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Abstract: This paper proposes a simple yet accurate finite element (FE) formulation for the ther-
momechanical analysis of laminated composites and sandwich plates. To this end, an enhanced
first-order shear deformation theory including the transverse normal effect based on the mixed
variational theorem (EFSDTM_TN) was employed in the FE implementation. The primary objective
of the FE formulation was to systematically interconnect the displacement and transverse stress
fields using the mixed variational theorem (MVT). In the MVT, the transverse stress field is derived
from the efficient higher-order plate theory including the transverse normal effect (EHOPT_TN),
to enhance the solution accuracy, whereas the displacement field is defined by the first-order shear
deformation theory including the transverse normal effect (FSDT_TN), to amplify the numerical
efficiency. Furthermore, the transverse displacement field is modified by incorporating the compo-
nents of the external temperature loading, enabling the consideration of the transverse normal strain
effect without introducing additional unknown variables. Based on the predefined relationships,
the proposed FE formulation can extract the C0-based computational benefits of FSDT_TN, while
improving the solution accuracy for thermomechanical analysis. The numerical performance of
the proposed FE formulation was demonstrated by comparing the obtained solutions with those
available in the literature, including 3-D exact solutions.

Keywords: laminated composites and sandwich plates; shear deformation theory; mixed variational
theorem; thermo-mechanical behavior; transverse normal strain; finite element analysis

MSC: 74-10

1. Introduction

In recent years, the utilization of high-strength and lightweight structures has contin-
ued to improve energy efficiency in line with a wide range of environmental issues. In this
regard, fiber-reinforced composite materials capable of providing an optimized stiffness-to-
weight ratio through a synergistic combination of two or more materials, such as reinforcing
fibers and resins, are attracting considerable attention as prospective next-generation ma-
terials in various engineering fields. Continuous fiber-reinforced composites are widely
employed in various high-value industries, including automotive, civil, and aerospace,
owing to their ability to achieve excellent structural properties and multifunctional char-
acteristics. Despite the aforementioned advantages, the distribution of transverse stress
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in laminated composite structures can give rise to inherent mechanical defects, notably
layer slip and delamination. Therefore, accurate prediction of transverse stress is a crucial
concern in the structural design process of laminated composite structures [1,2].

Over the past half-century, a range of analysis models based on the equivalent single-
layer theory have been developed to precisely elucidate the transverse behaviors of lam-
inated composite plates [3–28]. Starting from the well-known classical laminated plate
theory (CLPT) and progressing through the first-order shear deformation theory (FSDT), a
series of higher-order polynomial theories, including the higher-order shear deformation
theory (HSDT), have been developed sequentially [3–8]. However, most of these theories
exhibit limitations in predicting interlaminar stresses because of their inability to enforce
transverse shear stress conditions at both the surface and layer interfaces. To address
this issue, a series of refined zigzag theories (EHOPT: efficient higher order plate theory,
RHSDT: refined higher-order shear deformation theory, RZT: refined zigzag theory) have
been proposed [14–18]. These theories yield reliable results in predicting the global and
local behaviors of laminated composites and sandwich structures by introducing a zigzag
displacement field that varies discontinuously at the interlaminar interfaces. However, it
requires the use of a nonconventional C1-class shape function (a slope continuity condi-
tion along the boundary of the element) in the finite element (FE) formulation, which is
incompatible with commercial FE software such as ANSYS 2023 R1 (Ansys, PA, USA) and
ABAQUS 2022 (Dassault Systemes, Pairs, France). As an attractive scheme to circumvent
C1-class problems in FE analysis, enhanced analysis models (EFSDT: enhanced first-order
shear deformation theory, EFSDTM: enhanced first-order shear deformation theory based
on mixed variational theorem) were developed for the multiphysics analysis of laminated
composites and sandwich plates [19–21]. Enhanced theories can simultaneously improve
the solution accuracy and computational efficiency by systematically deriving reasonable
energy relationships between the conventional FSDT and EHOPT. Consequently, these
theories allow for a C0-based finite element formulation based on an FSDT-like governing
equation, providing clear advantages in terms of compatibility with commercial finite
element (FE) software (ANSYS 2023 R1 and ABAQUS 2022).

