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1. Introduction
1.1. Preliminary Remarks

The equations of flat and axisymmetric laminar boundary layers in incompressible
fluid are considered in this paper. The boundary layer equations were first presented by
Ludwig Prandtl at the Third Mathematical Congress in Heidelberg in 1904 as a simplifica-
tion of the system of Navier–Stokes equations. The classical equations of the unsteady flat
boundary layer in an incompressible viscous fluid have the form [1,2]

ut + uux + vuy = −1
ρ

px + νuyy ,

ux + vy = 0 .
(1)

Here, u = u(x, y, t), v = v(x, y, t) are the components of the velocity vector; ρ = const
is the density; p = p(x, t) is the pressure determined through the external flow; ν is the
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kinematic viscosity coefficient. By introducing the stream function Ψ(x, y, t), defined by
the equalities u = Ψy, v = −Ψx, the system of Equation (1) simplifies to a single equation
(which coincides with Equation (5) for r0(x) = 1).

The system of Equation (1) is generalized to the case of a curved streamlined surface.
For an axisymmetric boundary layer on a body of rotation, the system of equations has the
form [1–3]

ut + uuz + vur = −1
ρ

pz + νurr ,

(r0u)z + (r0v)r = 0 ,
(2)

where r0 = r0(z) is the surface equation of a streamlined body of rotation. Introducing the
stream function Ψ = Ψ(z, r, t) defined by the equalities

u =
1
r0
(r0Ψ)r , v = − 1

r0
(r0Ψ)z ,

the system of Equation (2) becomes a single equation (Equation (3)).
In [4,5], the transformation (4) shows that the equivalence of the steady equations of

flat and axisymmetric boundary layers was obtained. In the present paper, the existence of
such a transformation for steady equations is investigated.

One of the most important applications of boundary layer theory is the calculation of
the friction drag of bodies in a flow, e.g., the drag of a flat plate at zero incidence, the friction
drag of a ship, an airfoil, the body of an airplane, or a turbine blade. Due to its practical
importance, the usage of different methods of studying nonlinear equations to boundary
layer equations is widely covered in the literature. In particular, the group properties have
been investigated by Ovsiannikov [6]. Self-similar solutions of boundary layer equations
were considered in [7,8]. Some partially invariant solutions of the boundary layer equations
were considered in [9]. The study of boundary layer equations using the direct Clarkson–
Kruskal method [10] was described in [11]. In [12–15], reductions of the boundary layer
equations were obtained. The application of the method of non-classical symmetries and
the finding of some other solutions for the equations of flat and axisymmetric boundary
layers were described in [16–20]. Exact solutions classes of boundary layer equations using
the method of functional and generalized separation of variables are given in [21–27].

1.2. The Main Results

The main results of this article are the following:
• Group classification of the unsteady axisymmetric boundary layer equation is carried

out; it is shown that the kernel of symmetry operators can be extended by no more than
a four-dimensional Lie algebra;

• It is obtained that the kernel of symmetry operators of the flat unsteady boundary layer
equation can be extended by no more than a five-dimensional Lie algebra;

• It is shown that there is no unsteady analogue of the Stepanov–Mangler transformation.

2. Basic Equations

Consider an equation describing the unsteady axisymmetric motion of a viscous
incompressible fluid in a laminar boundary layer on the surface of a body of rotation [1,2]

uyt + uyuxy −
(

ux +
r′0(x)
r0(x)

u
)

uyy − uyyy − f0(x, t) = 0 . (3)

Equation (3) is written in dimensionless variables. Here, u(x, y, t) is the stream function;
f0(x, t) = −∂p/∂x is the given function; p(x, t) is the pressure; the function r0(x) defines
the shape of the streamlined surface.
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To simplify further calculations, we use the Stepanov–Mangler transformation [3–5],
which transforms the equation of a steady axisymmetric boundary layer into the equation
of a steady flat boundary layer. This transformation is given by

x̄ =

x∫
0

r2
0(s)ds, ȳ = r0(x)y, ū = r0(x)u . (4)

Then, substituting (4) into Equation (3), we obtain

1
r2

0(x)
ūȳt + ūȳūx̄ȳ − ūx̄ūȳȳ − ūȳȳȳ −

f0(x, t)
r2

0(x)
= 0 .

