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Abstract: We address an inventory-routing problem that arises in a liquid oxygen-producing company.
Decisions must be made for the efficient transport of the product from sources to destinations by
means of a heterogeneous fleet of trucks. This combinatorial problem has been stated as a constrained
minimization one, whose objective function is the quotient of the operating cost divided by the total
amount of delivered product. The operating cost comes from the distances traveled, the drivers’
salary, and the drivers’ overnight accommodation. The constraints include time windows for drivers
and destinations, inventory safety levels, lower bounds for the quantity of product delivered to
destinations, and maximum driving times. To approximate the optimal solution of this challenging
problem, we developed a heuristic algorithm that first finds a feasible solution, and then iteratively
improves it by combining the Metropolis criterion with local search. Our results are competitive with
the best proposals in the literature.

Keywords: combinatorial optimization; iterated local search; heuristic; inventory routing problem;
local search; simulated annealing
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1. Introduction

In this paper we address the inventory routing problem (IRP) proposed in the
ROADEF/EURO Challenge 2016 [1], which belongs to the general class of so-called
inventory-routing problems. In the IRP, a schedule of truck drivers along a planning
horizon is sought so as to deliver liquid oxygen (single product) to customers, minimizing
the logistic ratio, and subject to the full satisfaction of operating constraints. The logistic
ratio, a performance index for fluid transportation industries, is defined as the quotient
of the operating cost and the amount of delivered product. The relevant costs come from
the distance traveled by trucks, the drivers’ salary, and the overnight accommodation
for drivers (referred to as layover). Thus, in the IRP it is required to determine optimal
itineraries for drivers (who, when, where), as well as the quantity of product to deliver
at stops. For some customers, it is mandatory to keep their local inventory levels above
prescribed safety stocks, while for others (known as ‘call-in’) special orders specify the
amount and time for the delivery.

To approximate the optimal solution of the IRP, we propose here an Iterated Local
Search (ILS) [2] approach consisting of two phases: the first one finds from scratch a feasible
solution, the second iteratively improves it by performing a Metropolis cycle and a local
search procedure employing various neighborhoods.

The rest of the paper is organized as follows: In Section 2 we succinctly comment
on related work. A detailed description of the problem is provided in Section 3. Then,
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Sections 4 and 5 are devoted to describe the first and the second phase of our approach,
respectively. The corresponding computational experiments are presented in Section 6,
followed by our conclusions in Section 7.

2. Related Work

Originally proposed by Bell et al. [3] in 1983, IRP has been the subject of much research,
motivating a rich and varied literature. For a discussion on the most relevant articles
published on the subject until 2013, we highly recommend the book by Coelho et al. [4].
Lenstra and Rinooy Kan [5] proved that, in general, IRP belongs to the NP-hard class, so
exact solution methods are scarce, such as the branch-and-cut algorithm of Coelho and
Laporte [6], who addressed the case with multiple trucks and products.

In regard to early heuristic approaches, it is worth mentioning the one by Dror and
Levy [7] in two steps: a solution is first found by dealing with a Vehicle Routing Problem,
then a route improvement procedure is applied.

Recently, a plethora of modern heuristic approaches have been proposed to solve
different versions of the IRP; here some are mentioned briefly. The one by Adulyasak,
Cordeau, and Jans [8] consists of an adaptive large neighborhood search to find initial
solutions, followed by branch-and-cut algorithms. Cordeau et al. [9] developed a three-
phase heuristic for a multiple-product problem, including replenishment plans, delivery
sequence, and routing. In Shao et al. [10], a solution was heuristically obtained, based
on a rolling time algorithm plus a greedy randomized adaptive search procedure, and
neighborhood search.

Etebaria and Dabirib [11] analyzed a hybrid heuristic method involving five steps: ini-
tialization, demand generation, demand adjustment, inventory routing, and neighborhood
search, all embedded in a simulated annealing framework. Shaabani and Kamalabadi [12]
considered a case of multi-retailer perishable products, proposing a population-based
simulated annealing algorithm. In the paper by Cheng, Wang, and Zhang [13], a series of
mixed integer nonlinear programming models was constructed, together with linearization
methods; then, a hybrid genetic algorithm based on allocation first and routing second was
employed to find near-optimal solutions of these models.

