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Abstract: The purpose of constructing onboard observation mission queues is to improve the execu-
tion efficiency of onboard tasks and reduce energy consumption, representing a significant challenge
in achieving efficient global military reconnaissance and target tracking. Existing research often
focuses on the aspect of task scheduling, aiming at optimizing the efficiency of single-task execution,
while neglecting the complex dependencies that might exist between multiple tasks and payloads.
Moreover, traditional task scheduling schemes are no longer suitable for large-scale tasks. To effec-
tively reduce the number of tasks within the network, we introduce a network aggregation graph
model based on multiple satellites and tasks, and propose a task aggregation priority dynamic calcu-
lation algorithm based on graph computations. Subsequently, we present a dynamic merging-based
method for multi-satellite, multi-task aggregation, a novel approach for constructing onboard mission
queues that can dynamically optimize the task queue according to real-time task demands and
resource status. Simulation experiments demonstrate that, compared to baseline algorithms, our
proposed task aggregation method significantly reduces the task size by approximately 25% and
effectively increases the utilization rate of onboard resources.

Keywords: Earth observation satellite; resource management; mission queue construction; graph
computation; dynamic merging

MSC: 68Q25; 68W01; 68U03; 94-10

1. Introduction

In the architecture of space–Earth integrated information networks, the efficiency limi-
tations of conventional single satellites are insufficient to accommodate the escalating de-
mand for observational data. Consequently, the significance of multi-satellite collaboration
becomes paramount in enhancing task scheduling within space information networks [1–6].
Multi-satellite collaboration, with its extensive coverage, precise information collection
capabilities, and the potential for ground-based imaging unfettered by geopolitical bound-
aries, is invaluable in domains such as battlefield reconnaissance, military target identifica-
tion, resource exploration, disaster monitoring, urban planning, and crop assessment. The
employment of mission aggregation technology, which consolidates various observation
missions into a singular, unified monitoring effort, is of profound practical importance [7].
It not only reduces the aggregate number of missions but also diminishes the observational
duration and attitude adjustment maneuvers of remote sensing equipment.

Despite notable advancements in multi-satellite collaborative technologies and task
scheduling algorithms, the efficient allocation and utilization of satellite resources remain an
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exigent challenge amid dynamic and multifaceted task environments. Most current mission
aggregation algorithms concentrate on observation time windows and sidelobe angles,
frequently overlooking the critical aspect of satellite resource utilization before and after
aggregation [8]. In the network environment of spatio-temporal dynamic evolution, there
are problems [9] such as large task scale, complex execution sequence relationship, dynamic
queue growth, strict execution time, and inclusion of tasks. These characteristics make the
calculation of the task execution queue particularly complicated. In addition, the traditional
fixed task scheduling scheme will no longer adapt to a large-scale task and the dynamic
changes of task requirements. The complex dynamic topology and complex constraint
relationships of satellite information networks result in distributed scheduling architectures
that are not suitable for on-satellite mission scheduling scenarios. The importance of
in-depth research on task aggregation algorithms has become increasingly prominent.

At present, the task scheduling method based on spatial information network integra-
tion strategy is mainly applied to remote sensing observation tasks. This method interprets
the issue as a clustering problem by constructing a task graph model based on clusters.
The model is then solved using the appropriate approximation algorithm [10–13]. For
example, Soma et al. [10], and improved cluster partitioning algorithm was designed to
achieve the clustering of imaging reconnaissance tasks based on the approximate clus-
ter partitioning algorithm proposed by Tseng C. J. combined with two merging criteria
proposed by Lu-Feng Zhang [11]; Wang et al. [12] designed a clustering algorithm based
on the maximum–minimum ant colony algorithm aiming to effectively accomplish the
observation mission clustering of agile imaging satellites; in addition, more common are
task aggregation methods based on task insertion. For example, Chen et al. [14] proposed
an enhanced single-track optimal cluster partitioning clustering method for remote sensing
satellite imaging missions; task aggregation methods based on task insertion are commonly
employed. For example, Song et al. [15] introduces a Cluster-Based Genetic Algorithm
(C-BGA) using the k-means clustering method to address satellite scheduling issues. By
employing a heuristic population initialization strategy and a clustering-based evolutionary
strategy, along with the application of a Task Arrangement Algorithm (TAA), the algo-
rithm’s adaptability to different scenarios and the likelihood of successful task scheduling
have been effectively enhanced.