Let us introduce the notation r̄(x̄) = 1/r2
0(x(x̄)), f̄ (x̄, t) = f0(x(x̄), t)/r2

o(x(x̄)). Omitting
the bar, we obtain the following equation:

r(x)uyt + uyuxy − uxuyy − uyyy − f (x, t) = 0 . (5)

In the following, we will consider Equation (5) as the main equation.

Remark 1. Transformation (4) is a point transformation and, therefore, Equations (3) and (5) are
equivalent. It is more convenient to find symmetries for Equation (5).

3. Group Classification
3.1. The System of Determining Equations

We are looking for the symmetry operator of Equation (5) in the following form:

X = ξx(x, y, t, u)
∂

∂x
+ ξy(x, y, t, u)

∂

∂y
+ ξt(x, y, t, u)

∂

∂t
+ η(x, y, t, u)

∂

∂t
.

Using the invariance criterion [6] (see also [28,29]) and substituting the expression for
the highest derivative uyyy

uyyy = r(x)uyt + uyuxy − uxuyy − f (x, t),

into it, we obtain the following relation:

− 3uxyyuyξx
u − 3uxyyξx

y − 3uyytξ
t
y − 3uyytuyξt

u + uxxuyξx
y + uxxu2

yξx
u

+ uxyutuyξt
u + uxy

(
ξt

y + r(x)ξx
u

)
− uxyuxξx

y − uxyu2
y

(
ξ

y
u + 3ξx

uu

)
+ uxyuy

(
ξx

x − ξ
y
y − 6ξx

yu − ηu
u

)
− 3uxyuyyξx

u + uxy

(
r(x)ξx

t − 3ξx
yy

)
− uyyutuxξt

u − 3uyyutuyξt
uu + uyyut

(
r(x)ξy

u − 3ξt
yu − ξt

x

)
− uyyu2

xξx
u

+ uyyuxuy

(
ξ

y
u − 3ξx

uu

)
+ uyyux

(
ξ

y
y + ηu

u − ξx
x − 3ξx

yu

)
− 6uyyu2

yξ
y
uu

+ 3uyyuy

(
ηu

uu − 3ξ
y
yu

)
− 3uyyuytξ

t
u + uyy

(
3ηu

yu + r(x)ξy
t + ηu

x − 3ξ
y
yy

)
+ uxtu2

yξt
u + uxtuy

(
ξt

y + r(x)ξx
u

)
+ uxtr(x)ξx

y + uytutr(x)ξt
u − 2uytuxξt

y

− uytuxuyξt
u + uytutr(x)ξt

u − 3uytu2
yξt

uu + uytuy

(
ξt

x − 2r(x)ξy
u − 6ξt

yu

)
− uyt

(
2r(x)ξy

y + 3ξt
yy + ξxr′(x)− r(x)ξt

t

)
− uyyutuxξt

u − 3uyyutuyξt
uu

+ uyyut

(
r(x)ξy

u − ξt
x − 3ξt

yu

)
− uyyu2

xξx
u + uyyux

(
ηu

u + ξ
y
y − ξx

x − 3ξx
yu

)
+ uyyuxuy

(
ξ

y
u − 3ξx

uu

)
− 6uyyu2

yξ
y
uu + 3uyyuy

(
ηu

uu − 3ξ
y
yu

)
(6)