Among the latest investigations those undertaken by C. Archetti, M.G. Speranza, and
collaborators are outstanding; we briefly mention three of them. In [14], two policies were
compared: Retailer-Managed Inventory (RMI) and Vendor-Managed Inventory (VMI). In
the first policy, the customer controls the time and the quantities to be delivered; in the
second policy the supplier monitors the customer’s product levels, and makes decisions on
the time and amount to deliver so as to avoid stock-outs. From computational experiments
on 120 instances, they found that the second policy yielded the lowest costs.

Contrary to most previous studies, in [15] the considered objective function is the
minimization of the logistic ratio, defined as the quotient of the total cost and the total
quantity of product delivered. An advantage of using this objective function is that, in
general, the customer inventory levels do not tend to be too low along the planning horizon.

Ref. [16] deals with the case when bounds are added to the amount to load or
unload product. The proposed solution method comprises three phases: generation of
initial solution, tabu search, and final improvement, obtaining good results in most of the
considered 880 benchmark instances.

In the literature, there are few papers working in the same IRP tackled here. One of
them, ref. [17], developed a branch-cut-and-price algorithm was developed. They used
a surrogate relaxation in the constraints. They were able to obtain a feasible solution in
the most of the instances proposed in [1]. In [18], a matheuristic was developed. They
combined mathematical programming with a local search. They divided the problem into
two phases: one to design the routes and other to decide the quantity to deliver and fit the
route in the time windows. In [19], a fixed sequence subproblem was identified and tackled
with a model to check if, with a sequence of visits given, there exists a feasible plan to
deliver the liquid. Given a feasible sequence, this model optimizes the timing and quantity
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in the visits. They used greedy heuristics and a mathematical model to design a sequence
using column generation. Their method is efficient for small instances, and even improved
the best results known in some instances. In [20], a hyperheuristic was developed to the
IRP. The hyperheuristic was used to choose a low-level heuristic in every step of the search.
They used hidden Markov chain to choose the heuristic. They obtained the best results in
the ROADEF Challenge of 2016.

3. The Problem: Nomenclature and Notation

Throughout the planning horizon, a heterogeneous truck fleet, driven by an also
heterogeneous staff of drivers, is used to transport liquid oxygen (the product) from a set
of sources (production sites) to a set of destinations (customers). The depot, the sources,
and the destinations are all interconnected by a road network within a geographical region.

In the IRP discussed here, it is required to determine optimal itineraries for drivers
and trucks through the road network, as well as the time and quantity of product deliv-
ery at the destinations, all subject to a set of logistical and contractual constraints. For
example, although for most customers, hereinafter referred to as ‘regular’, local inven-
tory levels should be maintained above the safety stocks along the planning horizon, for
some customers—called ‘special’—it is a must-do for orders specifying quantity and time
for deliveries.

In this section we describe the IRP as a combinatorial optimization problem, mak-
ing explicit its objective function and constraints, as well as the required nomenclature
and notation.

3.1. The Drivers

Let A be the set of drivers, all initially located in the depot d. The following data are
given to each driver a ∈ A:

• A non-empty set W(a) of availability time windows;
• A cost C1(a) per each time unit on duty;
• A lower bound κ(a) for resting time between any two itineraries;
• An upper bound ψ(a) for uninterrupted driving time.

3.2. The Trucks

Let Θ denote the set of trucks, all initially located at the depot d. For each truck σ ∈ Θ,
let C2(σ) be the cost per traveled distance unit, and w(σ) its volume capacity. Also, the
binary constant ρaσ is equal to one if and only if driver a ∈ A is allowed to drive truck σ.

3.3. The Product Sources

The production sites are referred to here as sources, their set is denoted O, and ℓj is the
loading time at source j ∈ O. Also, the binary constant mσj is equal to one if and only if
truck σ ∈ Θ is allowed to load product at source j ∈ O.

