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Abstract: The optimization of job shop scheduling is pivotal for improving overall production
efficiency within a workshop. In demand-driven personalized production modes, achieving a
balance between workshop resources and the diverse demands of customers presents a challenge
in scheduling. Additionally, considering the self-interested behaviors of agents, this study focuses
on tackling the problem of multi-agent job shop scheduling with private information. Multiple
consumer agents and one job shop agent are considered, all of which are self-interested and have
private information. To address this problem, a two-stage decentralized algorithm rooted in the
genetic algorithm is developed to achieve a consensus schedule. The algorithm allows agents to
evolve independently and concurrently, aiming to satisfy individual requirements. To prevent
becoming trapped in a local optimum, the search space is broadened through crossover between
agents and agent-based block insertion. Non-dominated sorting and grey relational analysis are
applied to generate the final solution with high social welfare. The proposed algorithm is compared
using a centralized approach and two state-of-the-art decentralized approaches in computational
experiments involving 734 problem instances. The results validate that the proposed algorithm
generates non-dominated solutions with strong convergence and uniformity. Moreover, the final
solution produced by the developed algorithm outperforms those of the decentralized approaches.
These advantages are more pronounced in larger-scale problem instances with more agents.

Keywords: multi-agent scheduling; decentralized decision making; genetic algorithm; negotiation
optimization; social welfare

MSC: 90-10

1. Introduction

In manufacturing systems, job shop scheduling plays a pivotal role and has a pro-
found impact on the overall production efficiency of the shop [1]. Traditional job shop
scheduling problems generally focus on the holistic optimization of resources on the shop
floor. However, with the rapid development of customer-driven production models, job
shop scheduling is facing new challenges. As multiple consumers compete for limited ma-
chine resources while pursuing individual objectives, the related scheduling goal is not to
satisfy the job shop’s preferences but to accommodate its objective and the unique demands
of various consumers [2]. In practical production environments, numerous real-world
scenarios exemplify the complexities outlined. For example, Xi’an Aero-Engine Group, a
subsidiary of the Aviation Industry Corporation of China (AVIC), concurrently produces
aircraft engine blades for both Pratt & Whitney Canada (PWC) and Safran Aircraft Engines
(formerly known as SNECMA). While Xi’an Aero-Engine Group has its own objectives as a
provider of manufacturing resources, Pratt & Whitney Canada (PWC) and Safran Aircraft
Engines, as consumers, have their respective goals. During the production scheduling
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process, decision-makers need to consider the objectives of all stakeholders. Simultaneously,
with the promotion of globalized manufacturing, the original equipment manufacturers
(OEM) production model has emerged. Renowned contract manufacturers such as Foxconn
and Quanta undertake the production of various product models for different enterprises,
ensuring the timely and demand-driven market entry of products. Additionally, since
all stakeholders are self-interested and rational, they may not be willing to disclose their
private information [3]. Therefore, in a production model driven by personalized consumer
demands, manufacturing enterprises aiming to survive in a competitive environment must
strive to meet the individual needs of self-interested users as much as possible. Balanc-
ing the contradictions between product diversification, resource coordination, and cost
while satisfying the personalized demands of multiple users with private information
becomes the new core of job shop scheduling. Within this context, this paper addresses the
multi-agent job shop scheduling problem with private information (MJSSP-PI).

Meta-heuristic algorithms are typically employed for multi-agent scheduling prob-
lems by constructing multi-objective models and generating the Pareto solution sets [4–6].
Such algorithms have the capability to handle intricate scheduling constraints and con-
verge swiftly. A single central authority possessing complete information on the entire
scheduling system is required in these algorithms to make decisions. However, in practical
scenarios, agents often have self-interest and may be reluctant to disclose their private
information [7], rendering the centralized meta-heuristic algorithms unfeasible to address
the targeted MJSSP-PI. In contrast, a decentralized scheduling architecture that relies on
multiple local autonomous decision-makers with partial information is an available alter-
native [8]. Therefore, a decentralized optimization approach inspired by meta-heuristic
algorithms has emerged as a research focus to solve the resource allocation problem with
information asymmetry.

Under the decentralized architecture, various approaches such as the contract net pro-
tocol [9,10], auction theory [11,12], and meta-heuristic algorithms [13] have been commonly
employed to solve multi-agent machine scheduling problems. In light of the strengths
exhibited by meta-heuristic algorithms in tackling multi-objective optimization problems,
the decentralized frameworks based on them have gained significant attention. For ex-
ample, two decentralized frameworks inspired by evolutionary search and ant colony
optimization were initially introduced for solving the multi-project scheduling problem
in [14] and [15], respectively. Afterward, Lang et al. [16] constructed two decentralized
negotiation mechanisms based on the genetic algorithm (GA) and simulated annealing
(SA), which are more generic compared to [14] and [15]. The SA-based framework has been
extended to address various real-world problems, including diagnostic services schedul-
ing [17], the resource investment problem [18], and the community ride-sharing matching
problem [19]. These methods have demonstrated high efficiency, but their reliance on
multiple local optimizations of a single proposed solution restricts the extensive search of
the Pareto frontier, potentially leading to sub-optimal results in terms of social welfare. In
these meta-heuristic algorithms, the distinctive encoding approach of GA offers an advanta-
geous feature for concealing the essential proprietary information of self-interested agents.
Furthermore, GA exhibits the capacity to yield high-quality solutions within a constrained
temporal framework through the evolutionary progression of multiple populations [20–22].
Therefore, this study proposes a decentralized negotiation optimization approach based on
GA for addressing the MJSSP-PI.

Nevertheless, the GA-based approaches face challenges in escaping local optima
and searching for superior solutions, particularly in scenarios with numerous objectives
and intense inter-agent competition. Consequently, the scale of the problems that can be
effectively solved is limited. Extensive research has been conducted to explore various
strategies aimed at preventing meta-heuristic algorithms from getting trapped in local
optima. Epitropakis et al. [23] and Lin et al. [24] found that the achievement of global
optimality strongly depends on the algorithm’s ability to effectively explore the solution
space. Based on this finding, certain studies have been devoted to expanding the solution
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space for solving job shop scheduling problems. For instance, refs. [25–27] enhanced the
algorithm’s search capability by introducing the variable neighborhood search, while [28]
employed an extinction mechanism to solve local tramp. Furthermore, Wen et al. [29]
embedded elite and mutation strategies in the evolution phase to enhance the diversity of
solutions within the population. However, these methods are applied under the assumption
of complete information and are inapplicable to our problem.