+ uyy

(
3ηu

yu + r(x)ξy
t + ηu

x − 3ξ
y
yy

)
+ uttuyr(x)ξt

u + uttr(x)ξt
y



Mathematics 2024, 12, 988 4 of 10

− u4
yξ

y
uuu + u3

y

(
ηu

uuu + ξ
y
xu − 3ξt

uuu

)
− u3

yuxξx
uuu − u3

yutξ
t
uuu

+ u2
yut

(
ξt

xu + r(x)ξy
uu − 3ξt

yuu

)
+ u2

yux

(
ξx

xu − ξ
y
yu − 3ξx

yuu

)
+ u2

y

(
r(x)ξy

tu + 3ηu
yuu + ξ

y
xy − ηu

xu − 3ξ
y
yyu

)
+ uyu2

t r(x)ξt
uu

+ uyutux

(
r(x)ξx

uu − ξt
yu

)
+ uyut

(
r(x)ξt

tu − r(x)ηu
uu + r(x)ξy

yu + ξt
xy

− 3ξt
yyu)− uyu2

xξx
yu + uyux

(
ξx

xy + ηu
yu + r(x)ξx

tu − 3ξx
yyu − ξ

y
yy

)
+ uy

(
3ηu

yyu + r(x)ξy
ty + 4 f (x, t)ξy

u − ηu
xy − r(x)ηu

tu − ξ
y
yyy

)
+ u2

t r(x)ξt
yu + utux

(
r(x)ξx

yu − ξt
yy

)
+ ut

(
f (x, t)ξt

u + r(x)ξt
yt − ξt

yyy − ηu
yu

)
−u2

xξx
yy + ux(r(x)ξx

yt + ηu
yy + f (x, t)ξx

u − ξx
yyy) + ηu

yyy − r(x)ηu
yt

− f (x, t)ηu
u + ξt ft(x, t) + ξx fx(x, t) + 3 f (x, t)ξy

y = 0 .

Relation (6) is fulfilled for all values of the derivatives of the function u(x, y, t). Split-
ting it into various partial derivatives of u(x, y, t), we obtain a system of
determining equations

ξx
u = ξt

u = ξ
y
u = ξx

y = ξt
y = ξt

x = ηuu = ηyu = ηyy = ξ
y
yy = ηxu = 0 ,

ξ
y
xy = r(x)ξy

t + ηx = r(x)ξx
t − ηy = −r′(x)ξx + r(x)ξt

t − 2r(x)ξy
y

= ξx − ηu − ξ
y
y = −ηxy + r(x)ξy

t − r(x)ηut

= −r(x)ηyt + ξt ft(x, t) + ξx fx(x, t) + (3ξ
y
y − ηu) f (x, t) = 0 .

(7)

3.2. Solving the System of Determining Equations

It follows from the system of determining Equation (7) that the components of the
allowed symmetry operators can be searched in the following form:

ξx = a1(t)x + a2(t) , ξy = b1(t)y + b2(x, t) ,

ξt = c1(t) , ηu = d1(x, t)y + d2(t)u + d3(x, t) .
(8)

Then, the system of determining Equation (7) can be written as follows:

d2(t)− a1(t) + b1(t) = 0 , r(x)(a′1(t)x + a′2(t))− d1(x, t) = 0 ,

r(x)b′1(t) + d1x(x, t) = 0 , r(x)d′2(t) + d1x(x, t)− r(x)b′1(t) = 0 ,

r(x)c′1(t)− (a1(t)x + a2(t))r′(x)− 2r(x)b1(t) = 0 , (9)

c1(t) ft(x, t) + (a1(t)x + a2(t)) fx(x, t)

+ (3b1(t)− d2(t)) f (x, t)− r(x)d1t(x, t) = 0 .

From the third and fifth equations of system (9), one can obtain

d′2(t) = 2b′1(t)

or

d2(t) = 2b1(t) + a , a = const . (10)

Given relation (10), the first equation of the system of Equation (9) will take the form

a1(t) = 3b1(t) + a.
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Further, excluding d1(x, t) from the third and sixth equations of the system by virtue
of the second, system (9) can be rewritten as follows:

d1(x, t) = r(x)(3b′1(t)x + a′2(t)) ,

4r(x)b′1(t) + r′(x)(3b′1(t)x + a′2(t)) = 0 ,

r(x)
(
c′1(t)− 2b1(t)

)
− r′(x)((3b1(t) + a)x + a2(t)) = 0 , (11)

c1(t) ft(x, t) + ((3b1(t) + a)x + a2(t)) fx(x, t)

+ (b1(t)− a) f (x, t)− r2(x)
(
3b′′1 (t)x + a′′2 (t)

)
= 0 .