With technological advancements, laminated composites and sandwich structures can
be exposed to various external environments, and there is a need to predict their multi-
physical behaviors during the design process. In high-temperature environments, thermal
deformation and stress induce significant defects. Consequently, thermomechanical anal-
ysis should be considered to ensure reliable design solutions for laminated composites
and sandwich structures exposed to such conditions. Transverse normal deformation is a
very important consideration in thermal analysis. Therefore, well-known analysis models
(CLPT, FSDT, HSDT, EHOPT, etc.) that ignore the transverse normal strain effect are not
suitable for predicting the thermal behavior of laminated composites and sandwich struc-
tures. In this regard, many refined theories have been proposed to precisely describe the
thermomechanical responses of laminated composites and sandwich structures [29–56]. As
a higher-order polynomial model, the Lo–Christensen–Wu (LCW) theory attempts to con-
sider the transverse normal strain effect effectively by assuming a smooth parabolic form
of the transverse displacement field [29]. Furthermore, various refined higher-order and
zigzag theories have been proposed for the thermomechanical analysis of laminated com-
posites and sandwich structures [29–48]. As one of the most attractive zigzag theories, the
efficient higher-order zigzag theory (EHOZT) proposed by Oh and Cho can provide reliable
solutions for fully coupled electro-thermo-mechanical problems by enforcing transverse
shear stress conditions at both the surface and layer interfaces [40–43]. Kapuria and Achary
developed a computationally efficient zigzag theory to predict the thermal behavior of
laminated composite structures [44]. Although this theory considers the transverse normal
strain effect without introducing additional variables into the displacement fields, its appli-
cability in analyzing sandwich plates is limited. This is because the use of different thermal
expansion coefficients in adjacent layers can potentially violate the transverse displacement
continuity conditions. Among the various enhanced theories for the thermomechanical
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analysis of laminated composites and sandwich structures [49–51], Han et al. proposed an
enhanced first-order shear deformation theory including the transverse normal strain effect
based on the mixed variational theorem (EFSDTM_TN) to take computational benefits of
conventional FSDT [50]. The main contribution of EFSDTM_TN is that it considers the
transverse normal strain effect without introducing any additional unknown variables by
extending the transverse normal displacement field under the prescribed thermal condi-
tions. Furthermore, the transverse displacement continuity conditions are automatically
satisfied in the sandwich plates by introducing layer-wise constants. Consequently, EFS-
DTM_TN can provide reliable solutions for analyzing the thermomechanical behaviors of
laminated composite and sandwich structures while ensuring the computational benefits
of the C0-based 5-DOF element in the FE implementation.

To further extend the applicability of the EFSDTM_TN [50], an FE formulation based on
the EFSDTM_TN was proposed and numerically tested. An 8-node serendipity element was
utilized in the FE formulation to enhance the computational efficiency in deriving the stress
distributions. The primary objective of the proposed FE analysis model is to ensure both the
solution accuracy and computational efficiency by systematically blending FSDT_TN and
EHOPT_TN based on the mixed variational theorem. Furthermore, the thermal responses
of laminated composites and sandwich structures can be described more precisely by
improving the transverse displacement field. To demonstrate the numerical performance
of the proposed FE analysis model, representative thermal-mechanical problems for 2-D
laminated composite and sandwich structures were considered as numerical examples.
The accuracy and efficiency of the proposed FE analysis model were compared with other
numerical results available in the literature, including 3-D exact solutions [57,58] together
with the analytical solution of the EFSDTM_TN [50].

2. EFSDTM_TN for the Thermo-Mechanical Problem
2.1. Mixed Variational Theorem

Laminated composites and sandwich plates were considered as numerical models
of thermomechanical problems. The geometric shapes and reference coordinates of the
laminated plates are shown in Figure 1. Unless otherwise specified in the tensor notation,
the Greek indices use values from set {1, 2}, whereas the Latin indices are assigned values
from set {1, 2, 3}. Lα and h represent the in-plane length and thickness of the laminated
plates, respectively. x3 denotes the transverse position which takes values within the
range [−h/2, h/2].
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Figure 1. Geometric shape and reference coordinates of laminated plates.