3.4. The Destinations

Let D = R ∪ S be the set of destinations, where R corresponds to the set of ‘regular’
customers, and S corresponds to the set of ‘special’ customers. For each destination d ∈ R
the following information is provided:

• Deliveries can only occur within a given set of time windows.
• νd is the quantity of product in the tank of destination d at time zero.
• The consumption forecast along the planning horizon in an hourly basis.
• The unloading time ℓd, and the safety stock υd.
• The lower bound γd for the amount to deliver at each visit of any truck.
• A binary constant uσd, which is equal to one if and only if truck σ ∈ Θ is allowed to

unload product at destination d ∈ R.
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For each destination d ∈ S a set of specific orders is given, indicating lower and upper
bounds on the quantities to be delivered, as well as the corresponding time windows.

A layover enables a driver to travel for an extended duration, covering a larger area. A
number of destinations, called layover destinations, cannot be served in a single day because
they are too far from the depot. When serving those destinations, it is possible to include
into a shift, a resting time φ (called layover time) in any location (not necessarily a layover
destination), incurring a constant cost C3. No shift can include two or more layovers.

3.5. The Objective Function

The objective function of the IRP is to minimize the Logistic Ratio, namely, the quotient
of the total cost (which comes from the drivers on duty, the traveled distances, and the
layovers) and the quantity of product delivered over the planning horizon. The cost related
to the driver’s salary is proportional to the duration of the shifts, which includes the driving
time, the idle time, and the loading/unloading times. On the other hand, the cost due to
the traveled distances is mainly related to the fuel consumption of trucks, and each layover
has a fixed cost, covering the hotel fare.

3.6. The Model

Let V := O∪D ∪ {d}, where d denotes the depot, O the set of sources, and D = R ∪ S
the set of destinations; R and S being, respectively, the set of ‘regular’ and ‘special’ cus-
tomers. The elements of V are indexed 0, 1, . . . , n, and referred to as locations. Also, L ⊂ D
is the set of layover destinations.

The length of the planning horizon is denoted L.
The time for a truck to cover the distance between locations i, j ∈ V in either direction

is denoted h(i, j). Recall ℓj is the required time to load (or unload) product at location j. A
tour is a quadruple λ = (u, t, t′, x) where

• u is a finite sequence of locations u = (u0, u1, . . . , un), n ≥ 2, where either

– u0 = un = d (u starts and ends at the depot) and uj ∈ V, for j = 1, . . . , n− 1 (the
depot is not an intermediate location in u), or;

– u0 = d (u starts at the depot) and uj ∈ V, for j = 1, . . . , n (the depot is only at the
beginning of the sequence), or;

– un = d (u ends at the depot) and uj ∈ V, for j = 0, . . . , n− 1 (the depot is only at
the end of the sequence.

• t = (t0, t1, . . . , tn) and t′ = (t′0, t′1, . . . , t′n) contain timing information on u as follows.
The departure time from u0 is t′0 ≥ 0, the arrival time to un is tn ≤ L, and for
j = 1, . . . , n− 1, the time of arrival to (resp. departure from) location uj is tj (resp.
t′j = tj + ℓj), such that the interval [tj, t′j] is completely contained in a time window of
location uj; also tj ≥ t′j−1 + h(uj−1, uj), for j = 1, . . . , n. We consider t0 and t′n as being
immaterial.

• x = (x0, x1, . . . , xn), where xj ≥ 0 (j = 1, . . . , n− 1) is the amount of unloaded product
at location uj. Clearly, if uj ∈ O ∪ {d} then xj = 0.

In the sequel Ω denotes the set of tours. For each tour λ = (u, t, t′, x) ∈ Ω, sets
O(λ) := {j | 0 ≤ j ≤ n, uj ∈ O} and D(λ) := {j | 0 ≤ j ≤ n, uj ∈ D} correspond,
respectively, to the visited sources and destinations, θ(λ) is the total traveled distance,
χ(λ) := ∑n−1

j=1 xj is the amount of the delivered product, and δ(λ) := t0 and δ̄(λ) := t′n are
its time limits.