3.3. Group Classification Results

The analysis of the system of determining Equation (11) shows that it has a solution
only in the following cases.
1. r(x), f (x, t) are arbitrary functions. In this case, the kernel of the symmetry operators
of Equation (5) is infinite-dimensional and consists of symmetry operator

X = b2(x, t)
∂

∂y
+ d3(x, t)

∂

∂u
, (12)

where the functions b2(x, t), d3(x, t) satisfy the relation

r(x)b2t(x, t) + d3x(x, t) = 0 .

2. r(x) = α(x + β)−4/3.

2.1. f (x, t) = α2(x + β)−5/3q(t). In this case, the kernel of symmetry operators is
expanded by operators

Xi =−
3c′i(t)

2
(x + β)

∂

∂x
−

c′i(t)
2

y
∂

∂y
+ ci(t)

∂

∂t

−
(

3α

2
(x + β)−

1
3 c′′i (t)y + c′i(t)u

)
∂

∂u
, i = 1, 2, 3,

X4 = (x + β)
∂

∂x
+

2y
3

∂

∂y
+

u
3

∂

∂u
.

Here, ci(t) are linearly independent solutions of the ordinary differential equation

3c′′′(t) + 4c′(t)q(t) + 2c(t)q′(t) = 0 .

2.2. f (x, t) = g(x)(t + δ)−2, g(x) ̸= ε(x + β)κ. In this case, the kernel of symmetry
operators is expanded by the operator

X1 = y
∂

∂y
+ 2(t + δ)

∂

∂t
+ u

∂

∂u
.

3. r(x) = α(x + β)γ, γ ̸= −4/3; 0.
3.1. f (x, t) = 0. In this case, the kernel of symmetry operators is expanded by the
operators

X1 =
∂

∂t
, X2 = y

∂

∂y
+ 2t

∂

∂t
− u

∂

∂u
,

X3 = 2(x + β)
∂

∂x
− γy

∂

∂y
+ (γ + 2)u

∂

∂u
.

(13)
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3.2. f (x, t) = const, const ̸= 0. In this case, the kernel of symmetry operators is expanded
by the operators

X1 =
∂

∂t
, X2 = 2(x + β)

∂

∂x
+

y
2

∂

∂y
+ (2γ + 1)t

∂

∂t
+

3u
2

∂

∂u
.

3.3. f (x, t) ̸= δ(x + β)κ. In this case, the kernel of symmetry operators is expanded by
the operator

X1 =
∂

∂t
.

3.4. f (x, t) = δ(x + β)κ. In this case, the kernel of symmetry operators is expanded by
the operators

X1 =
∂

∂t
,

X2 = 2(x + β)
∂

∂x
− (κ − 1)y

2
∂

∂y
+ (2γ + 1 − κ)t

∂

∂t
+

(κ + 3)u
2

∂

∂u
.

3.5. f (x, t) = δ(t + ε)−2. In this case, the kernel of symmetry operators is expanded by
the operators

X1 = (x + β)
∂

∂x
+

y
4

∂

∂y
+

3u
4

∂

∂u
,

X2 =
y
2
+ (t + ε)

∂

∂t
− u

2
∂

∂u
.

3.6. f (x, t) = δ(t + ε)κ, κ ̸= −2. In this case, the kernel of symmetry operators is
expanded by the operator

X1 = (x + β)
∂

∂x
− (κγ − 1)

2(κ + 2)
∂

∂y
+

(2γ + 1)(t + ε)

κ + 2
∂

∂t
+

(3 + κ(γ + 2))
2(κ + 2)

∂

∂u
.

3.7. f (x, t) = δ exp(εt), ε ̸= 0. In this case, the kernel of symmetry operators is expanded
by the operator

X1 = (x + β)
∂

∂x
− γy

2
∂

∂y
+

2γ + 1
ε

∂

∂t
+

γ + 2
2

∂

∂u
.

