4.67 with a
correlation of R2 = 0.9510, and Z2[δ] = 0.373δ + 0.374 with a correlation of R2 = 0.997.

Figure 14. Comparison between the predicted CP with the variational autoencoder (left) and the
wall-modeled LES results (right) at δ = 7.5◦

After showing that the evolution of the latent space with the yaw angle agreed with
the CD and CS tendency with the yaw angle, the temporal evolution of the latent vectors
was assessed. For this study, the 660 snapshots of the back pressure at each yaw angle
δ = [2.5◦, 5◦ and 10◦] were projected through the encoder while keeping its time correlation.
Thus, a coherent time evolution of the latent space was obtained. Figures 15–17 present the
frequency spectra of the temporal evolution of the latent space for δ = 2.5◦, δ = 5◦, and
δ = 10◦, respectively. All spectra are plotted together with the frequency–amplitude
distribution of the dynamic mode decomposition (DMD) [62] analysis of the back pres-
sure snapshots.

DMD is a frequency-based modal decomposition that yields modes that characterize
fluid elements with prominent dynamic activity within the observed data set (the reader
is referred to Appendix A for the details of the DMD implementation used in this work).
Note that the higher PSD maxima in the latent vector spectra also correspond to relevant
maxima in the DMD frequency–amplitude distribution, thereby giving evidence of the flow
dynamics preservation in the latent space.
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Figure 15. Frequency spectra of the latent space at δ = 2.5◦ (a) and frequency–amplitude distribution
of the DMD analysis (b). Frequencies have been nondimensionalized with the height of the vehicle,
and the spectra have been shifted for clarity. The dominant DMD frequencies are highlighted in red.
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Figure 16. Frequency spectra of the latent space at δ = 5◦ (a) and frequency–amplitude distribution
of the DMD analysis (b). Frequencies have been nondimensionalized with the height of the vehicle,
and the spectra have been shifted for clarity. The dominant DMD frequencies are highlighted in red.
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Figure 17. Frequency spectra of the latent space at δ = 10◦ (a) and frequency–amplitude distribution
of the DMD analysis (b). Frequencies have been nondimensionalized with the height of the vehicle,
and the spectra have been shifted for clarity. The dominant DMD frequencies are highlighted in red.

For the case of δ = 2.5◦ (Figure 15), the DMD mode with the highest amplitude
happened at f H/U∞ = 0.068 and matches the frequency with the maximum PSD in the first
latent vector z1 and the frequency with the second-highest PSD value of z2. Volpe et al. [19]
identified a similar low frequency (0.07 ≤ f H/U∞ ≤ 0.08) due to the recirculation bubble
impingement in the wake of a square-back Ahmed body under parallel flow conditions.
This motion is driven by the interaction of the vortices shed by the vertical and horizontal
walls and is still relevant at small yaw angles [15].

In addition to this main frequency, the two additional relative maxima in the DMD
frequency–amplitude distribution, f H/U∞ = 0.095 and f H/U∞ = 0.121, had their foot-
print in the latent space. The most energetic fluctuation of z2 happened at f H/U∞ = 0.091,
and the second most energetic fluctuation of z1 happened at f H/U∞ = 0.115. The latter
frequency is similar to that reported by Booysen et al. [15] for the vortex shedding from the
vertical walls of an Ahmed body (0.12 ≤ f H/U∞ ≤ 0.14).

A similar trend is appreciated for the case of δ = 5◦ (Figure 16). In this case,
the frequency of the most relevant DMD mode happened at f H/U∞ = 0.107 as the
PSD peak in the second latent vector. The most energetic fluctuation of the latent vector z1,
f H/U∞ = 0.060 also coincided with a relevant maximum in the spectrum of the second
latent vector and the DMD frequency–amplitude distribution.

Finally, for δ = 10◦ (Figure 17), the DMD mode with a higher amplitude,
f H/U∞ = 0.130, gained relevance over the rest of the modes, and both latent vectors
had the maximum energy peak at this frequency. This agrees with the results from Booy-
sen et al. [15], who identified that the energy of the flow oscillations increases with the
yaw angle in square-back bluff bodies. This nondimensional frequency matches the one
found by Volpe et al. [19] as the shedding frequency from the lateral walls of a square-back
Ahmed body, f H/U∞ = 0.130.

In all three cases, the results from the latent space and the DMD agree with the
experimental characterizations of Booysen et al. [15] and Volpe et al. [19] for a square-back
Ahmed body at similar Reynolds numbers. Moreover, the identified frequencies also play a
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relevant role in the spectra of the drag force fluctuations (Figure 18), as the energy peaks
occurred at the same frequencies as in the DMD and the latent vectors.

10 1 100
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103

105

107

109
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PS
D

0.0900.067

0.106

0.130

 = 2.5  = 5.0  = 10.0

Figure 18. Spectra of the drag force for all the training yaw angles. Frequencies have been nondimen-
sionalized with the height of the vehicle, and spectra have been shifted for clarity.

These comparisons in the frequency domain yield the conclusion that the spectra of
the latent space can have similar interpretations to the results from linear decompositions
of the DMD, thus meaning that variational autoencoders are not only able to reproduce
and generate new samples of a fluid flow but also that the physical phenomena seen in
the reference space have an identifiable footprint on the latent space. DMD could also be
used for the interpolation of the data, but it would be necessary to find the evolution of the
spatial correlations with the yaw angles instead of working only with two scalar variables.