In the EFSDTM_TN, displacement and transverse stress fields are assumed indepen-
dently, with the aim of enhancing both solution accuracy and computational efficiency.
These independent fields can then be systematically interconnected based on the mixed
variational theorem (MVT). The first variation of the 2-D Hellinger–Reissner functional is
defined by Equation (1).
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δΠ2D
R =

∫
Ω

〈
σ2D

αβ δεαβ + σ∗
α3δγ3α + (γ3α − γ∗

3α)δσ∗
3α

〉
dΩ −

∫
Sσ

p̃iδuidSσ = 0 (1)

where

⟨·⟩ =
∫ h/2

−h/2
(·)dx3, εγω =

1
2
(uγ,ω + uω,γ) , γ3α = uα,3 + u3,α, γ∗

3α = C−1
3α3βσ∗

3β (2)

In Equation (1), Ω represents the reference plane of the laminated plates, and me-
chanical loading (p̃i) is applied to the boundary area (Sσ). Additionally, (·) and (·)∗ are
components defined by the displacement and transverse stress fields, respectively. The
mixed part of the MVT plays a critical role in defining reasonable relationships between
two independent fields [20,50,51].

2.2. Improvement of Transverse Displacement Field

In contrast to the mechanical behavior, the transverse normal strain effect is dominant
in the thermal deformation of the laminated composite and sandwich plates. Therefore, this
effect should be considered to provide a reliable solution for predicting thermal behavior.
Intuitively, assuming a smoothly varying parabolic form for the transverse displacement
field can help in this regard. Although this approach is able to predict the thermal behavior
of laminated composites and sandwich plates precisely, it involves additional unknown
variables as well as complicated 3-D governing equations. Therefore, to provide simple
yet accurate solutions for thermal problems, a modified transverse displacement field is
introduced as follows [50].

u3 = u(0)
3 + φ(k)

[
T0x3 +

1
2

T1x2
3

]
+

N−1

∑
k=1

S(k)
3 H(x3 − x3(k)) (3)

The underlined expressions are newly considered in Equation (3) for a reliable thermal
analysis of the laminated composites and sandwich plates. Other than the underlined
expressions, this represents a typical transverse displacement field that satisfies the as-
sumption of a plane-stress state (u3 ≈ u(0)

3 ). Based on Equation (3), the prescribed thermal
conditions (T0 and T1) are utilized to define a smoothly varying parabolic field to consider
the transverse normal strain effect without introducing additional unknown variables.
Here, N represents the total number of layers and H(x3 − x3(k)) is the Heaviside step
function. T0 and T1 are the uniform and linear temperature loadings, respectively. In
addition, φ(k) is a layer-wise constant that automatically satisfies the plane-stress condition.
The value of φ(k) can vary depending on the material composing each layer because it
is a function of the material properties and thermal expansion coefficients. Therefore, to
fulfill the continuity conditions of u3 for general layup cases such as sandwich plates, a
layer-wise constant (S(k)

3 ) was additionally introduced. This modified form of the transverse
displacement field enables simple yet accurate thermomechanical analysis of laminated
composites and sandwich plates.

2.3. Transverse Stress Field

In this subsection, a reliable transverse stress field based on EHOPT_TN is inde-
pendently assumed in the MVT to ensure solution accuracy. EHOPT_TN can rigorously
satisfy the shear-free conditions at the surface, as well as shear continuity conditions at
the layer interfaces by introducing third-order zigzag field in the in-plane displacement
field. Furthermore, a modified form of the transverse displacement field was employed to
provide reliable solutions to thermomechanical problems. The initial displacement field of
EHOPT_TN is expressed as [50]
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u∗
α = u∗(0)

α + u∗(1)
α x3 + u∗(2)

α x2
3 + u∗(3)