This study focuses on the multi-agent job shop scheduling problem with private
information, which involves multiple consumer agents and a job shop agent, all driven by
self-interest and individual objectives. To overcome the challenges above, a two-stage GA-
based decentralized optimization algorithm (GDOA) is developed to generate a consensus
solution with high social welfare. The main contributions are summarized as follows:

• An autonomous and parallel evolution of agents is developed, wherein agents indi-
vidually construct private fitness functions that align with their specific objectives and
subsequently evolve independently and concurrently. This process protects private
information and ensures the fulfillment of each consumer agent’s requirement.

• A novel evolution method, primarily including crossover between agents, mutation
within agents, and agent-based block insertion, is proposed to prevent the algorithm
from becoming trapped in local optima while safeguarding the privacy of agents.

• A negotiation decision-making approach comprising non-dominated sorting and grey
relational analysis (GRA) is established to generate a final schedule that maximizes
social welfare.

The remaining sections of this paper are structured as follows: In Section 2, a mathe-
matical model for MJSSP-PI is constructed. The proposed GDOA algorithm is described in
Section 3. Section 4 presents the computational experiments and the corresponding results.
Finally, Section 5 focuses on conclusions and future work.

2. Problem Statement
2.1. Problem Description

The considered MJSSP-PI, as depicted in Figure 1, involves a scheduling system com-
prising a job shop and multiple consumers. The job shop is regarded as the job shop Agent
(JSA), while multiple consumers are considered as consumer agents (CAs). Specifically, a set
J = {J1, J2, . . . , Ji, Jn} of n jobs are processed on m machines
M =

{
M1, M2, . . . , Mj, . . . , Mm

}
that are owned by the job shop agent JSA. Job set J belongs

to N consumer agents CA = {CA1, CA2, . . . , CAk, . . . , CAN}, and each CAk has a job set
Jk
set, where J = J1

set ∪ J2
set ∪ . . . ∪ Jk

set ∪ . . . ∪ JN
set and J1

set ∩ Jk
set = ∅, k = 1, 2, . . ., N. Each job Ji

consists of a sequence of m operations, in which Oi,j denotes the jth operation of the job Ji,
and pi,j represents the processing time of Oi,j. A three-element tuple Ji =

{
pi,j, di, ωi

}
char-

acterizes the job Ji, where di is the due date and ωi denotes the weight of Ji. The machine
Mj is characterized by three types of energy consumption: starting energy consumption
SEj, unit processing energy consumption PEj, and unit idle energy consumption IEj. The
processing time of jobs is public information known to the job shop agent and all consumer
agents, while other information is private.

The assumptions and constraints considered in this paper are summarized as follows:

1. All jobs and machines are available at time 0;
2. Each operation can only be processed on one machine at a time;
3. Each machine can only process one operation at any time;
4. The preemption of any operation is not allowed;
5. The operations of a job should be processed sequentially in a predetermined order.
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2.2. Mathematical Model

Given the consideration of the various individual objectives of agents in the MJSSP-PI,
we introduced the special objectives of CAs and JSA before presenting the mathematical
model. Meanwhile, to enhance the clarity of the mathematical model, the indexes of CAs
and JSA are redefined in this section. Let l denotes different agents, where l = 1, 2, . . .,
k, . . ., N, N + 1. The N consumer agents are indexed from 1 to N, and the job shop agent is
indexed by N + 1.

The objectives of CAs and JSA are individual and private. An objective function
set of consumer agents is constructed as (1), from which each consumer agent selects
its preference.

minF(l) =



Cl
max = max

i∈Jk
set

Ci

WCl = ∑
i∈Jk

set

ωiCi

WTl = ∑
i∈Jk

set

ωi × max(0, Ci − di)

WEl = ∑
i∈Jk

set

ωi × max(0, di − Ci)

, l = 1, 2, . . . , k, . . . , N (1)

where Cl
max denotes the makespan, WCl is the total weighted completion time, WTl means

the total weighted tardiness, and WEl represents the total weighted earliness.
The objective of JSA is to minimize the total energy consumption, which is formulated

by Equation (2).

minF(l) =
m
∑

j=1

(
SEj + PEj ×

n
∑

i=1
pi,j + IEj × IT j

)
, l = N + 1

IT j =
n
∑

h=1

(
stSh

j ,j − ctSh−1
j ,j

)
, j = 1, 2, . . . , m

(2)

The total energy consumption F(l) is the sum of the starting energy consumption,
processing energy consumption, and idle energy consumption of all machines. The idle
energy consumption of each machine is the product of the total idle time for all operations
of the machine and the unit idle energy consumption.

Since the MJSSP-PI is solved in a distributed manner, the total social welfare [30] is
applied to measure the schedule. To calculate the social welfare, it is necessary to normalize
the objective of each agent into dimensionless quality, which is presented by the utility
function. This utility function serves two purposes: first, it normalizes the objectives of
individual agents, thereby eliminating the influence of varying objective values; second, it
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ensures the preservation of privacy by concealing the actual objective values. The utility
function is shown in Equation (3).