Compared with the traditional multi-satellite network mission planning methods
that lack the intricate dependencies among multiple tasks and the allocation of onboard
resources, the new generation of satellites with autonomous online mission planning capa-
bilities canfully utilize the individual intelligence [16]. Under this precondition, our study
aims to bridge these gaps by proposing an innovative multi-satellite, multi-task aggrega-
tion algorithm that not only addresses the dynamic scheduling of tasks but also optimizes
resource utilization across the satellite network. This involves creating a strategy based on
a multi-task aggregate graph model. By incorporating the principle of minimum energy
consumption from graph theory, this strategy is designed to dynamically optimize the task
queue. This optimization is based on current task demands and the status of available
resources, ensuring a more effective allocation and utilization of satellite capabilities. While
CP-TM stands as a solid foundation for maximizing observation opportunities through task
merging criteria, it predominantly focuses on static task aggregation. It does not adequately
address the dynamic scheduling of emergency tasks or the real-time optimization of task
queues based on fluctuating demands and resource availability [17]. Our method extends
these concepts by providing a comprehensive framework for dynamic task scheduling. By
leveraging CP-TM as a baseline, we highlight the novel contributions of our approach in
enhancing resource efficiency and operational effectiveness in satellite networks. As science
and technology advance, the need for swiftly addressing complex space tasks escalates.
Optimized task aggregation algorithms enhance the execution rate of observation tasks
and enable rapid responses to terrestrial or extraterrestrial environmental changes, thereby
significantly boosting the efficacy of space missions.
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In this paper, we address the above shortcomings and investigate the graph-based
task aggregation problem under multiple observation satellites to minimize satellite energy
resources. The innovative work in this paper is as follows.

1. In-depth analysis of the principle of satellite Earth observation and the aggregation
constraints of Earth observation missions, culminating in the creation of an advanced
multi-satellite, multi-mission aggregation graph model and its corresponding con-
struction algorithm;

2. Leveraging the aforementioned aggregation graph model, this paper devises a dy-
namic task merging-based multi-satellite, multi-task aggregation algorithm. The task
synthesis priority based on the minimum energy consumption of the aggregated
tasks and the minimum energy consumption calculation method of the aggregated
tasks based on dynamic planning is designed to realize the fast solution of the task
synthesis priority;

3. This paper’s algorithm undergoes rigorous theoretical and experimental validation,
including a comparative analysis with the aggregation algorithm presented in the
literature [17]. The findings reveal that our algorithm can decrease mission size by
approximately 45% and reduce the energy consumption needed for mission execution
by about 50%. These results significantly enhance satellite operational efficiency and
resource utilization.

2. Related Work

The construction of multi-satellite mission queues plays a crucial role in the complex
scheduling relationships between rapidly growing, intricate user demands and limited on-
board resources. In the current environment of multiple satellites and ground stations, the
ability to reasonably allocate payload resources, improve resource utilization efficiency, and
maximally meet the timeliness requirements of observation missions presents a valuable
research point.

At present, most research on multi-satellite mission scheduling is based on the dy-
namic programming algorithm, greedy algorithm, and heuristic algorithm [18–21]. In
recent years, the exploration of multi-satellite mission scheduling has made continuous
progress. Wu et al. [20], by designing preprocessing models for different types of targets
to decompose complex scenes, and using dynamic task planning algorithms to optimize
the resource allocation for multi-satellite cooperative observation, effectively improved
the efficiency of dynamic observation by remote sensing satellites. For the dynamic area
task scheduling problem, Yin and Clerckx [18] proposed an emergency response satellite
scheduling model, which, using dynamic segmentation algorithm and dynamic Greedy
state algorithm, can intelligently assign satellite imaging tasks and has a good application
prospect. Furthermore, Long et al. [19] proposed a semi-Markov decision process (SMDP)
method to solve the satellite task scheduling problem, which reduces the operational
complexity and the number of steps of task planning, and achieves higher acceleration
in the single target scenario. For complex constraint conflicts, Feng et al. [21] proposes a
large-scale task multi-satellite cooperative scheduling method based on a hybrid graph
neural network (GNN) and meta-heuristic algorithms. By leveraging the GNN’s capability
to represent and extract task relationships, combined with the optimization framework of
meta-heuristic algorithms, the computational efficiency of large-scale task planning has
been substantially improved.

In addition to the classical algorithms and their variants, there exist search methods
based on complex neural network architectures. For instance, in the paper by Liu et al. [22],
a new satellite mission planning algorithm leveraging symmetric recurrent neural net-
works is introduced. This algorithm demonstrates the capability to promptly respond to
various task requirements, aligning with business needs. On a related note, Han et al. [23]
introduced EfficientNet, a novel CNN model scaling method. This approach optimizes
model channels in terms of number, depth, and width through neural structure search and
composite coefficients. While these approaches effectively enhance resource utilization,
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satisfy user demands, and manage both urgent and routine task scheduling, they encounter
challenges in adapting to the time-varying characteristics of satellite networks. However,
their computational complexity often results in increased time consumption, limiting their
applicability and efficiency in real-world scenarios.