Now, recall A and Θ are the sets of drivers and trucks, respectively, and define a
route as a triple (a, σ, λ) ∈ A × Θ × Ω, where λ = (u, t, t′, x) and u = (u0, u1, . . . , un),
simultaneously satisfying

• ρaσ = 1 [driver a ∈ A is allowed to drive truck σ ∈ Θ];
• ξσuj = 1 for all j ∈ O(λ) [truck σ is allowed to load product at every source in tour λ];



Mathematics 2024, 12, 991 5 of 12

• uσuj = 1 for all j ∈ D(λ) [truck σ is allowed to unload product at every destination in
tour λ];

• t′n − t0 ≤ ψ(a) [driver a does not exceed his/her maximum allowed driving time ψ(a)
in tour λ];

• The period of time [t0, t′n], denoted ϵ(a, σ, λ), is entirely contained in a time window
of driver a.

Let ∆ denote the set of possible routes, which we classify as round, forward, and
backward. A round route starts and ends at the depot, a forward route starts at the depot
and ends at some other location, a backward route starts at some source or destination and
ends at the depot. A shift is either a round route or a pair of routes—one forward, one
backward—such that

• They share a driver and truck, and;
• A layover destination is visited in either route, and;
• The forward route ends at the same location where the backward route starts, allowing

enough resting time for the driver, namely, no less than φ.

Every couple of shifts are compatible unless:

• They share driver or truck and they intersect in time, or
• they share driver, say driver a, and between them there is no κ(a) time for rest, or
• they share some destination, and their visiting time overlaps.

At time zero: (1) an unlimited amount of product is available in each source, (2) all
drivers and trucks are available at the depot, with trucks holding some amount ≥ 0 of
product in their tank, and (3) each regular destination has some amount of product above
their safety stock. Moreover, the (not necessarily constant) consumption rate along the
planning horizon is known for each regular destination, and for each special destination a
set of specific orders is provided, each consisting of a lower and an upper bound on the
quantity to be delivered as well as a corresponding time window. A program is a non-empty
set of pairwise compatible shifts satisfying the following constraints:

• Each truck σ loads product to maximum capacity w(σ) at every visited source.
• The quantity unloaded by a truck at destination d ∈ R is always ≥ γ(d), and less than

or equal to what it carries.
• Along the study horizon, the inventory level at each destination d ∈ R is kept between

safety stock υ(d) and local capacity ῡ(d).
• The quantities unloaded from trucks at each destination d ∈ S satisfy the lower and

upper bounds established in the corresponding specific orders.

Thus, the aim of the IRP is to determine a program P minimizing the logistic ratio
z = (Cd + C f + Cl)/Q, where Q is the total amount of oxygen (the delivered product), and
costs Cd, C f , Cl , arise from the in-service drivers, the distance traveled by trucks, and the
carried-out layovers, respectively. As

Cd = ∑
a∈A

C1(a) ∑
(a,σ,λ)∈P

ϵ(a, σ, λ),

C f = ∑
σ∈T

C2(σ) ∑
(a,σ,λ)∈P

θ(λ),

Cl = C3 · |F|, and

Q = ∑
(a,σ,λ)∈P

χ(λ),

we obtain

z =

∑
a∈A

C1(a) ∑
(a,σ,λ)∈P

ϵ(a, σ, λ) + ∑
σ∈T

C2(σ) ∑
(a,σ,λ)∈P

θ(λ) + C3 · |F|

∑
(a,σ,λ)∈P

χ(λ)
.
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4. Finding a Feasible Solution

For any truck σ ∈ Θ, we recall w(σ) is the maximum capacity of its tank. Thus,
an upper bound on the amount that truck σ can deliver in any visit to any destina-
tion d ∈ R, is ζd ← min{w(σ), ῡ(d) − υ(d)}, where ῡ(d) and υ(d) denote, respectively,
the storage capacity and safety stock at destination d. Our strategy to find an initial
feasible solution consists in successively selecting—in a rotating manner—an element
µ ∈ {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. Then, for each chosen µ a set of routes is pro-
duced such that every time destination d is served by truck σ no less than µ× ζd units
are delivered.