U
(

πl
)
=

max
(

F
(

Parl
))

− F
(

πl
)

max
(

F
(

Parl
))

− min
(

F
(

Parl
)) , l = 1, 2, . . . , k, . . . , N, N + 1 (3)

where F
(

πl
)

is the objective function value corresponding to the agent l in the schedule

π. Analogously, max
(

F
(

Parl
))

and min
(

F
(

Parl
))

denote the maximum and minimum

objective values in the Pareto set Ppar, respectively. U
(

πl
)

represents the transformed
utility function value. Consequently, the total social welfare is given in Equation (4):

SW(π) =
N+1

∑
l=1

U
(

πl
)

(4)

Based on the assumptions and the defined objectives, the mathematical model of
MJSSP-PI is constructed as follows:

F = maxSW (5)

stSh
j ,j ≥ ctSh−1

j ,j, j = 1, 2, . . . , m, h = 2, 3, . . . , n (6)

sti,j ≥ cti,j−1, i = 1, 2, . . . , n, j = 2, 3, . . . , m (7)

cti,j ≥ pi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , m (8)

cti,j ≤ Ci, i = 1, 2, . . . , n, j = 1, 2, . . . , m (9)

stSh
j ,j, ctSh

j ,j, sti,j, cti,j ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, h = 1, 2, 3, . . . , n (10)

Equation (5) represents that the optimization objective is to maximize the total social
welfare. Constraint (6) ensures that each machine can only process one operation at any
given time. Constraint (7) indicates that the completion time of any operation must be
greater than the starting time of its immediate successor operation. Constraint (8) and
Constraint (9) determine the completion time of an operation. Constraint (10) defines
decision variables.

3. The Proposed GDOA Algorithm

Given the attributes of MJSSP-PI, the confidentiality of private information among
agents must be maintained throughout the scheduling process. Consequently, in algo-
rithmic design, the objectives encompass accommodating agent preferences, preserving
the confidentiality of proprietary goal information, optimizing the quality of the Pareto
optimization solution set, and attaining the solution with the highest social welfare value.
Considering these objectives, this section presents a novel two-stage GA-based distributed
optimization algorithm, including the parallel genetic evolution of consumer agents and
negotiated decision-making. First, the main framework of the algorithm is introduced,
followed by a detailed description of each stage.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. A Two-Stage GDOA Framework

The main framework of the proposed two-stage GDOA is illustrated in Figure 2,
where G is the maximum number of iterations. The framework consists of a parallel genetic
evolution stage and a negotiated decision-making stage.
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In the parallel genetic evolution stage, the consumer agents evolve autonomously
and concurrently, driven by their objectives. This independent evolution ensures the
protection of each consumer agent’s private information. The evolution process involves
five essential steps: subpopulation initialization, rearrangement, crossover between agents,
mutation within agents, and agent-based block insertion. By following these steps, the
consumer agents can create multiple subpopulations that satisfy their objectives, effectively
safeguarding the self-interest of the consumer agents. Eventually, these subpopulations are
merged into an elite set.

Moving to the negotiated decision-making stage, the consumer agents collaborate with
the job shop agent to perform a negotiated sorting on the generated elite set. Subsequently,
the job shop agent utilizes a grey relational analysis (GRA) [31] to create a collaborative
schedule. This stage ensures that the objectives of each agent are adequately represented,
leading to a consensus schedule with high social welfare.

3.2. Parallel Genetic Evolution

Before detailing the five steps of genetic evolution, the encoding method of the MJSSP-
PI is presented. A straightforward operation-based encoding method is developed. Take a
problem instance with N = 3, m = 3 as an example, where the J1

set = {1, 4}, J2
set = {3}, and

J3
set = {2, 5, 6}. A chromosome is shown in Figure 3. The sequence in which the number

of a job appears signifies the order of operations. For example, the three consecutive
occurrences of “2” represent the operations O2,1, O2,2, and O2,3, respectively. As each
operation is assigned to a fixed processing machine, a chromosome can be decoded into a
feasible solution. Meanwhile, the chromosome does not contain any private information of
the agents. By employing this encoding approach, the feasibility of the solutions and the
security of the private information are maintained throughout the parallel genetic evolution
of consumer agents.
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3.2.1. Subpopulation Initialization

The subpopulation initialization of consumer agents consists of two parts: population
initialization and subpopulation selection. In the first step, the JSA randomly generates the
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initial population Pop with size P. In the second step, each consumer agent CAk chooses its
initial subpopulation Pk

I with high fitness values from Pop. The fitness value is computed
based on the private fitness functions, as shown in Equation (11). The smaller the objective
value of an agent, the larger its fitness function value. When the objective value of an agent
is 0, the maximum fitness value is 1.

f (πl) =
1

F
(
πl

)
+ 1

(11)

where f
(

πl
)

is the fitness value of agent l and F
(

πl
)

is the objective function value
corresponding to the agent l in the schedule π.

The whole process of subpopulation selection is outlined in Algorithm 1.

Algorithm 1: Subpopulation selection

Input: J, pi,j
Output: initial subpopulation Pk

I (k = 1, 2, . . ., N)
1: JSA randomly generates the initial population Pop
2: for CAk in CA do
3: Construct fitness objective f (π)
4: for pop in Pop do
5: Calculate fitness values f (pop)
6: end for
7: Sort f (pop) in ascending order
8: Obtain Pk

I containing P/N chromosomes with top f (pop)
9: end for
10: Return Pk

I

Through the utilization of the algorithm, the privacy of agents’ personal information
is effectively safeguarded. Moreover, they produce subpopulations that align with the
respective objectives of consumer agents, thereby laying a solid groundwork for further
evolution toward the objectives.

3.2.2. Rearrangement

After the subpopulation initialization, the consumer agents execute a rearrangement
operation on the existing Pk

I to generate an updated subpopulation Pk
R. In Algorithm 2,

the pseudo-code of the rearrangement operation is shown. Specifically, each CAk submits
its Pk

I to JSA, resulting in a fused collection FC (lines 1–6). Then, the JSA modifies each
chromosome in FC based on the job set Jk

set (lines 7–16). Following this modification, each
CAk performs subpopulation selection, producing Pk

R (lines 17–25). This process aims to
keep the subpopulation evolving toward the individual target while expanding the search
space. The flowchart of the rearrangement operation is shown in Figure 4.
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Algorithm 2: Rearrangement operation

Input: J, Pk
I (k = 1, 2, . . ., N)

Output: Pk
R (k = 1, 2, . . ., N)

1: Initialize FC = ∅
2: for CAk in CA do
3: submit Pk

I to JSA
4: Append Pk

I to FC
5: end for
6: Return FC
7: // JSA modifies FC
8: F̂C = ∅
9: for fc in FC do
10: f̂ c = ∅
11: for Jk

set in J do
12: Swapping genes on fc to generate a new f ck (as shown in Figure 5)

13: Append f ck to f̂ c (
∣∣∣ f̂ c

∣∣∣ = N)