In recent years, numerous scholars have delved into the intricate interrelationships
among multiple tasks using graph theory, leading to advancements in both theory and prac-
tical applications in the field [24–28]. Hao et al. [24] introduces the Multi-Aspect Extended
Hypergraph (MAEH) model, which accurately describes the spatiotemporal characteristics
and functional attributes of resources. Through a two-stage scheme, they achieve rapid
and low-complexity scheduling of cross-domain resources, thereby effectively enhancing
resource utilization. To overcome the limitations of traditional Time Expanded Graphs
(TEG) in representing observation, energy, and transceiver resources, Li et al. [25] proposes
an Enhanced Time Expanded Graph (ETEG). By introducing snapshot graphs to depict
the time-varying attributes of resources, along with virtual links and node transforma-
tions to manage resource constraints, simulation results have validated the efficiency and
effectiveness of the ETEG method. In the realm of energy consumption minimization,
Phillips et al. [27] proposes a new model for satellite formation control, highlighting the
practicality and effectiveness of graph theory in addressing energy optimization problems
in space missions. Their study provides valuable insights for future satellite network
design. Shi et al. [28] explores the use of time-expanded graph models to tackle the chal-
lenge of energy-efficient delay-constrained multicast in satellite networks. By establishing
a time-expanded graph theory model, they optimize energy consumption during data
transmission while ensuring compliance with transmission delay constraints. This work
not only improved the energy efficiency of satellite networks during large-scale data trans-
mission but also offered an innovative perspective on utilizing graph theory methods to
solve problems with real-time and energy dual constraints.

With the emergence of edge computing, Zhang et al. [29] has applied it to multi-
satellite task scheduling, enabling better adaptation to specific scenarios and optimizing
resource utilization and repeatability. Wang et al. [30] proposes a high dynamic cluster
task scheduling algorithm for satellite edge computing, which solves the problems of tradi-
tional satellite task processing, such as too long data transmission time and time-sensitive
tasks can not respond in time, and improves the utilization efficiency of satellite cluster
meter resources and task processing speed. Despite these innovations, challenges persist in
addressing the complex dynamics, temporal variations, and multi-resource coordination of
satellite information networks.

Given the time-varying adaptability of spatial information network environment, a
multi-star task scheduling algorithm that can better adapt to this characteristic is needed.
Considering the constraints of airborne resource environment, scheduling complexity
and computing time, dynamic real-time problems, and scalability of spatial information
network environment, the task is optimized under multiple constraints. A strategy based
on multi-task aggregate graph model is proposed, which is further explored by combining
the principle of minimum energy consumption in graph theory.

3. System Model and Problem Description
3.1. System Model

In this paper, we adopt the classical Earth observation system model, as shown
in Figure 1. The Earth observation satellite orbits the Earth at a particular inclination turns
on the onboard remote sensor payload when it flies over the ground target, and performs
the observation operation by pushing and sweeping the image. The satellite observation
area corresponds to an observation strip on the Earth’s surface parallel to the satellite’s
subsatellite trajectory, and the missions within the coverage of the observation strip are
considered to be observed. The satellite performs the observation by turning the side-swing
angle of the remote sensor in the direction of the perpendicular satellite orbit to deviate the
observation strip from the satellite subsatellite trajectory to cover more missions.
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Figure 1. Satellite Earth observation schematic.

Let there be a total of M Earth observation satellites with observation missions in the
system, and each satellite carries an imaging remote sensor. N missions to be observed are
randomly distributed on the Earth’s surface, and the missions are meta-missions that can be
observed by a single transit of the satellite, and the following system model is established.

The set of meta-tasks GT = {T1, T2, · · · , TN} , any meta-task in the set can be described
by a triplet ti = (loni, lati, di), loni and lati denote the longitude and latitude where the
meta-task is located, respectively, and di denotes the continuous execution time required
for the meta-task Ti.

The set of satellite resources GS = {S1, S2, · · · , SM}, any satellite resource in the set
can be described by a six-tuple Sj =

{
oj, σj, ωj, atj, oej, sej

}
, where oj denotes the orbit

information of the satellite, the rest is the information related to the remote sensor carried
by the satellite, σj, ωj, and atj denotes the field of view, side-swing rate and maximum
on-time of the remote sensor, respectively. oej denotes the energy consumption per unit
time inland when the remote sensor performs the observation activity and sej denotes the
energy consumption per unit angle when the remote sensor performs a side-swing activity.

GTWi,j denotes the set of observation time windows of the satellite Sj for the mission
Ti during the mission planning cycle, which is calculated from the orbit information of the
satellite, the parameter information of the remote sensor carried by the satellite, and the
geographical location of the mission target. Any observation time window twi,j,k ∈ GTWi,j

in the set can be described by a triplet twi,j,k =
{

tsi,j,k, tei,j,k, θi,j,k

}
, tsi,j,k and tei,j,k denotes

the earliest start time and the latest end time of the observation performed by the satellite in
the observation time window, θi,j,k denotes the ideal side-swing angle of the remote sensor
when the satellite performs the observation under the observation time window twi,j,k, i.e.,
the angle that the satellite remote sensor side-swing needs to turn when the center point of
the observation strip formed on the ground when the satellite performs the observation
coincides with the position of the mission target.