In the Algorithm 1, µ is the parameter passed to the algorithm that tries to find a
feasible solution, with all its deliveries of at least µ× ζi units. Although in our experiments,
we set MAX ← 10, 000, for most times the algorithm obtains a feasible solution in very few
iterations. The following algorithm iteratively chooses a driver–truck combination, and
tries to construct a route.

Algorithm 1: Finding a feasible solution
(1) µ← {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1};
(2) ban← f alse; i← 0;
(3) While i ≤ MAX and sol == ∅ do
(4) k← (i mod 9);
(5) sol ← Feasible_Solution(µ[k]);
(6) i← i + 1;
(7) EndWhile
(8) return sol;

At the beginning of the Algorithm 2, many variables are initialized (line 1), including
the list of routes (the empty set at the beginning), the time when the trucks are available
(all trucks are available at time zero), the time when the drivers are available (when their
first time window starts), etc.

Algorithm 2: Feasible_Solution(µ)
(1) Initialize_variables();
(2) order_destinations();
(3) d← choose_driver();
(4) While d ̸= ∅ do
(5) time_slotd ← Get_next_time_slot(d);
(6) σ← choose_truck(d);
(7) tini ← calculate_time_initial();
(8) L[d][time_slotd]← calculate_route(µ);
(9) Update_destinations(L[d][time_slotd]);
(10) order_destinations();
(11) d← choose_driver();
(12) EndWhile
(13) If Feasible_Solution(L) then
(14) sol ← L;
(15) else
(16) sol ← ∅;
(17) endif
(18) return sol;

For c ∈ R, let ν̄c be the time when safety level υc is attained—easily computed from the
initial inventory νc, and the forecasted consumption rate for c—and denote πc,d (πc,d ≤ ν̄c)
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the latest time in which driver d ∈ A can arrive to c with the product to deliver, allowing
delivery within one time window of c, and one time window of d.

For every destination i ∈ D we calculate timi as the time when the product in the
destination tank attains its safety level or, in case of a special destination, the time of their
next order. However, if timi does not fit in a time window of i, then timi is decreased until
it fits in the preceding time window, leaving enough time to unload, and provided that
the driver is allowed to serve it. Then, we order the set {timi | i ∈ D} in a non-decreasing
order by means of the function order_destinations() (lines 2 and 10 of the algorithm).

Now, the algorithm chooses the earliest available driver d, and in case of ties one is
randomly chosen. Hereupon, the earliest available truck σ that d is allowed to be used is
chosen (lines 3 and 11). We denote tc as the earliest time when the couple (d,σ) is available.
The function returns the empty set if there is no driver that can work in the time interval or
when some destination needs a service to maintain their tank level above the minimum
allowed before drivers are able to serve them (the special orders are also considered).

For the selected driver, we obtain the number of the next route to calculate (line 5).
For driver d, if we have more than one possible truck for the driver, we choose the truck
available at the earliest time; in case of ties, one is randomly chosen (line 6). In line 7 we
obtain the time tini when the combination of driver d and truck σ can operate.

To determine the route we proceed as follows: We obtain the first destination i1 that
needs to be served. If time tini is lower than the first destination i that needs to be served
with a difference of at least ψ + κd + 60 minutes, then the first destination chosen is the first
one available in the time period when it can be served by σ. Otherwise, the first destination
is chosen according to the order of the urgent list of the destinations.

The list L[d][time_slotd] (or lδ) is the order in which the destinations assigned to driver
d are served, which are initialized with the empty set. For the remaining destinations we
proceed as follows: the algorithm tries to assign the next destination in the ordered list that
can be visited by the truck, if it succeeds, it tries the next destination that can be visited
in the list; if it succeeds, the algorithm assigns the destination to the driver, otherwise
it continues with the next destination until it can no longer add any destinations (seeks
through the list looking for candidates). Every time we try to aggregate a new destination,
we try all the possibilities in the list.