14: end for
15: Append f̂ c to F̂C (

∣∣F̂C
∣∣ = N × |FC|)

16: Return F̂C
17: // CAk updates subpopulation Pk

R
18: Pk

R = ∅
19: for CAk in CA do
20: for f c′ in F̂C do
21: Calculate fitness values f

(
f c′

)
22: end for
23: Sort f

(
f c′

)
in ascending order

24: Generate Pk
R consisting of P/N chromosomes with top f

(
f c′

)
25: end for
26: Return Pk

R

We take the chromosome fc in section subpopulation initialization as an example to
illustrate line 12 of Algorithm 2. As shown in Figure 5, JSA modifies fc according to Jk

set.
For instance, when considering J1

set = {1, 4}, the genes with “1” and “4” on fc are swapped
with the genes containing the first

∣∣J1
set
∣∣ jobs numbers on fc. Here, the specific values being

swapped are “2” and “5”. This process generates a new chromosome f c1. Continuing this
procedure based on J2

set and J3
set, two chromosomes f c2 and f c3 are produced, respectively.

Consequently, one chromosome is augmented into N chromosomes, effectively enlarging
the search space available for exploration.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 22 
 

 

⒐  ⒍  2  ⒐  3  6  5  ⒍  2  6  5  ⒍  ⒐  2  3  5  6  3

⒏  5  4  ⒏  2  6  1  5  4  6  1  5  ⒏  4  2  1  6  2

⒎ ⒑ ⒒ ⒎ 3  4  ⒑ 1 ⒒  4  ⒑ ⒎  1  ⒒  3  1  4  3

2  5  ⒐  2  3  6  ⒍  5  ⒐  6  ⒍  5  2  ⒐  3  ⒍  6  3

2  5  4  2  ⒏  6  1  5  4  6  1  5  2  4  ⒏  1  6  ⒏

⒎ ⒑ 4  ⒎ 3  ⒒ ⒑ 1  4  ⒒  ⒑  ⒎ 1  4  3  1  ⒒  3

114 41 4 14 1 14 4

3 3 3

2 2 25 5 56 6 6

3 33

2 5 6 2 255 6 6

1
setJ = {1,4}

{3}2
setJ =

{2,5,6}3
setJ =

1fc

2fc

3fc
 

Figure 5. Chromosome rearrangement. 

3.2.3. Crossover between Agents 
The consumer agents evolve aligning with their objectives. To mitigate the risk of 

being trapped in local optima, a crossover between agents is proposed. Algorithm 3 il-
lustrates the crossover method. A sequential pairwise exchange is carried out between 
each agent 𝐶𝐴  and the other N − 1 consumer agents in 𝑄  rounds. The crossover be-
tween consumer agents leads to an expansion of the size of the crossed chromosomes of 𝐶𝐴  by a factor of 𝑄 ∙ (𝑁 − 1), effectively increasing the overall solution space by 𝑁𝑄 ∙(𝑁 − 1), thus preventing the solution from converging to a local optimum prematurely. 
The precedence operation crossover (POX) [32] is utilized for each pair of chromosomes 
to cross. Finally, 𝐶𝐴  updates the subpopulation 𝑃  to 𝑃 . The flowchart of the crossover 
between agents is shown in Figure 6. 

Select a
   from  

 

...

...

CAk

CAN

Generate
 

Generate children set： 1

1

Q
k

q
q

CP Os
=

=

1q +

Select a
   from  

Select a
   from  

Gather (N-1) 
chromosomes 





N
k

Rq
k

Os P=

Submit      to kCA

kCA

Apply POX between      
      and each      in Os 1q Q>

...

...

...

... Yes

No

Submit      to 

Update      to      based on       

CA1

k
CP

Initialization
Crossove Round
            ,1Q 1q =

rp

1
RP

k
RP

N
RP

1
RqP

1
RP

k
RqP
k

RP

N
RqP

N
RP

1
RqP

N
RqP

k
RqP k

RqP Os

k
RP kCP

 
Figure 6. The process of crossover between agents. 

Algorithm 3: Crossover between agents. 
Input: 𝑃  (k = 1, 2, …, N), crossover round 𝑄 , reception probability 𝑝  
Output: 𝑃  (k = 1, 2, …, N) 
1: for 𝐶𝐴  in CA do 
2:   Initialize 𝑃 = ∅, 𝐶𝑃 = ∅, q = 1 
3:   while 𝑞 ≤ 𝑄  do 
4:      Randomly select 𝑃  from 𝑃  

5:      𝐶𝐴 (𝑘 ≠ 𝑘) randomly selects 𝑃  from 𝑃  

6:      𝐶𝐴 (𝑘 ≠ 𝑘) submits 𝑃  to 𝐶𝐴  

7:      Generate 



N
k

Rq
k

Os P=  (|𝑂𝑠| = 𝑁 − 1) 

8:      𝑂𝑠 = ∅ 
9:      for os in Os do 
10:         Crossover os and 𝑃  to create 𝑜𝑠  (POX) 

11:        Append 𝑜𝑠  to 𝑂𝑠 

Figure 5. Chromosome rearrangement.

3.2.3. Crossover between Agents

The consumer agents evolve aligning with their objectives. To mitigate the risk of
being trapped in local optima, a crossover between agents is proposed. Algorithm 3
illustrates the crossover method. A sequential pairwise exchange is carried out between
each agent CAk and the other N − 1 consumer agents in Q1 rounds. The crossover between
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consumer agents leads to an expansion of the size of the crossed chromosomes of CAk by a
factor of Q1·(N − 1), effectively increasing the overall solution space by NQ1·(N − 1), thus
preventing the solution from converging to a local optimum prematurely. The precedence
operation crossover (POX) [32] is utilized for each pair of chromosomes to cross. Finally,
CAk updates the subpopulation Pk

R to Pk
C. The flowchart of the crossover between agents is

shown in Figure 6.
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Algorithm 3: Crossover between agents.