3.2. Problem Description

Based on the above model, the multi-satellite multi-task aggregation problem in this
paper can be described as follows: the meta task set GT, the satellite resource set GS, and
the observation time window information GTWi,j of any meta task Ti ∈ GT under the
satellite resource Sj ∈ GS are known, all the meta tasks in GT that satisfy the aggregation
constraints with each other are aggregated together to form a new task-aggregation task,
and the satellite resources corresponding to the aggregated task are determined as well as
the start execution time and the end execution time. The final result of task aggregation
is the aggregated task set GC = {C1, C2, · · · , CL}, where L is the number of aggregated
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missions. Any of the aggregated tasks Ck = (Mk, lk, stk, etk, δk) in the set, where Mk, lk, stk,
etk, δk denote the set of meta-tasks corresponding to the aggregated task Ck, the satellite
resources, the start execution time, the end execution time, and the side-swing angle of the
remote sensor during execution, respectively.

In order to clarify the methodology and the satellite Earth observing model, Table 1
summarizes the essential symbols and their corresponding descriptions.

Table 1. Symbol descriptions for satellite operations.

Symbol Description

GT Meta-task set {T1, · · · , TN}
di The continuous execution time required for meta-task Ti

GS Satellite resource set {S1, · · · , SM}
Sj The six-tuple of satellite resource Sj (oj, σj, ωj, atj, oej, sej)
oj Orbital information for satellite Sj
σj FOV angle of satellite resource Sj
ωj Side-wing rate of remote sensor on satellite Sj
atj Maximum continuous working time of remote sensor on satellite Sj
oej Energy consumption rate of remote sensor on satellite Sj when observing
sej Energy consumption per unit angle of remote sensor on satellite Sj

GTWi,j Observation time windows of meta-task Ti on satellite Sj
twi,j,k Observation time window tuple (tsi,j,k, tei,j,k, θi,j,k)
tsi,j,k The earliest observation time of task Ti under window k using satellite Sj
tei,j,k The latest observation time of task Ti under window k using satellite Sj
θi,j,k Ideal sensor swing angle for mission Ti under window k using satellite Sj
GC Aggregated task set {C1, · · · , CL}
Ck Aggregated task elements (Mk, lk, stk, etk, δk)
Mk The set of meta-tasks contained in task Ck
lk Resources required to execute aggregation task Ck

stk, etk Start and end times of task Ck
δk Side-swing angle of the remote sensor during execution aggregation task Ck

The purpose of mission aggregation in this paper is to reduce the energy consumption
on the satellite star. Therefore, the aggregation process of the mission mainly considers
the energy consumption required by the satellite to perform the task before and after the
aggregation, and the final aggregated mission requires the minor energy consumption as
a whole. In the actual process of satellite execution of observation tasks, satellite energy
consumption mainly comes from the remote sensor to perform observation activities and
side pendulum activities, each observation requires two side pendulums (open and close),
then the objective function of mission aggregation as shown in Equation (1).

min E = ∑|F|
k=1 (etk − stk)× oej + 2× |δk|

ωj
× sej (1)

The constraints mainly include satellite resource constraints and observation time
window constraints. Assuming that k meta-tasks GTp =

{
Tp1, Tp2, · · · , Tpk

}
can be aggre-

gated to obtain aggregated task Cp, the satellite resource constraint between the meta-tasks
is shown in Equation (2).

∃Sj ∈ GS : ∀Tpi ∈ GTp, GTWpi,j ̸= ∅ (2)

The satellite resource constraint indicates the existence of at least one satellite resource
Sj capable of performing all the meta-tasks in the aggregated mission. The observation
time window between meta-missions is shown in Equation (3).

∀Tpq ∈ GTp, ∃Sj ∈ GS, twpq,j,k ∈ GTWpq,j (3)
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s.t. 
(a) max

Tpq∈Tp

{
θpq,j,kpq

}
− min

Tpq∈Tp

{
θpq,j,kpq

}
⩽ σj,

(b) max
Tpq∈Tp

{
tepq,j,kpq

}
− min

Tpq∈Tp

{
tspq,j,kpq

}
⩽ atj,

(4)

The observation time window constraint indicates that the satellite can perform all
meta-tasks in the aggregated mission in a single observation campaign. The observation
time window constraint consists of a side-swing angle constraint and a time constraint.
(a) in Equation (4) is the side-swing angle constraint, which indicates that the satellite can
adjust the side-swing angle of the remote sensor to cover all the tasks in the aggregated
mission by the remote sensor field of view when executing the observation activity. (b) in
Equation (4) is a time window constraint, which indicates that the satellite can complete
the observation activities of all meta-tasks in the aggregation task within the maximum
power-on time of the remote sensor, i.e., the observation time length of the aggregation
task is less than the maximum power-on time of the remote sensor. Since the observation
time interval of the aggregated tasks is dynamically changing during the task aggregation
process, the difference between the earliest time and the latest time of the observation time
window of all meta-tasks in the aggregated tasks is chosen here as the judgment criterion
to ensure that the execution time of the aggregated tasks must be less than the maximum
power-on time of the remote sensor.