It is expected that this model could be extended to a broader yaw angle range if
simulation data are available. One should also anticipate a linear evolution of the latent
variables in the yaw angle range where the drag coefficient increases linearly, but it is
yet to be demonstrated that a change in the tendency of the CD leads to a change in the
dependence of the latent variables with the yaw angle.

The current surrogate model might be generalized to other flow conditions, e.g., dif-
ferent Reynolds numbers, if additional back pressure data were provided. For Reynolds
numbers higher than ReL ≥ 2.9× 106, it should be possible to obtain the base pressure
coefficient from the current model, as the drag force coefficient is invariant in this range [63].
However, for its use at lower Reynolds numbers, where the back pressure is more Reynolds-
dependent, transfer learning might be used in order to retrain the model at the

6. Summary and Conclusions

In the present study, a probabilistic deep neural network architecture based on a
variational autoencoder [56] has been proposed as a surrogate model for the base pressure
coefficient changes with the yaw angle. In particular, the work focused on the Windsor
body, which is a simplified square-back car geometry. Instantaneous snapshots of the back
pressure were encoded through five convolutional layers to two latent vectors. Each layer
halves the dimensions of the input field while doubling the number of filters. The decoding
process followed a symmetric architecture (Figure 10).
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The training snapshots have been obtained with wall-modeled large eddy simulations
at ReL = 2.9× 106 for the yaw angles of δ = [2.5◦, 5◦, 10◦]. The simulations present the
tendencies previously identified in the literature [15,52,55] regarding the intensification of
the hairpin vortex located on the leeward side of the wake (Figure 5), as well as the suction
increase with the yaw angle in the leeward side of the back face (Figure 7). Moreover,
the results show good agreement with the experimental data obtained by Varney et al. [41]
(Figures 6 and 8) in terms of both the wake velocity and the pressure coefficient on the body.

The compression of the mean base pressure at δ = [2.5◦, 5◦, 10◦] yielded a linear evolution
of the two latent variables with the yaw angle (Figure 13). This finding enabled their interpo-
lation in the range of 2.5◦ ≤ δ ≤ 10◦ with linear regression and decoding the base pressure
distribution from the interpolated latent variables. The pointwise mean error between the
predicted reconstruction and the WMLES results at δ = 7.5◦ was e ≤ 3.13% (Figure 14).

In addition to presenting a linear growth with the yaw angle, when a set of time-
correlated snapshots were encoded, the two latent vectors had a time evolution that was
coherent with the temporal sequence of the drag force and with the results obtained from
the dynamic mode decomposition analysis [62].

The three dominant frequencies resulting from the DMD analysis for δ = 2.5◦ were
f H/U∞ = 0.068, 0.095 and 0.121. All three of them played a relevant role in the temporal
evolution of the latent vectors, as the most energetic peak of the z1 spectrum occurred at
f H/U∞ = 0.067 and the second most relevant peak at f H/U∞ = 0.115. In the case of z2,
its peaks occurred at f H/U∞ = 0.091 and f H/U∞ = 0.067. In the case of δ = 5◦, the DMD
reported two dominant modes at f H/U∞ = 0.107 and 0.060, while the spectrum z1 had
its maximum at f H/U∞ = 0.060, and z2 had its peak value at f H/U∞ = 0.107. Finally,
at δ = 10◦, the most relevant DMD modes occurred at f H/U∞ = 0.130 and 0.083. In this
case, both latent vectors had the energy peak at f H/U∞ = 0.130, and z1 had a second peak
at f H/U∞ = 0.087.

All in all, this work gives additional evidence of the capabilities of variational au-
toencoders for the surrogate modeling of turbulent flows [34,40], thereby showing their
ability regarding data compression on a highly turbulent case, which is relevant for the
automotive industry. It also provides clear proof that the latent space is governed by the
phenomena seen in the reference space. This work encourages the application of similar
techniques for flow prediction in the wake of the body and the usage of transfer learning
methods to extrapolate this model to different flow conditions with respect to changes in
the Reynolds number.
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Appendix A. Dynamic Mode Decomposition Implementation

Dynamic mode decomposition (DMD) [62] is a frequency-based modal decomposition.
The modes in DMD are seen as structures that represent a linear tangent estimate of the base
flow. These modes characterize fluid elements showcasing prominent dynamic activity
within the observed data set. An interesting aspect of DMD modes is that they are part of
a dynamic system, thereby indicating that they represent not merely a spatial correlation
with a time signal but rather a coherent structure characterized by a specific frequency,
amplitude, and damping ratio. DMD operates as a data-centric method, thus disregarding
any information other than the flow field data. These data need to be presented in a
snapshot sequence denoted by the matrix DN

1 :

DN
1 = [d1, d2, d3, ..., dN ] (A1)

here, di represents the ith flow field. DMD assumes the presence of a linear mapping A
linking one field di to its subsequent field di+1:

di+1 = Adi (A2)

When A is presumed to be constant, the sequence of flow fields can be conceptualized
as a Krylov sequence:

DN
1 =

[
d1, Ad1, A2d1, ..., AN−1d1

]
(A3)

In this study, the DMD computations have been conducted using pyLOM [64], which is
a high-performance computing tool for modal decompositions already used by Miró et al. [65]
and Eiximeno et al. [66] for DMD analysis. In pyLOM, the computation of A follows the
algorithm proposed by Tu et al. [67]. Subsequently, the attributes of the dynamical process
described by A were determined using eigenvalue decomposition. The concluding phase
of dynamic mode decomposition involves calculating the amplitude of each mode, thus
employing the method introduced by Jovanovic et al. [68].
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