α x3
3 +

N−1
∑

k=1
S(k)

α (x3 − x3(k))H(x3 − x3(k)),

u∗
3 = u∗(0)

3 + φ(k)
[

T0x3 +
1
2 T1x2

3

]
+

N−1
∑

k=1
S(k)

3 H(x3 − x3(k))
(4)

where S(k)
α is a linear zigzag field that enforces shear continuity conditions at the layer

interfaces. By applying the shear stress conditions to the initial displacement field given
in Equation (4), S(k)

α and S(k)
3 can be defined through relations in terms of the primary

unknown variables (u∗(k)
i ) and prescribed thermal conditions (T0, T1):

S(k)
α = a(k)αβ u∗(3)

β + b(k)αβ T0,β + c(k)αβ
1
2 T1,β,

S(k)
3 = b(k)33 T0 + c(k)33

1
2 T1

(5)

Detailed definitions of a(k)αβ , b(k)αβ , c(k)αβ and b(k)33 , c(k)33 are provided in [50].
Furthermore, to satisfy the plate equilibrium state rigorously when applying MVT

to the general configuration of laminated structures, in-plane correction factors were
introduced in EHOPT_TN. Consequently, Equations (4) and (5) yield the following refined
displacement field for EHOPT_TN [50]:

u∗
α = u∗(0)

α − u∗(0)
3,α x3 + Φ(1)

αβ u∗(3)
β + Φ(2)

αβ T0,β + Φ(3)
αβ

1
2 T1,β − CN

α − CM
α x3,

u∗
3 = u∗(0)

3 +

[
φ(k)x3 +

N−1
∑

k=1
b(k)33 H(x3 − x3(k))

]
T0 +

[
φ(k)x2

3 +
N−1
∑

k=1
c(k)33 H(x3 − x3(k))

]
1
2 T1

(6)

where

Φ(1)
αβ =

(
x3

3 −
3h2

4 x3

)
δαβ +

N−1
∑

k=1
a(k)αβ · f

(
x3, x3(k)

)
,

Φ(2)
αβ =


[
− h

2

(
(φ(N)−φ(1))

2 x3 +
(φ(N)+φ(1))

h
x2

3
2

)]
δαβ

+
N−1
∑

k=1
b(k)αβ · f

(
x3, x3(k)

)
+

[
N−1
∑

k=1
b(k)33

(
− x3

2 − x2
3

2h

)]
δαβ

,

Φ(3)
αβ =


[
− h2

4

(
(φ(N)+φ(1))

2 x3 +
(φ(N)−φ(1))

h
x2

3
2

)]
δαβ

+
N−1
∑

k=1
c(k)αβ · f

(
x3, x3(k)

)
+

[
N−1
∑

k=1
c(k)33

(
− x3

2 − x2
3

2h

)]
δαβ


(7)

in which

f
(

x3, x3(k)

)
= − x3

2
−

x2
3

2h
+ (x3 − x3(k))H(x3 − x3(k)) (8)

where δαβ is the Kronecker delta function and the in-plane correction factor CN
α , CM

α can be
defined as

CN
α = cN(u∗)

αβ u∗(3)
β + cN(To)

αβ To,β + cN(T1)
αβ

(
1
2 T1,β

)
,

CM
α = cM(u∗)

αβ u∗(3)
β + cM(To)

αβ To,β + cM(T1)
αβ

(
1
2 T1,β

) (9)

cN,M(u∗)
αβ , cN,M(T0)

αβ , and cN,M(T1)
αβ can be determined by matching the resulting forces and

moments in the process of establishing a relationship between the displacement and
transverse stress fields based on Saint-Venant’s principle [50]. Based on the introduction
of these in-plane correction factors, it is possible to provide highly reliable solutions for
predicting the thermomechanical behavior of laminated composites and sandwich plates.