4. Algorithm Design

The multi-satellite multi-task aggregation problem is a combinatorial optimization
problem under multiple constraints, and the solution process is complex and computation-
ally intensive. In this paper, we first construct a Multi-satellite and Multi-task Aggregation
Graph(MSMTAG) based on the task aggregation condition better to describe the task-to-
task aggregation relationship under multi-satellite resources and design a task aggregation
based on dynamic merge priority (DMP-TA) to solve the task aggregation problem based
on the MSMTAG model.

4.1. MSMTAG Model

The MSMTAG model is denoted by G = (V, E), where V is the set of vertices and E is
the set of edges between vertices. Each vertex vp ∈ V represents an aggregation task. An
aggregation task can contain only one meta-task, i.e., each meta-task itself can be viewed
as an aggregation task containing only itself. For any two vertices vp and vq in Graph G,
an edge connection relationship exists between vertex vp and vertex vq if the meta-task
contained in vp and the meta-task contained in vq satisfy the satellite resource constraint
shown in Equation (2) and the observation time window constraint shown in Equation (3)
with each other. There may be multiple edge connection relationships between vertex vp
and vertex vq, each of which corresponds to one aggregation of the meta-tasks contained in
vp and vq, as shown in Figure 2.

All edges between vertex vp and vq form a set Ep,q , and the more elements there are
in the set Ep,q, the more aggregation options are available between vertex vp and vertex vq.
Figure 3 depicts the aggregation graph G containing five vertices and seven edges.

Vertex v1 indicates an aggregation task containing meta-tasks T1 and T2; vertex v2
indicates an aggregation task containing meta-tasks T3 and T4; vertex v3 indicates an aggre-
gation task having only meta-task T5; vertex v4 indicates an aggregation task containing
meta-tasks T6 and T7; vertex v5 indicates an aggregation task containing only meta-task T8;
and edge E1,2 indicates that vertices v1 and v2 are aggregated in one way under satellite
resource Sk; edge E1,3 indicates that vertices v1 and v3 are aggregated in one way under
satellite resource Sj; edge E1,5 indicates that vertices v1 and v5 are aggregated in two ways
under satellite resource Sj and in one way under satellite resource Sk; edge E2,5 indicates
that vertices v1 and v5 are aggregated in three ways under satellite resource Sj; edge E3,4
indicates that vertices v3 and v4 are aggregated in two ways under satellite resource Sk;
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edge E3,5 indicates that vertices v3 and v5 exist in one aggregation mode under satellite
resource Sk; edge E4,5 indicates that vertices v4 and v5 exist in one aggregation method
under satellite resource Sj.

Task Aggregation Method 1Task Aggregation Method 1

Task Aggregation Method 2

Task Aggregation Method 3

Figure 2. Vertex and aggregation method schematic.

Figure 3. Multi-satellite and multi-task aggregation graph model.

The initial MSMTAG model contains only one meta-task per vertex, and the edges
between the vertices are constructed by judging whether the time windows between
the vertices’ corresponding meta-tasks satisfy the task aggregation constraints shown in
Equations (2)–(4), and the specific construction algorithm is shown in Algorithm 1.

4.2. DMP-TA Algorithm

The DMP-TA algorithm solves the task aggregation problem iteratively based on the
initial MSMTAG model. The idea of the algorithm is to set a merge priority for each edge in
the MSMTAG model and merge the two vertices connected to the edge with the maximum
merge priority in each round until no edge exists in the graph.

The calculation of the merge priority at the core of the DMP-TA algorithm. Considering
that task aggregation aims to reduce the consumption of satellite energy resources, the
algorithm takes the value of the energy that can be consumed less by executing a task
after aggregation than by performing a task without aggregation as the basis for the merge
priority. The merger priority is defined as follows.
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Algorithm 1: Initial MSMTAG model construction algorithm

1 Define f : GT → V : ∀GT, ∃!vi ∈ V : f (GT) = vi;
2 Initialize p = 1, q = 2, k = 1;
3 for ∀ twp,j,kp ∈ GTWp,j and ∀ twq,j,kq ∈ GTWq,j do
4 if (∃Sj ∈ GS : ∀Tpi ∈ GTp, GTWpi,j ̸= ∅) and

(∀Tpq ∈ GTp, ∃Sj ∈ GS, twpq,j,k ∈ GTWpq,j) then
5 Ep,q = {twp,j,kp, twq,j,kq};
6 E← E ∪ Ep,q;
7 k = k + 1;
8 while p < |GT| do
9 if q ≤ |GT| then

10 q = q + 1;

11 else
12 p = p + 1;
13 q = p + 1;

14 return G

Definition 1. Aggregation Priority.

AP
(
Ei,j

)
= fmin(vi) + fmin

(
vj
)
− fmin

(
vCi,j

)
(5)

where fmin(vi) , fmin
(
vj
)

denote the minimum value of energy required for the execution of

the aggregation tasks corresponding to vertex vi and vertex vj, respectively, and fmin

(
vCi,j

)
denotes the minimum value of energy needed for the execution of the new aggregation
tasks formed by the aggregation of tasks corresponding to vertex vi and vertex vj. Since
the MSMTAG model G changes with each task merge performed by the algorithm, the
merge priority between tasks is also dynamically changing. The algorithm will dynamically
calculate and update the merge priority of the edges during each round of iteration.