Once we add one destination to the route, we compute the maximum time by which
the destination needs to be served again, in order to maintain feasibility, so when we
try to add a new destination, this maximum time cannot be reduced (the amount that
the truck served can be reduced). At each visit, the quantity of product delivered to a
destination is the minimum between the product available in the truck and the capacity of
the destination’s tank; the minimum amount served to all destinations will be µ× ζi.

At the beginning of each scheduling of a truck, if it has less than 50% of available
product, it recharges in a source. If the truck is out of product after visiting a destination,
and the driver has enough time, it goes to the nearest source to recharge. At the end of the
route, if the driver has enough time, they try to refill the truck.

When the schedule of the combination driver-truck-time is assigned, a reordering of
destinations is performed, considering new deliveries of the product. At the end of cycle, if
the solution is feasible, it is returned, otherwise the empty set is returned.

With the algorithm described in this section, we were able to find feasible solutions in
few seconds for all the instances.

5. Improving the Solution

The second stage makes intensive use of seven neighborhoods in order to explore the
space solution. For ξ = 1, . . . , 7, neighborhood Nξ(Y) consists of all feasible solutions
obtained from a feasible solution Y by:

• Swapping two destinations of some pair of routes, if ξ = 1.
• Removing an element from some route, if ξ = 2.
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• Removing an element from some route, and adding this element to another route, if
ξ = 3.

• Altering in some route the order in which the destinations are visited, within a pre-
scribed time period, if ξ = 4.

• Adding to some route a new destination, if ξ = 5.
• Eliminating one route, if ξ = 6.
• Delaying the starting time of some route, if ξ = 7.

All the neighbours are generated keeping feasibility, so, infeasible neighbours are
discarded.

In Algorithm 3, the following schema is used in to improve the solution.

Algorithm 3: Iterated Local Search
(1) best_sol ← sol ← Find_Feasible_Solution();
(2) cont← 0;
(3) While cont ≤ MAXTRIES and tactual leMAXTIME do
(4) sol ←SIMULATEDANNEALING(sol);
(5) sol ←LOCALSEARCH(sol);
(6) If f (sol) < f (best_sol) then
(7) best_sol ← sol;
(8) cont← 0;
(9) else
(10) cont← cont + 1;
(11) EndIf
(12) EndWhile
(13) sol ←DOUBLE(sol);
(14) Print(best_sol);

In (1), an initial feasible solution is obtained with the procedure described in Section 4.
Lines (3)–(12) contain the main loop of the algorithm. In (3), as long as the number of
attempts does not reach MAXTRIES or the time limit is not reached, the algorithm will try
to improve the solution. In (4)–(5), the procedures SimulatedAnnealing and LocalSearch
are successively performed attempting to improve the initial solution. In (6)–(11), if the
current best solution is improved, then the new solution is accepted, otherwise the counter
cont is increased. In (13), the procedure DOUBLE(sol) randomly produces two neighbors,
one after the other; the first one, say y, belongs to

⋃
j=1,2,3,5,7 Nj(sol), the second one belongs

to
⋃

j=1,2,3,4,5,7 Nj(y). Finally, in (14) the best solution found is rendered together with its
cost. In Algorithm 4, the Simulated Annealing procedure is described.