3.8. f (x, t) = g(t)(x+ β)2γ+1. In this case, the kernel of symmetry operators is expanded
by the operator

X1 = (x + β)
∂

∂x
− γy

2
∂

∂y
+

(γ + 2)u
2

∂

∂u
.

3.9. f (x, t) = g(x)(t + ε)−2. In this case, the kernel of symmetry operators is expanded
by the operator

X1 =
y
2

∂

∂y
+ (t + ε)

∂

∂t
− u

2
∂

∂u
.

3.10. f (x, t) = (x + β)2κ+2γ+1g((x + β)κ(t + ε)). In this case, the kernel of symmetry
operators is expanded by the operator

X1 = −2(x + β)
∂

∂x
+ y(γ + κ)

∂

∂y
+ 2κ(t + ε)

∂

∂t
− (γ + κ + 2)u

∂

∂u
.
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4. r(x) = α exp(βx), αβ ̸= 0.
4.1. f (x, t) = 0. In this case, the kernel of symmetry operators is expanded by the
operators

X1 =
∂

∂t
, X2 = y

∂

∂y
+ 2t

∂

∂t
− u

∂

∂u
,

X3 = 2
∂

∂x
− βy

∂

∂y
+ βu

∂

∂u
.

4.2. f (x, t) = const, const ̸= 0. In this case, the kernel of symmetry operators is expanded
by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
+ βt

∂

∂t
.

4.3. f (x, t) = δ exp(γx). In this case, the kernel of symmetry operators is expanded by
the operators

X1 =
∂

∂t
, X2 = −4

∂

∂x
+ γy

∂

∂y
+ 2(γ − 2β)t

∂

∂t
− γu

∂

∂u
.

4.4. f (x, t) = γ(t + ε)δ. In this case, the kernel of symmetry operators is expanded by
the operator

X1 =
δ + 2

β

∂

∂x
− δy

2
∂

∂y
+ 2(t + ε)

∂

∂t
+

δu
2

∂

∂u
.

4.5. f (x, t) = γ exp(εt). In this case, the kernel of symmetry operators is expanded by
the operator

X1 =
ε

β

∂

∂x
− εy

2
∂

∂y
+ 2

∂

∂t
+

εu
2

∂

∂u
.

4.6. f (x, t) = g(t) exp(2βx). In this case, the kernel of symmetry operators is expanded
by the operator

X1 = 2
∂

∂x
− βy

∂

∂y
+ βu

∂

∂u
.

4.7. f (x, t) = g(x)(t + ε)−2. In this case, the kernel of symmetry operators is expanded
by the operator

X1 = y
∂

∂y
+ 2(t + ε)

∂

∂t
− u

∂

∂u
.

5. r(x) is arbitrary, r(x) ̸= α(x + β)γ, r(x) ̸= α exp(βx).
5.1. f (x, t) = 0. In this case, the kernel of symmetry operators is expanded by the
operators

X1 =
∂

∂t
, X2 = y

∂

∂y
+ 2t

∂

∂t
− u

∂

∂u
.

5.2. f (x, t) = const, const ̸= 0 or f (x, t) = g(x). In this case, the kernel of symmetry
operators is expanded by the operator

X1 =
∂

∂t
.

5.3. f (x, t) = g(x)(t + ε)−2. In this case, the kernel of symmetry operators is expanded
by the operator

X1 = y
∂

∂y
+ 2(t + ε)

∂

∂t
− u

∂

∂u
.

Thus, all cases of expansion of the kernel of the symmetry operators of Equation (5)
are listed for all possible functions r(x) and f (x, t).
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Proposition 1. For arbitrary functions r(x) and f (x, t), Equation (5) admits an infinite-dimensional
kernel of symmetry operators of the following form:

X = a(x, t)
∂

∂y
+ b(x, t)

∂

∂u
,

where the functions a(x, t), b(x, t) satisfy the relation r(x)at(x, t) + bx(x, t) = 0. The largest
kernel expansion is allowed in case 2.1 when

r(x) = α(x + β)−4/3 , f (x, t) = q(t)(x + β)−5/3 ,

where α ̸= 0 and the function q(t) is arbitrary. In this case, the kernel of symmetry operators is
expanded by a four-dimensional Lie algebra.