Input: Pk
R (k = 1, 2, . . ., N), crossover round Q1, reception probability pr

Output: Pk
C (k = 1, 2, . . ., N)

1: for CAk in CA do
2: Initialize Pk

C = ∅, CPk = ∅, q = 1
3: while q ≤ Q1 do
4: Randomly select Pk

Rq from Pk
R

5: CAk̂

(
k̂ ̸= k

)
randomly selects Pk̂

Rq from Pk̂
R

6: CAk̂

(
k̂ ̸= k

)
submits Pk̂

Rq to CAk

7: Generate Os =
N
∪̂
k

Pk̂
Rq (|Os| = N − 1)

8: Ôs = ∅
9: for os in Os do
10: Crossover os and Pk

Rq to create os′ (POX)
11: Append os′ to Ôs
12: end for
13: q = q + 1

14: Append Ôs to CPk (
∣∣∣CPk

∣∣∣= Q1 × (N − 1))

15: end while
16: for cp in CPk do
17: if

∣∣∣Pk
C

∣∣∣ ≤ ∣∣∣Pk
R

∣∣∣ then

18: if random (0,1) < pr then
19: Append cp to Pk

C
20: end if
21: end if
22: end for
23: Return Pk

C

Through the crossover, the search space is further expanded, resulting in an increasing
diversity of chromosomes and a significant reduction in the probability of being confined to
local optima. Furthermore, a reception probability is imposed to reduce the increased cost
of solution space expansion. It is crucial to emphasize that during the crossover process,
the exchange of information between agents is exclusively limited to chromosomes, thereby
ensuring the preservation of privacy.
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3.2.4. Mutation within Agent

Subsequent to the crossover, the consumer agents execute a mutation operation on
their subpopulations Pk

C separately, as described in Algorithm 4. Initially, each consumer
agent employs the roulette wheel selection to choose two parent individuals from the
subpopulation. Then, the parents undergo the POX crossover and a single swap in se-
quence, resulting in new offspring. Finally, the offspring are used to update the parent
individuals. The whole process repeats Q2 rounds. This mutation process, performed
within the consumer agents, ensures that the consumer agents evolve for self-benefit while
simultaneously not diminishing the search space. The flowchart of the mutation within
agent is shown in Figure 7.
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Algorithm 4: Mutation within agent

Input: Pk
C (k = 1, 2, . . ., N), mutation round Q2, crossover probability pc, mutation probability pm

Output: Pk
M (k = 1, 2, . . ., N)

1: for CAk in CA do
2: Initialize Pk

M = ∅, q = 1
3: while q ≤ Q2 do
4: Select P1 and P2 from Pk

C based on the roulette wheel selection
5: if random (0, 1) < pc then
6: Crossover P1 and P2 to create C1 and C2 (POX)
7: else
8: C1 = P1, C2 = P2
9: if random (0, 1) < pm then
10: Apply the single swap between C1 and C2 to create C′

1 and C′
2

11: else
12: C′

1 = C1, C′
2 = C2

13: q = q + 1
14: Append (C′

1, C′
2) to Pk

M
15: end while
16: end for
17: Return Pk

M

3.2.5. Agent-Based Block Insertion

Considering the distinctive attributes of multiple agents in the addressed problem, a
novel agent-based block insertion is developed to increase the diversity of the subpopula-
tion. Algorithm 5 outlines the core pseudo-code of this method. First, each consumer agent
selects a chromosome from Pk

M. Subsequently, an agent-based block of the agent CAk is

defined as a combination of
∣∣∣Jk

set

∣∣∣ or more consecutive genes belonging to the job set Jk
set on

this chromosome. The chromosome is then updated by exchanging the agent-based block
with its preceding gene. Finally, CAk executes these operations on each chromosome in
Pk

M, resulting in the update of Pk
M to Pk

A. The insertion of the agent-based block achieves a
further expansion of the search space without deteriorating the solutions.
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An example of the agent-based block insertion is shown in Figure 8. In case 1, when
scanning the gene of an individual P1, a contiguous gene combination {4,1,1,4} is identified
based on the job set J1

set = {1, 4}. Since this contiguous combination comprises four genes,
exceeding the number of operations m = 3, it is designated as the representative block
B1 = {4,1,1,4} corresponding to individual P1 for CA1. In case 2, upon scanning the genome
of the individual P1, no contiguous gene combination greater than or equal to m is observed.
Consequently, the agent-based block B1 corresponding to individual P1 for CA1 remains
empty, denoted as B1 = ∅. After obtaining the agent-based block of an individual, it is
determined whether the block is empty. If it is empty, the positions of the individual’s
genes remain unchanged. If it is not empty, the block is inserted before its preceding gene.
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Algorithm 5: Agent-based block insertion

Input: J, Pk
M (k = 1, 2, . . ., N)

Output: Pk
A (k = 1, 2, . . ., N)

1: for CAk in CA do
2: Initialize Pk

A = ∅
3: for p in Pk

M do
4: Define agent-based block Bp

5: if A = a combination of
∣∣∣Jk

set

∣∣∣ or more consecutive genes with Jk
set on p exits then

6: Bp = A
7: Modify p to p̂ by exchanging Bp with its preceding gene
8: else
9: Bp = ∅
10: p̂ = p
11: end if
12: Append p̂ to Pk

A
13: end for
14: end for
15: Return Pk

A

3.2.6. Parallel Genetic Evolution Algorithm

Upon the completion of the five evolutionary steps, each CAk submits its Pk
A to JSA.

The JSA then selects the top chromosomes that best align with its objective from the

collection
N
∪

k=1
Pk

A, forming a provisional elite set. The purpose of it is to further satisfy the

goals of the job shop agent while ensuring that the objectives of the consumer agents have
already been met. Additionally, it is imperative to re-emphasize that the chromosomes do
not incorporate any private information, ensuring the robust preservation of privacy for
all agents.