The essence of calculating merge priority lies in determining the minimal amount
of energy required for the execution of aggregation tasks. As shown in Figure 2, for
any edge Ep,q , the more elements contained in Ep,q of the aggregation graph, the more
aggregation methods are available between vertices vp and vq. Although the aggregation
tasks generated under different aggregation methods include the same meta-tasks, the
corresponding satellite resources and execution times may be different. Thus the energy
consumption required for the execution of the aggregated tasks obtained after aggregation is
also different. Therefore, solving the minimum energy consumption required for executing
the aggregated task requires calculating the minimum energy consumption value for
generating this aggregated task under different aggregation methods.

This paper designs a dynamic programming-based computational method to quickly
solve the minimum energy consumption of an aggregation task generated under a certain
aggregation method. Let one aggregation method of the aggregation task
Cp =

{
Tp1, Tp2, · · · , Tpl

}
be

{
twp1,j,k1, twp2,j,k2, · · · , twpl,j,kl

}
, the algorithm for solving

Cp the minimum value of energy consumption MEp is shown in Algorithm 2.
In summary, the critical steps of the DMP-TA algorithm can be described as follows:

starting from the initial task aggregation graph G constructed in Algorithm 1, the edge
Ep,q with the maximum merge priority is selected in each round, and the two vertices vp
and vq connected to this edge are merged to form a new aggregation task vCpq , and the
minimum energy required to execute the aggregation task vCpq is calculated and updated
according to Algorithm 2. Next, the edges of vertices vp and vq and the edges connected
to vertices vp and vq are deleted, and the edges of vertex vCpq and the edges connected to
vertex vCpq are added, and the merging priority of the newly added edges is calculated, and



Mathematics 2024, 12, 986 10 of 16

the next round of computation is performed. The algorithm ends when the set of edges E in
the aggregation graph G is empty, and the DMP-TA algorithm is described in Algorithm 3
as follows.

Algorithm 2: Dynamic planning-based algorithm for minimum energy calcula-
tion for aggregated tasks

1 Sort GTW by end time to get TWL = {twx1,j,k1, . . .} for TL = {Tx1, . . .}. Initialize
bi, fi for min energy start and end times for the first i tasks.

2 if (tex1 −max{tsx1, tsx2}) ≥ max{dx1, dx2} then
3 f2 = tex1; b2 = tex1 −max{dx1, dx2};
4 else
5 f2 = max{tex1, dx2 + tsx2}; b2 = min{tex1 − dx1, tsx2};
6 for i = 3 to l do
7 if (min{ fi−1, texi} −max{bi−1, tsxi}) ≥ dxi then
8 fi = fi−1; bi = bi−1;

9 else
10 fi = tsxi + dxi; bi = bi−1;

11 δCp =
∑ θxn,j,kn

l ;

12 MEp = ( fl − bl)× oej + 2
|δCp |

ωj
× sej.

The time complexity of the DMP-TA algorithm is O
(
n3), where n is the number of

meta-tasks.

Algorithm 3: DMP-TA Algorithm

1 Initialize MSMTAG Model
2 foreach v ∈ V do
3 Compute Emin(v) ; // Minimum energy for executing the task at v
4 AP(Ei,j) = fmin(vi) + fmin(vj)− fmin(vCi,j);

5 while E ̸= ∅ do
6 Emax = arg max AP(Ei,j) ; // Select the edge with the highest AP.
7 E← (E \ Ei,j) ∪ {Emax};
8 vp = Merge(vi, vj) ; // Merge vertices to a new vertex vp.
9 Recompute Emin(vp);

10 foreach vk ∈ V, vk → vp do
11 if Conditions of Equation (2) and Equation (3) are satisfied then
12 E← E ∪ Ek,p ; // Update edges
13 Update AP(Ek,p) ; // Recalculate AP for new edges

14 return G

Proof. The time complexity of constructing the initial MSMTAG model is O
(
n2) (Line 1).

The time complexity of computing the minimum execution energy of the corresponding
aggregated tasks for all vertices in the initial MSMTAG model G is O

(
n2) (Lines 2–3). The

task aggregation graph with n vertices has at most C2
n edges, and it takes 1

2 × n× (n− 1)
calculations to compute the maximum merge priority of all edges, in that the time complexity
of computing the edge with the maximum merge priority in the algorithm is O

(
n2) (Line 4),

and similarly, the time complexity of selecting the edge with the maximum merge priority
is O

(
n2) (Line 6). The time complexity of deleting edges is O(n) (Line 7). Calculating the

vertex contains at most n meta-tasks, the time complexity of computing the minimum energy
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consumption of the aggregation task corresponding to the vertex is O(n), and the time
complexity of merging a vertex is O(n) (Line 8). After creating a new vertex, it is necessary
to regenerate the edges connected to it and calculate the merging priority of the edges, which
require a time complexity of O(n) (Line 12) and O

(
n2) (Line 13), respectively. Among them,

Lines 6–13 are the operations in the loop body, and the number of tasks is reduced by one for
each task synthesis in the algorithm, and the loop is terminated at most n− 1 times, so the
time complexity of the loop body is O

(
n3). In summary, the overall time complexity of the

algorithm is O(n) +O
(
n2)+O

(
n3), i.e., O

(
n3).