In line (1) of the Simulated Annealing procedure, the initial temperature is calculated
as the sum of the number of drivers |A|, the number of destinations |D|, the number
of hours in the planning horizon, and the number of trucks |Θ|. Here, ι stands for the
system temperature, and the parameters To, Tf , α, ν, denote, respectively, the initial and
the final temperature, the cooling factor, and the internal cycle length. The procedure
NEIGHBOR(S) randomly produces a feasible solution by iteratively looking at neighbor-
hoods N1(S), N2(S), N3(S), N5(S), and RAND delivers a uniformly distributed random
number in the interval (0, 1). The algorithm exits as soon as an improvement on the best
solution in the internal cycle is found. The procedure LOCALSEARCH(sol) considers one
by one all elements of

⋃j=7
j=1 Nj(sol) rendering the first improving solution found. All these

procedures will be executed until the time limit is reached.
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Algorithm 4: SimulatedAnnealing(S)
(1) T0 ← |D|+ |C|+ units + nh
(2) ι← T0; ;

S∗ ← S; ban← true;
(3) While ι ≥ Tf and ban do
(4) k← 0; ban← f alse
(5) While k ≤ ν do
(6) S′ ← NEIGHBOR(S);
(7) δ← z(S′)− z(S);
(8) If RAND(0, 1) < e−δ/σ or (δ < 0) then
(9) S← S′;
(10) EndIf
(11) k← k + 1;
(12) If S < S∗ then
(13) S∗ ← S; ;

k← 0; ban← true;
(14) EndIf
(15) EndWhile
(16) ι← αι;
(17) EndWhile

6. Results

Our algorithms were executed in a computer with the following features: Windows
10, Intel i64470 processor, 3.4 GHZ, 16 GB, and Visual Studio 2012 under C++ language.

To test the algorithm we used the 31 instances published in [1]. These are all the
instances available to the specific IRP tackled in this paper. Tables 1 and 2 show general
information for the 31 instances. Instances of Table 1 are smaller than those of Table 2,
and correspond to a simplified version of the IRP: there is a single source, every driver
is associated with only one truck, there are neither special customers nor layovers nor
unloading lower bounds, and destinations have only one time window. Instances in Table 2
have all possible constraints and features of the problem.

Table 1. General data of simplified instances of the IRP.

Instance Name Number of
Destinations

Number of
Drivers

Number of
Trucks

Number of
Hours

1 V_1.1 12 2 2 720
2 V_1.2 12 2 2 720
3 V_1.3 53 1 1 240
4 V_1.4 64 2 2 240
5 V_1.5 54 2 2 240
6 V_1.6 54 2 2 840
7 V_1.7 99 6 6 240
8 V_1.8 99 6 6 82
9 V_1.9 99 6 6 840
10 V_1.10 89 3 3 240
11 V_1.11 89 3 3 840
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Table 2. General data of complex instances of the IRP.

Instance Name Number of
Destinations

Number of
Drivers

Number of
Trucks

Number of
Sources

Number of
Hours

12 V2.12 324 13 15 1 240
13 V2.13 53 5 5 1 240
14 V2.14 53 5 5 1 840
15 V2.15 134 4 3 1 240
16 V2.16.2 184 7 4 1 240
17 V2.17 134 4 3 1 840
18 V2.18 134 4 3 1 840
19 V2.19 53 5 5 1 840
20 V2.20.2 184 7 4 1 840
21 V2.21.2 184 7 4 1 840
22 V2.22 324 13 15 1 504
23 V2.23 324 13 15 1 504
24 V2.24 32 5 6 2 240
25 V2.25 32 5 6 2 840
26 V2.26 32 5 6 2 840
27 X1 324 13 15 1 240
28 X2 184 7 4 1 240
29 X3 134 4 3 1 840
30 X4 324 13 15 1 504
31 X5 324 13 15 1 504