The aforementioned steps are iterated multiple times to construct the final parallel
genetic evolution algorithm. The specific pseudo-code for this algorithm is presented in
Algorithm 6.
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Algorithm 6: Parallel genetic evolution algorithm

Input: J, maximum round G
Output: Final elite set ES
1: Initialize g = 1
2: while g ≤ G do
3: // CA evolves
4: for CAk in CA do
5: Apply Algorithm 1
6: Apply Algorithm 2
7: Apply Algorithm 3
8: Apply Algorithm 4
9: Apply Algorithm 5

10: Submit Pk
A to JSA forming collection Cg =

N
∪

k=1
Pk

A

11: end for
12: // JSA generates ES
13: Initialize ÊS = ∅
14: Construct fitness objective following Equation (11)
15: for c in Cg do
16: Calculate fitness values f (c)
17: end for
18: Sort f (c) in ascending order

19: Obtain ESg containing
∣∣∣Pk

A

∣∣∣ chromosomes with top f (c)

20: g = g + 1
21: Append ESg to ÊS
22: end while
23: Deleting duplicate chromosomes in ÊS forming ES
24: Return ES

3.3. Negotiated Decision-Making

In this section, a negotiated decision-making approach is designed to obtain a final
solution that both exhibits consensuses among stakeholders and maximizes social welfare
from the elite set. The proposed approach consists of two parts: negotiated sorting and
GRA decision-making.

3.3.1. Negotiated Sorting

To ensure the confidentiality of agents’ objective information, this study employs a
ranking-based method to represent the preferences of agents. Specifically, for each indi-
vidual in the final elite set ES, all agents sort them according to their respective objectives,
thereby generating a negotiated sorting matrix, as shown in Equation (12).

ES1 · · · ESp · · · ES|ES|

SM =

CA1
...

CAl
...

CAN
JSA



r1,1 · · · r1,p · · · r1,|ES|
... · · ·

... · · ·
...

rl,1 · · · rl,p · · · rl,|ES|
... · · ·

... · · ·
...

rN,1 · · · rN,p · · · rN,|ES|
rN+1,1 · · · rN+1,p · · · rN+1,|ES|


(12)

where ESp represents the pth solution in ES and rl,p is the ranking of ESp by agent l, with
smaller values indicating the agent l. A smaller rl,p signifies a smaller F(ESp) and a higher
U(ESp), where F(ESp) is the objective function value corresponding to the agent l in the
solution ESp and U(ESp) represents the transformed utility function value (as described in
Section 2).
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Given the sorting matrix SM, JSA conducts non-dominated sorting [33] to obtain a
matrix NSM, as shown in Equation (13), that represents the non-dominated solutions and
the corresponding ranking.

NS1 · · · NSp · · · NS|NS|

NSM =

CA1
...

CAl
...

CAN
JSA



r1,1 · · · r1,p · · · r1,|NS|
... · · ·

... · · ·
...

rl,1 · · · rl,p · · · rl,|NS|
... · · ·

... · · ·
...

rN,1 · · · rN,p · · · rN,|NS|
rN+1,1 · · · rN+1,p · · · rN+1,|NS|


(13)

where NSp denotes the pth solution in the non-dominated set NS.

3.3.2. GRA Decision Making

In this section, a GRA decision-making method is developed. The proposed method
enables the generation of a solution with high social welfare from the non-dominated set,
without revealing private information. The process is summarized as follows:

Step 1: Generate correlation coefficients: the correlation coefficient ηl,p of each rl,p
in NSM is calculated by Equation (14). A higher value of ηl,p indicates that the agent l
processes a greater utility value on the solution NSp.

ηl,p =
min(rl,1,...,rl,p ,...,rl,|NS|)+ρ∗max(rl,1,...,rl,p ,...,rl,|NS|)

rl,p+ρ∗max(rl,1,...,rl,p ,...,rl,|NS|)

(l = 1, 2, . . . , N, N + 1)
(14)

where ηl,p represents the degree of correlation between the ranking value of the pth solution

in the lth agent-sorting matrix and the ideal value, and min
(

rl,1, . . . , rl,p, . . . , rl,|NS|

)
and

max
(

rl,1, . . . , rl,p, . . . , rl,|NS|

)
denote the minimum and maximum ranking values in the lth

agent-sorting matrix, respectively. ρ is the discrimination coefficient and ρ = 0.5.
Step 2: Calculate the objective weights: the formula for computing the objective weight

λl for the agent l is given in Equation (15).

λl =

1
|NS|

|NS|
∑

p=1
ηl,p

N+1
∑

l=1
( 1
|NS|

|NS|
∑

p=1
ηl,p)

=
1

N + 1
, (l = 1, 2, . . . , N, N + 1) (15)

where λl represents the weight of the lth agent objective matrix calculated based on the
correlation coefficients. It can be observed that the weight of each agent is 1/(N + 1), which
is consistent with the importance level of each agent.

Step 3: Calculate the grey correlation: the grey correlation δ(NSp) of the solution NSp

is calculated following Equation (16).

δ(NSp) =
N+1

∑
l=1

ηl,p·λl , (p = 1, 2, . . . , |NS|) (16)

A positive correlation between δ(NSp) and SW is evident, which proves that the
greater the δ(NSp), the higher the social welfare of the solution NSp.

Step 4: Determine the final solution: select the solution NSp∗ with max(δ(NSp)) as
the final solution.
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3.3.3. Negotiated Decision-Making Algorithm

Based on the description above, the process of the negotiated decision-making algo-
rithm is shown in Algorithm 7.

Algorithm 7: Negotiated decision-making algorithm

Input: Final elite set ES
Output: Final solution π∗

2: for CAk in CA do
2: for ESp in ES do
3: Sort ES according to (12)
4: Submit rl,p (l = k) to JSA
5: end for
6: end for
7: JSA do
8: Generate a matrix SM based on rl,p
9: Perform non-dominated sorting on SM to produce NSM (13) and NS
10: Calculate ηl,p with (14)
11: Calculate λl with (15)
12: for π in NS do
13: Calculate δ(π) with (16)
14: end for
15: Select π∗ with max(δ(π))
16: Return π∗

4. Computational Experiments

In this section, computational experiments are presented to evaluate the performance
of the proposed GDOA in addressing the MJSSP-PI. Two types of experiments are carried
out: the convergence and evenness of the non-dominated solutions generated by GDOA are
analyzed, and the social welfare of the schedule generated by GDOA is verified. During the
experiments, GDOA is compared against a well-known centralized algorithm NSGA-III [34]
and two decentralized algorithms, namely, a generic negotiation mechanism (GNMS) [20]
and a genetic decision-based two-stage negotiation algorithm (GTNA) [13]. All algorithms
are implemented in Python 3.9, and the experiments are carried out on a PC with an Intel
Core i7-7700 3.60 GHz CPU and 16 GB of RAM.