From Equation (6), the transverse stress tensors used in the MVT can be defined
as follows:
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γ∗
β3 = Φ(1)

βγ,3u∗(3)
γ + Φ(2)

βγ,3To,γ + Φ(3)
βγ,3

(
1
2 T1,γ

)
− CM

β ,

σ∗
α3 = Cα3β3

[
γ∗

β3

]
= Cα3β3

[
Φ(1)

βγ,3u∗(3)
γ + Φ(2)

βγ,3To,γ + Φ(3)
βγ,3

(
1
2 T1,γ

)
− CM

β

] (10)

2.4. Displacement Field

Simple displacement field based on FSDT_TN were also considered in MVT to retain
computational efficiency [50]. The displacement field based on FSDT_TN is given as

uα = u(0)
α + u(1)

α x3,

u3 = u(0)
3 + φ(k)

[
T0x3 +

1
2 T1x2

3

]
+

N−1
∑

k=1
S(k)

3 H(x3 − x3(k))
(11)

where the components of FSDT_TN are indicated by overbars to clearly distinguish between
the displacement and transverse stress fields in MVT. From Equation (11), the strain and
in-plane stress tensors used in the MVT can be derived as

εαβ = ε
(0)
αβ + ε

(1)
αβ x3,

γ3α = γ
(0)
3α +

[
φ(k)x3 +

N−1
∑

k=1
b(k)33 H(x3 − x3(k))

]
T0,α +

[
φ(k)x2

3 +
N−1
∑

k=1
c(k)33 H(x3 − x3(k))

]
1
2 T1,α,

σαβ = Qαβγω(εγω − αγω∆T)

(12)

where αγω and ∆T are the thermal expansion coefficient and temperature distribution.

2.5. Relationships between Displacement and Transverse Stress Fields

A reasonable relationship between EHOPT_TN and FSDT_TN can be systematically
defined using the mixed part in the MVT as a constraint equation. The related constraint
equation is expressed as the following [50]:∫

Ω
⟨(γ3α − γ∗

3α)δσ∗
3α⟩dΩ = 0 (13)

where γ∗
3α and σ∗

3α are defined in Equation (10), while γ3α is defined in Equation (12). In
the constraint equation, the transverse shear resultant (Q∗

α) derived from EHOPT_TN can
be expressed as

Q∗
α = ⟨σ∗

3α⟩ = Â(0)
α3β3u∗(3)

β + Â(1)
α3β3

(
T0,β

)
+ Â(2)

α3β3

(
1
2

T1,β

)
(14)

in which
Â(0)

α3β3 =
〈

Cα3γ3

(
Φ(1)

γβ,3 − cM(u∗)
γβ

)〉
,

Â(1)
α3β3 =

〈
Cα3γ3

(
Φ(2)

γβ,3 − cM(To)
γβ

)〉
,

Â(2)
α3β3 =

〈
Cα3γ3

(
Φ(3)

γβ,3 − cM(T1)
γβ

)〉 (15)

Equations (13)–(15) yield the relationships between u∗(3)
α and γ

(0)
3α as follows:

u∗(3)
β = Γ(1)

βα γ
(0)
α3 + Γ(2)

βα (To,α) + Γ(3)
βα

(
1
2

T1,α

)
(16)

where
Γ(1)

βα =
(

Ã(0)
β3γ3

)−1[
Â(0)

γ3α3

]
,

Γ(2)
βα =

(
Ã(0)

β3γ3

)−1[
B̂(0)

γ3α3 − Ã(1)
γ3α3

]
,

Γ(3)
βα =

(
Ã(0)

β3γ3

)−1[
D̂(0)

γ3α3 − Ã(2)
γ3α3

] (17)
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in which

Ã(0)
γ3β3 =

〈(
Φ(1)

γα,3 − cM(u∗)
γα

)
Cα3µ3

(
Φ(1)

µβ,3 − cM(u∗)
µβ

)〉
,

Ã(1)
γ3β3 =

〈(
Φ(1)

γα,3 − cM(u∗)
γα

)
Cα3µ3

(
Φ(2)

µβ,3 − cM(T0)
µβ

)〉
,

Ã(2)
γ3β3 =

〈(
Φ(1)

γα,3 − cM(u∗)
γα

)
Cα3µ3

(
Φ(3)