The values of the best results obtained by running our algorithm 100 times are shown
in Tables 3 and 4. For each simplified instance k, columns 2 and 3 of Table 3 indicate,
respectively, the value of the best known solution, and the value of the best results obtained
by running our algorithm 100 times are shown in Tables 3 and 4. For each simplified
instance k, columns 2 and 3 of Table 3 indicate, respectively, the value of the best known
solution obtained in [1], and the best value obtained by us. In the Table 4, HBCP is the
Heuristic Branch-Cut-and-Price Algorithm developed in [17]. They used a computer with
Intel(R) Core(TM) i7-5600U CPU @ 2.60 GHz and Cplex 12.6 to run their algorithm. HBCP uses
different time limits to its execution: three, six, and twelve hours; these times are in function
of the instance size. MA is the matheuristic algorithm published in [18]; this algorithm was
programmed in C++ and compiled by Visual C++ 2015 the models used were solved using
Gurobi 6.5.2×64. MA was tested in two runs using a time limit of 1800 s and 3 h, respectively.
MFSR is the matheuristic with fixed sequence reoptimization of [19] it was coded in C++ and
solved by CPLEX 12.7.0 with one single thread, and the running time of the algorithm in every
instance was 1800 s. Finally, HSS is the Heuristic Sequence Selection designed by Kheiri [20];
he used 1800 s as a time limit too. Although there were more competitors in the ROADEF
Challenge [1] these are the only papers published, and we included the best solutions known.
Each run of our algorithm in Tables 3 and 4 took 1800 s.

Table 3. Results of our algorithm on simplified instances of the IRP.

Instance Best Known Value Yielded
k Value [1] by ILS q(k)

1 0.027466 0.027619
2 0.027304 0.027536
3 0.013279 0.014919
4 0.015495 0.019625
5 0.011877 0.012021

6 0.012812 0.013306
7 0.012890 0.013860
8 0.007756 0.008169
9 0.015279 0.015418
10 0.018941 0.019625
11 0.028666 0.029427
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Table 4. Results of our algorithm on complex instances of the IRP. All the algorithms ran for 1800 s.

Instance Best Solution ILS HBCP MA MFSR HSS
k of [1] [17] [18] [19] [20]

12 0.010024 0.010776 0.016290 0.013304 0.010046 0.010266
13 0.028875 0.034784 0.034803 0.034262 0.029789 0.030768
14 0.034972 0.048244 0.047637 0.044646 0.036996 0.037582
15 0.024993 0.031317 0.034528 0.033868 0.025894 0.026608
16 0.011783 0.014439 0.016826 0.016728 0.012207 0.012420

17 0.032130 0.037611 0.049813 0.042233 0.031260 0.031538
18 0.031882 0.037524 0.047547 0.043116 0.032700 0.033018
19 0.034022 0.047624 0.041487 0.043950 0.035183 0.036018
20 0.017486 0.019584 0.026095 0.020864 0.018489 0.018656
21 0.016806 0.019955 0.025374 0.020436 0.017051 0.017210

22 0.012667 0.013655 0.018819 0.016229 0.012667 0.012992
23 0.012603 0.013488 — 0.016825 0.013003 0.013311
24 0.011219 0.015778 0.014175 0.013705 0.012523 0.013033
25 0.011451 0.016523 0.013194 0.014485 0.012137 0.012411
26 0.011281 0.016038 0.013580 0.013974 0.012691 0.012866

27 0.010042 0.010904 0.015974 0.013078 0.010010 0.010234
28 0.011799 0.014222 0.016886 0.016180 0.012214 0.012410
29 0.030760 0.038088 — 0.042713 0.031584 0.031905
30 0.012633 0.013597 0.018325 0.016964 0.012690 0.013015
31 0.012965 0.013334 0.018101 0.016284 0.013681 0.013994

In Table 4, we can observe that in general, the results of the ILS are competitive and
obtains the third place among the algorithms proposed in the literature. Particularly, in the
instances 31 (or X5), when we ran the algorithm for 3 h like [18], we obtained a result of
0.012687, improving the best result known in the literature. The feasibility and value of the
solutions obtained by ILS were verified by the checker provided by [1].

7. Conclusions

We have presented above an original approach to the IRP problem which consists of
two main procedures. While the former is intended to produce an initial feasible solution
with little computational effort, the second provides heuristics that iteratively improve
the initial solution. Our approach is compared with other approaches to this challenging
problem, obtaining competitive results. We improved the best result known for the instance
X5. We observe that, in general, it is better to serve the destinations as few times as
possible, each time with product quantities as big as possible. A future heuristic could take
advantage of this observation.
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