5. Results

In this paper, we test the performance of the DMP-TA algorithm through extensive
simulation experiments and compare it with the CP-TM algorithm proposed in the liter-
ature [17]. The models and algorithms used in the experiments are implemented on an
Intel(R) Core(TM) i7-9750H 2.59 GHz CPU and a computer with 8 GB RAM. The selected
comparison algorithm, the CP-TM algorithm, is also a time complexity of O

(
n3). This

algorithm only considers aggregation between tasks that have an ordinary time window
under the same satellite resource and the ordinary time window is larger than the required
execution time of the task in the process of aggregation and prioritizes the merging of the
two aggregated tasks with the most common time windows in each aggregation process.

5.1. Test Methods and Parameters

Three Earth observation satellites and six sets of Earth observation missions are set
up in the experiment. The orbital parameters of the Earth observation satellites and the
onboard remote sensors are referred to the famous foreign IKONOS-2 satellite, SPOT-5
satellite, and the domestic Gaofen series satellites. Table 2 shows the information of the
satellite orbit parameters and the parameters of the remote sensors carried by them. The
target sizes of the six groups of Earth observation missions are 100, 200, 300, 400, 500, and
600, and all the missions are distributed in the latitude [−30◦, 60◦] and longitude [0◦, 150◦]
ranges. Three distribution methods are used: dense distribution, average distribution, and
mixed distribution (i.e., half are uniformly distributed and half are densely distributed).
The time window of the satellite to the mission was calculated using Satellite Tool Kit(STK)
version 11.6 x64 software.

Table 2. Satellite orbit parameters.

Satellite Parameters Satellite S1 Satellite S2 Satellite S3

Semi-major axis (km) 7201 7052 7480
Orbital eccentricity 0.0134947 0.0008895 0.0015076
Orbit inclination (◦) 98.2597 98.15 98.0036

True anomaly (◦) 191.1477 246.0537 7480
Ascending node equinox (◦) 7.0557 73.3937 7480

Argument of periapsis (◦) 169.2664 114.1612 7480
Field of view (◦) 2.1 0.931 7480

Lateral swing rate/(s) 1 1 7480
Maximum swing angle (◦) ±45 ±45 ±45

Maximum operating time (s) 80 80 80
Observation of energy consumption (km/s) 200 200 200
Side pendulum energy consumption (km/◦) 500 500 500

5.2. Algorithm Performance

In this section, the effectiveness of the algorithm is first verified. In the above exper-
imental scenario, six sets of experiments are set up, each with task sizes of 100, 200, 300,
400, 500, and 600, and the tasks are distributed in a mixed distribution. In the experiments,
the running time of the DMP-TA algorithm, the number of aggregated tasks obtained
after aggregation, and the sum of the energy required to perform the aggregated tasks
after aggregation is verified. The sum of the energy consumption for the execution of the



Mathematics 2024, 12, 986 12 of 16

aggregated tasks solved by the algorithm is compared with the sum of the energy con-
sumption for the performance of the tasks without aggregation and the sum of the energy
consumption for the execution of the aggregated tasks solved by the CP-TM algorithm.
To improve the reliability of the results, the two algorithms were run 15 times, and the
average of the relevant results was taken. The obtained experimental results are shown
in Figures 4–6.

Figure 4. Comparison of algorithm running time.

Figure 4 indicates that the execution time of the DMP-TA and CP-TM algorithms increases
with the increase of task size. The execution time of the DMP-TA algorithm is slightly higher
than that of the CP-TM algorithm for the same task size, and the difference in the execution
time of the algorithms increases with the increase of the task size. This phenomenon is because
the merging priority used by the DMP-TA algorithm in considering task merging needs to
calculate the minimum energy consumption of the aggregated tasks, and this part of the
calculation consumes some time. However, from the proof in Section 4.2, the time complexity
of the DMP-TA algorithm is the same as that of the CP-TM algorithm, so it can be theoretically
speculated that the difference in execution time between the DMP-TA algorithm and the
CP-TM algorithm will not be significant regardless of the increase in task size.

Figure 5 shows that both the DMP-TA and CP-TM algorithms have relatively signif-
icant aggregation effects. The task size can be reduced by about 25% after aggregation
using the CP-TM algorithm. The task size can be reduced by about 50% after aggregation
using the DMP-TA algorithm, about 25% higher than that of the CP-TM algorithm. Overall,
the aggregation capability of the DMP-TA algorithm is significantly better than that of
the CP-TM algorithm because the DMP-TA algorithm takes into account the extended
start-up time of the remote sensor in the process of aggregation. Tasks with observation
time windows at the maximum start-up time of the remote sensor have the opportunity
to be aggregated. In contrast, the CP-TM algorithm only considers tasks with common
time windows, and the length of the common time window is more significant than that
required for task execution. The aggregation condition of the CP-TM algorithm is more
severe than that of the DMP-TA algorithm.