4.1. Experiment Setup
4.1.1. Problem Instances

A total of 734 problem instances of MJSSP-PI are constructed based on the datasets
of the classic job shop scheduling problem in [35]. These instances involve a job shop
agent and a varying number of consumer agents, ranging from 2 to 16. Therefore, the
total number of agents ranges from 3 to 17. The number of jobs ranges from 10 to 50, and
the number of machines includes m∈{5, 10, 15, 20}. The due date of the job Ji is given

by di = U[0.5, 9]×
m
∑

j=1
pij, and the weight is randomly generated from ωi ∼ U[1, 5]. The

characteristics of the machine
{

SEj, PEj, IEj
}

are generated following SEj ∼ U[100, 200],
PEj ∼ U[5, 8], and IEj ∼ U[1, 3]·PEj, where SEj and PEj are integers, and IEj is a decimal
number. The combinations of the parameters are shown in Table 1.
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Table 1. Combinations of parameters for problem instances.

n m N Number of CA
(JSA = 1) Number of Instances

10 5, 10 2–3 60
15 5, 10, 15 2–5 32
20 5, 10, 15, 20 2–6 180
30 10, 15, 20 2–10 126
40 15, 20 2–13 96
50 10, 15,2 0 2–16 240

4.1.2. Performance Measurement

The quality of the non-dominated solution set generated by the proposed GDOA
has a substantial impact on the final solution since the latter is selected from the former.
Therefore, the evaluation must consider two dimensions: evaluate the generated non-
dominated solution set and measure the final schedule.

First, generational distance (GD) and spacing are used to measure the closeness and
evenness of the non-dominated solutions, respectively [36]. They are calculated as follows:

GD(x) =

√
|NSx |

∑
i=1

( min
pj∈Ppar

N+1
∑

l=1
(F(pl

j)− F(pl
i))

2
)

|NSx|
(17)

where NSx denotes the non-dominated set produced by the algorithm x, pi represents the
ith solution in NSx, pj signifies the jth solution in the Pareto set Ppar, and F

(
pl

i

)
and F

(
pl

j

)
correspond to the objective value of solutions pi and pj at the lth objective, respectively. A
lower value of GD indicates superior performance.

Spacing(x) =

√√√√ 1
|NSx|

|NSx |

∑
i=1

(
di − d

)2
, d =

1
|NSx|

|NSx |

∑
i=1

di (18)

where di is the Euclidean distance between the solution pi and its nearest consecutive
solution in NSx. A smaller value of spacing indicates a more uniform distribution of the
non-dominated solutions.

Since the true Pareto solution set is unknown, the Pareto set in this paper is obtained
by combining the non-dominated solution sets generated by GDOA, NSGA-III, GNMS,
and GTNA algorithms.

Second, the ratio of the social welfare of the schedule and the best solution in the
Pareto set is computed to measure the final schedule. This metric is presented below:

RSW(x) =
SW(π∗

x)

maxSW
(

Ppar
) (19)

where π∗
x is the schedule produced by the algorithm x, SW(π∗

x) means the social welfare of
π∗

x , and maxSW
(

Ppar
)

indicates the maximum social welfare in the Pareto set Ppar.

4.1.3. Parameter Setting

The main parameters of each algorithm are shown in Table 2, in which G, P, P/N, pc,
and pm represent the iteration round, initial population size, subpopulation size, crossover
probability, and mutation probability, respectively. Note that parameters pr, Q1, and Q2
are specific to GDOA, indicating the reception probability, crossover round, and mutation
round, respectively. Each benchmark instance is independently run five times and the
average value is taken as the final result.
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Table 2. Parameter settings.

Parameter GDOA NSGA-III GNMS GTNA

G 50 200 50 50
P 100 100 100 100 × (N + 1)

P/N 100 100 100 100 × (N + 1)
pc 0.5 0.5 0.5 0.5
pm 0.1 0.1 0.1 0.1
pr 0.6 -- -- --
Q1 50 -- -- --
Q2 100 × N -- -- --

4.2. Analysis of Results
4.2.1. Experiment 1: Non-Dominated Solution Set

The first experiment’s purpose is to verify the convergence and evenness of the
non-dominated solutions. Table 3 shows the comparative results between GDOA and
the centralized approach, NSGA-III. In terms of metric GD, it is evident that GDOA
consistently achieves higher GD values compared to NSGA-III for problem instances with
a smaller number of agents (l ≤ 7). This can be attributed to the inherent limitations
of decentralized decision-making under incomplete information, which gives GDOA a
disadvantage over centralized algorithms. However, for instances with more agents (l > 8),
GDOA demonstrates better convergence by exhibiting lower GD values compared to
NSGA-III. This highlights the superior convergence performance of GDOA, particularly
in high-dimensional objective spaces where NSGA-III faces challenges. Additionally, it is
noteworthy that the GD values of GDOA show a certain decreasing trend as the number of
agents increases, indicating the continuous improvement in its convergence.

Table 3. Comparison of GDOA with NSGA-III.

l
GD Spacing

GDOA NSGA-III GDOA NSGA-III

3 0.286 0.181 0.069 0.028
4 0.329 0.187 0.069 0.028
5 0.235 0.139 0.035 0.026
6 0.181 0.091 0.030 0.032
7 0.153 0.075 0.026 0.031
8 0.078 0.097 0.022 0.033
9 0.120 0.153 0.024 0.033
10 0.076 0.152 0.027 0.038
11 0.089 0.158 0.048 0.029
12 0.043 0.123 0.047 0.035
13 0.023 0.152 0.034 0.039
14 0.052 0.133 0.028 0.048
15 0.022 0.156 0.031 0.058
16 0.026 0.142 0.036 0.059
17 0.025 0.157 0.032 0.056