µβ,3 − cM(T1)
µβ

)〉
,

B̂(0)
γ3β3 =

〈(
Φ(1)

γα,3 − cM(u∗)
γα

)
Cα3β3

(
φ(k)x3 +

N−1
∑

k=1
b(k)33 H(x3 − x3(k))

)〉
,

D̂(0)
γ3β3 =

〈(
Φ(1)

γα,3 − cM(u∗)
γα

)
Cα3β3

(
φ(k)x2

3 +
N−1
∑

k=1
c(k)33 H(x3 − x3(k))

)〉
(18)

Consequently, the transverse shear resultant (Q∗
α) can be expressed in terms of the

FSDT_TN variables by substituting Equation (16) into Equation (14) as follows:

Q∗
α = A∗

α3β3γ
(0)
β3 + B∗

α3β3
(
To,β

)
+ D∗

α3β3

(
1
2

T1,β

)
(19)

where
A∗

α3β3 = Â(0)
α3µ3

(
Ã(0)

µ3γ3

)−1
Â(0)

γ3β3 ,

B∗
α3β3 = Â(0)

α3µ3

(
Ã(0)

µ3γ3

)−1[
B̂(0)

γ3β3 − Ã(1)
γ3β3

]
+ Â(1)

α3β3,

D∗
α3β3 = Â(0)

α3µ3

(
Ã(0)

µ3γ3

)−1[
D̂(0)

γ3β3 − Ã(2)
γ3β3

]
+ Â(2)

α3β3

(20)

A∗
α3β3, B∗

α3β3 and D∗
α3β3 are the effective shear stiffness moduli, which depend on

the in-plane correction factors. Thus, these in-plane correction factors and effective shear
stiffness moduli should be updated by applying iterative calculations to improve the
solution accuracy. Equation (20) indicates that the effective shear correction factor (SCF)
can be calibrated automatically using EFSDTM_TN [50].

Based on the reasonable relationship between EHOPT_TN and FSDT_TN, the 2-D
Hellinger–Reissner functional can be simplified as

δΠ2D
R ≈

∫
Ω

〈
σ2D

αβ δεαβ + σ∗
α3δγ3α

〉
dΩ −

∫
Sσ

p̃iδuidSσ = 0 (21)

Therefore, considering transverse loading (t̃3), the governing equations of EFSDTM_TN
can be derived as

δu(0)
α : Nαβ,β = 0,

δu(1)
α : Mαβ,β − Q∗

α = 0,

δu(0)
3 : Q∗

α,a = − p̃3

(22)

and the associated boundary conditions are given by

δu(0)
α = 0 or Nαβvβ = 0,

δu(1)
α = 0 or Mαβvβ = 0,

δu(0)
3 = 0 or Q∗

αvα = 0

(23)

It should be noted that the governing equations of EFSDTM_TN are similar to those
of conventional FSDT. This implies that the EFSDTM_TN can be extended using a simple
FE implementation.

Once the values of all of the unknown variables are determined based on the governing
equation, the solution accuracy can be further improved by restoring the displacement field
of EHOPT_TN. By applying the least-squares approximation, the following relationships
between u∗(0)

α and u(0)
α are obtained [50]:
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u∗(0)
α = u(0)

α − 1
h

〈
Φ(1)

αβ

〉
u∗(3)

β − 1
h

〈
Φ(2)

αβ

〉
T0,β −

1
h

〈
Φ(2)

αβ

〉(1
2

T1,β

)
(24)

Substituting Equations (16) and (24) into Equation (6), the displacement field of
EHOPT_TN can be systematically expressed using only the primary variables of FSDT_TN
as follows:

u∗
α = u(0)

α − u(0)
3,α x3 +

[
Φ̃(1)

αβ

]
Γ(1)

βγ γ
(0)
γ3 +

{[
Φ̃(1)

αβ

]
Γ(2)

βγ +
[
Φ̃(2)

αγ

]}
T0,γ

+
{[

Φ̃(1)
αβ

]
Γ(3)