Figure 6 shows that both the DMP-TA algorithm and the CP-TM algorithm effectively
reduce the energy consumption required for task execution. The aggregation using the
CP-TM algorithm reduces the time required for task execution by about 20%, while the
aggregation using the DMP-TA algorithm reduces the time required for task execution by
about 50%, which is about 30% higher than that of the CP-TM algorithm. The reason is that
the algorithm calculates the overall energy reduction before and after each edge aggregation
and prioritizes the merging of the two clustering tasks corresponding to the edges with
the most considerable energy reduction. In contrast, the CP-TM algorithm considers the
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number of remaining observation opportunities in each round of task merging. In addition,
the aggregation condition of the CP-TM algorithm is more stringent than that of the DMP-
TA algorithm, such that the number of tasks that are not aggregated after aggregation
using the CP-TM algorithm will be greater compared to that using the DMP-TA algorithm,
resulting in the CP-TM algorithm being inferior to the DMP-TA algorithm in terms of
reducing the sum of energy consumption required for task execution.

Figure 5. Comparison of the number of aggregation tasks.

Figure 6. Comparison of the sum of energy requirements for aggregation task execution.

5.3. Algorithm Performance

Considering the possible large influence of the distribution density of tasks on the
algorithm, this paper generates 18 sets of observation tasks in the range of latitude [−30◦,
60◦] and longitude [0◦, 150◦], respectively (groups 1–6 are observation tasks with task sizes
of 100, 200, 300, 400, 500, 600 under dense distribution, groups 7–12 are observation tasks
with task sizes of 100, 200, 300, 400, 500, 600 under the uniform distribution, respectively
100, 200, 300, 400, 500, 600, and 13–18 groups of 100, 200, 300, 400, 500, 600 under mixed
distribution), and the DMP-TA algorithm is experimentally validated under these 18 groups
of data. The experimentally obtained results are shown in Figures 7 and 8.
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Figure 7. Comparison of the number of aggregated tasks under different distribution densities.

From Figure 7, it can be seen that the DMP-TA algorithm has a strong task aggregation
capability in all three distributions: dense, uniform, and mixed distributions. Among
them, the DMP-TA algorithm obtains the lowest number of aggregated missions when
they are densely distributed and the highest number of aggregated missions when they are
uniformly distributed. When the tasks are densely distributed, the number of tasks that
can be covered simultaneously by a single satellite transit is higher. Thus the chance of task
aggregation is greater.

Figure 8. Comparison of reduced task execution energy consumption at different distribution densities.

From Figure 8, it can be seen that when the missions are densely distributed, the
satellite resource consumption can be reduced the most by using the DMP-TA algorithm
for aggregation, and the satellite resource consumption can be reduced the least by using
the DMP-TA algorithm for aggregation when the missions are uniformly distributed. This
phenomenon may be due to the higher overlap rate of observation time windows between
missions when missions are densely distributed and the lower energy consumption of
aggregated missions resulting from mission aggregation when the overlap rate of mission
observation time windows is higher. Also, fewer task aggregations are generated in the
case of dense distribution, which leads to the minor overall energy consumption of the
observation tasks.
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6. Conclusions

This paper addresses the problem of limited resources of Earth observation satellites
in space information networks and the difficulty of satisfying many observation tasks. The
aggregation method of observation tasks under multi-satellite cooperative observation is
studied to improve the utilization rate of satellite resources. An in-depth analysis of the
principle of satellite Earth observation and the aggregation constraints of Earth observation
tasks is presented, a multi-satellite multi-task aggregation graph model is constructed, and
a model construction algorithm is given. Based on the multi-satellite multi-task aggregation
graph model, a multi-satellite multi-task aggregation algorithm is designed based on the
dynamic merging of tasks. The task merging strategy in the aggregation algorithm is
studied in depth. The task synthesis priority based on the minimum energy consumption
of the aggregated tasks and the minimum energy consumption calculation method of the
aggregated tasks based on dynamic planning is designed to realize the fast solution of the
task synthesis priority. The paper concludes with a complete theoretical and experimental
validation of the algorithm and a comparative analysis with the aggregation algorithm
proposed in the literature [17]. The experiments show that the task size can be reduced
by about 45%. The energy required for task execution can be reduced by about 50%
after aggregation by the algorithm in this paper. The algorithm in this paper is slightly
higher than the aggregation algorithm proposed in [17] in terms of running time. Still,
the reduction in aggregated task size obtained using the algorithm in this paper is 25%
more than using the algorithm in [17]. The sum of the energy consumption required for
aggregated task execution is 20% less.

The observation task aggregation method proposed in this paper has some practical
significance. However, there is room for improvement. To better match the work of
observation satellites, the next step is to study the real-time task aggregation scheme during
the execution of observation tasks.
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