By analyzing the metric of spacing, it can be seen that the spacing of GDOA is smaller
than that of NSGA-III in 70.7% of problem instances. In 29.3% of specific cases involving
l = 3, 4, 5, 11, and 12, NSGA-III outperforms GDOA. This can be attributed to its strategy of
selecting optimal solutions based on reference points, resulting in a more evenly distributed
set of dominated solutions. However, when considering the entirety of cases, GDOA
consistently maintains a smaller spacing. These findings suggest that the non-dominated
solutions generated by GDOA display a more uniform distribution compared to NSGA-III.
The underlying cause for this observation lies in that each agent evolves toward its objective
within the proposed GDOA, and the continuous expansion of the solution space leads to
an increased number of non-dominated solutions.
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Figure 9 presents the comparison of GD and spacing between GDOA and two state-
of-the-art decentralized approaches, GNMS and GTNA. As can be seen from the different
lines, showing the results compared to GNMS and GTNA, GDOA has significantly smaller
values for both the GD and spacing metrics. This firmly establishes that the proposed
GDOA outperforms existing decentralized methods in terms of convergence and distribu-
tivity for addressing the MJSSIP-PI. Furthermore, the decreasing orange line validates the
effectiveness of the GDOA in handling scenarios with a larger number of agents.
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In summary, Experiment 1 supports the efficacy of the proposed decentralized ap-
proach GDOA in generating non-dominated solutions with favorable convergence and
evenness. Consequently, selecting the final solution from these non-dominated solutions
is reasonable.

4.2.2. Experiment 2: Final Solution

In the second experiment, the quality of the generated final solution is assessed using
the RSW criterion. Due to the inability of NSGA-III to determine the final solutions, we
only compare GDOA with the two decentralized approaches, GNMS and GTNA.

Figure 10 illustrates the social welfare variation in the schedule obtained through
different approaches. It is evident that the RSW of GDOA is considerably higher than
those of GNMS and GTNA, implying that GDOA can generate a higher-quality solution
compared to the other two decentralized algorithms. Additionally, the RSW of GDOA
shows an increasing trend with the growing consumer agents. The reason is that GDOA
can generate a larger and better non-dominated solution set. As a result, the selected final
solution demonstrates superior performance.

As the instances involve various combinations of jobs and machines (n × m), an
analysis of the performance of the proposed GDOA in different cases is needed. The
maximum n × m in each combination of rows is chosen according to Table 1. Figure 11
illustrates the variation in RSW achieved by GDOA across instances of different n × m.
In general, the RSW of the obtained solution increases with the growing number of jobs
and machines and tends to stabilize. With a constant m = 20, the RSW of GDOA rises
slightly at an increasing number of jobs n, and the mean RSW remains consistently above
0.90. This indicates that the advantage of the GDOA algorithm in solving large-scale
instances becomes more pronounced. Moreover, the RSW demonstrates more pronounced
fluctuations in scenarios with smaller n × m, whereas this fluctuation gradually diminishes
as n × m increases. For instance, when n × m = 10 × 10, the RSW ranges from 0.55 to 0.92.
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Similarly, for n × m = 20 × 20, the average RSW ranges from 0.80 to 1.00. Furthermore, for
n × m = 50 × 20, the average RSW ranges between 0.90 and 1.00. This further highlights
the stability of the proposed algorithm in large-scale scenarios.
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5. Conclusions

This paper presents a two-stage GA-based decentralized optimization algorithm to
address MJSSP-PI, including the parallel genetic evolution algorithm and the negotiated
decision-making algorithm. The first stage enables consumer agents to evolve indepen-
dently and in parallel to achieve individual objectives. The method follows five steps:
sub-population, rearrangement, crossover between agents, mutation within agent, and
agent-based block insertion, where each agent generates solutions satisfying their objectives.
The development of crossover between consumer agents and agent-based block insertion
strongly expands the search space. Within the second stage, the final solution with high social
welfare is produced by non-dominated sorting and GRA-decision making. Computational
experiments on 734 problem instances are conducted. The results indicate that the proposed
GDOA can effectively generate high-quality solutions, and it exhibits remarkable stability
when dealing with large-scale problems that involve a large number of agents.

In addition to the aforementioned advantages, this study also identifies several limita-
tions. Notably, when implementing the proposed algorithms in large-scale experiments, a
notable increase in computation time is observed as the number of agents expands. This
underscores the need for the further optimization of the algorithms to mitigate compu-
tational costs effectively. Moreover, the selection of parameters significantly influences
experimental outcomes, underscoring the importance of meticulous parameter tuning in
future research endeavors. Furthermore, owing to the involvement of intricate processes
and constraints pertaining to temporal and financial resources, the algorithm has yet to be
validated in real-world production scenarios.



Mathematics 2024, 12, 971 19 of 21

In considering future research directions, several promising avenues warrant explo-
ration. Our intentions encompass the development of efficient parallelization techniques
or distributed computing frameworks aimed at mitigating algorithmic computation time.
Furthermore, the integration of advanced machine learning methodologies for automated
parameter selection and optimization holds potential to enhance algorithmic stability
and reliability across diverse problem instances. Additionally, the incorporation of real-
world production application scenarios within experimental designs stands as a pivotal
endeavor to further corroborate the practical utility and applicability of the proposed
algorithm. Moreover, future research could also explore the broader implications of decen-
tralized optimization algorithms in various domains, including supply chain management,
transportation, and energy distribution. By leveraging interdisciplinary collaborations
and integrating insights from fields such as operations research, computer science, and
economics, we can further advance the understanding and application of decentralized
optimization techniques in complex real-world systems.
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Indexes
i Index of jobs
j Index of machines
i, j Index of operations
h Index of processing position of machine
Parameters
n Total number of jobs
N Number of CA
m Number of machines
pi,j Processing time of operation Oi,j
di Due date of operation Oi,j
ωi Weight of job Ji
SEj Starting energy consumption of Mj
PEj Unit processing energy consumption of Mj
IEj Unit idle energy consumption of Mj
Variables
Ci Completion time of Ji
Sh

j Job processed on the hth position of Mj

OSh
j ,j Operation of job Sh

j that processed on the hth position of Mj

stSh
j ,j Starting time of the operation OSh

j ,j

ctSh
j ,j Completion time of the operation OSh

j ,j

sti,j Starting time of the operation Oi,j
cti,j Completion time of the operation Oi,j
IT j Total idle time of Mj
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