4. Non-Existence of the Unsteady Analogue of Stepanov–Mangler Transformation

Consider the equation of an unsteady flat boundary layer [2]

uty + uyuxy − uxuyy − uyyy − F(x, t) = 0 . (14)

Equation (14) is a particular case of Equation (5). It coincides with it when r(x) = 1,
f (x, t) = F(x, t).

The components of the allowed symmetry operators of Equation (14) should also be
searched for in the form (8). The system of determining equations can also be obtained by
substitution in the system of determining Equation (9) r(x) = 1, f (x, t) = F(x, t)

d2(t)− a1(t) + b1(t) = 0 , a′1(t)x + a′2(t)− d1(x, t) = 0 ,

b′1(t) + d1x(x, t) = 0 , d′2(t) + d1x(x, t)− b′1(t) = 0 ,

c′1(t)− 2b1(t) = 0 , (15)

c1(t)Ft(x, t) + (a1(t)x + a2(t))Fx(x, t)

+ (3b1(t)− d2(t))F(x, t)− d1t(x, t) = 0 .

From the system of Equation (15), it is not difficult to obtain that

b1(t) = b10 = const , d2(t) = d20 = const , a1(t) = b10 + d10 = const .

Next, d1(x, t) = a′2(t), c1(t) = 2b10t + c20. Then, the classifying equation for the function
F(x, t) will take the following form:

(a10x + a2(t))Fx(x, t)− a′′2 (t) + (2b10t + c20)Ft(x, t)

+ (3b10 − d20)F(x, t) = 0 .
(16)

Proposition 2. The kernel of the symmetry operators of Equation (14) has the form (12)

X = b2(x, t)
∂

∂y
+ d3(x, t)

∂

∂u
,

where the functions b2(x, t), d3(x, t) satisfy the relation

b2t(x, t) + d3x(x, t) = 0 .

Theorem 1. There is no analog of the Stepanov–Mangler transformation for unsteady equations of
flat and axisymmetric boundary layers.

Proof of Theorem 1. Consider the extension of the kernel of the symmetry operators of
Equation (14), allowed for F(x, t) = 0. Substituting F(x, t) = 0 into Equation (16) leads to
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the relation a2”(t) = 0 or a2(t) = a20t + a30. Then the kernel of the symmetry operators of
Equation (14) is expanded by a five-dimensional Lie subalgebra with the following basis
operators:

X1 =
∂

∂x
, X2 = t

∂

∂x
+ y

∂

∂u
, X3 =

∂

∂t
,

X4 = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
, X5 = x

∂

∂x
+ u

∂

∂u
.

(17)

It is shown in Proposition 1 that the kernel of the symmetry operators of Equation (5)
has the widest expansion with Lie subalgebra with dimensions equal to four. If there
were an analogue to the Stepanov–Mangler transformation, then the algebras of symmetry
operators of Equations (14) and (5) should be isomorphic. But subalgebras with different
dimensions could not be isomorphic. This means that there is no analogue of the Stepanov–
Mangler transformation for Equations (14) and (5).

5. Conclusions

We have considered the unsteady equations of flat and axisymmetric boundary lay-
ers. For the unsteady axisymmetric boundary layer equation, we have solved the group
classification problem. We have shown that the kernel of symmetry operators can be
extended by no more than a four-dimensional Lie algebra. We have found the kernel of
symmetry operators of the unsteady flat boundary layer equation and have shown that
it can be extended by no more than a five-dimensional Lie algebra. We have proved the
non-existence of the unsteady analogue of the Stepanov–Mangler transformation.

The results of group classification can be used to construct new exact solutions and
reductions of the unsteady axisymmetric boundary layer equation.
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