βγ +
[
Φ̃(3)

αγ

]}
1
2 T1,γ − CN

α − CM
α x3,

u∗
3 = u(0)

3 + φ(k)
[

T0x3 +
1
2 T1x2

3

]
+

N−1
∑

k=1
S(k)

3 H(x3 − x3(k))

(25)

in which
Φ̃(i)

αβ = Φ(i)
αβ −

1
h

〈
Φ(i)

αβ

〉
(26)

3. Finite Element Formulation Based on EFSDTM_TN

In this section, a finite element formulation based on EFSDTM_TN is presented to
further extend its applicability. Considering the stress restoration based on the post-
processing procedure, a well-known 8-node serendipity element was employed in the FE
implementation. Based on the FE discretization, the displacement field can be defined by
the nodal variables of the 8-node serendipity element as follows [21]:

u(0)
α =

8

∑
i=1

Ni · u(0)
αi , u(1)

α =
8

∑
i=1

Ni · u(1)
αi , u(0)

3 =
8

∑
i=1

Ni · u(0)
3i (27)

where Ni represents the shape function for the (i)th node of the 8-node serendipity element.

3.1. Element Stiffness Matrix

The element stiffness matrix can be defined through the principle of minimum poten-
tial energy, and all unknown nodal displacements in each 8-node serendipity element can
be expressed in vector form as follows [21]:[

d
]e

=
[
d1 d2 d3 d4 d5 d6 d7 d8

]T (28)

in which [
d
]

i
=

[
u(0)

1i u(0)
2i u(0)

3i u(1)
1i u(1)

2i

]T
(29)

As indicated in Equation (28), each element has 40 degrees of freedom (DOF).
From Equations (27)–(29) and the assumption of small strain-displacement relations,

the strain components for each element are defined as

[ε]em =


u(0)

1,1

u(0)
2,2

u(0)
1,2 + u(0)

2,1


e

= [B]m
[
d
]e

, [ε]eb =


u(1)

1,1

u(1)
2,2

u(1)
1,2 + u(1)

2,1


e

= [B]b
[
d
]e

, [ε]es =

[
u(0)

3,1 + u(1)
1

u(0)
3,2 + u(1)

2

]e

= [B]s
[
d
]e

(30)

where the subscripts (m, b and s) denote the strain components derived from the membrane,
bending, and transverse shear parts, respectively. The strain matrices ([B]m, [B]b, and [B]s)
can be written as follows:

[B](m,b,s) =
[
B(m,b,s)1 B(m,b,s)2 . . . B(m,b,s)7 B(m,b,s)8

]
(31)
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in which [
B(m)

]
i
=

 Ni,x 0 0 0 0
0 Ni,y 0 0 0
Ni,y Ni,x 0 0 0

,

[
B(b)

]
i
=

 0 0 0 Ni,x 0
0 0 0 0 Ni,y
0 0 0 Ni,y Ni,x

,

[
B(s)

]
i
=

[
0 0 Ni,x Ni 0
0 0 Ni,y 0 Ni

]
(32)

The element stiffness matrix is then reasonably defined by using the aforementioned
strain matrices [B](m,b,s):

[K]e = [K]m + 2[K]mb + [K]b + [K]s (33)

in which

[K]m =
∫

A [B]Tm ·
[
A
]
· [B]mdA, [K]mb =

∫
A [B]Tm ·

[
B
]
· [B]bdA,

[K]b =
∫

A [B]Tb ·
[
D
]
· [B]bdA, [K]s =

∫
A [B]Ts ·

[
G∗(0)

]
· [B]sdA

(34)

In Equation (34),
[
A
]
,
[
B
]
,
[
D
]
, and

[
G∗(0)

]
can be expressed as follows:

[
A, B, D

]
=

〈
Q̃m, x3Q̃m, x2

3Q̃
〉

,
[

G∗(0)
]
=

[
A∗

1313 A∗
1323

A∗
2313 A∗

2323

]
(35)

in which [
Q̃
]
=

Q1111 Q1122 Q1112
Q2211 Q2222 Q2212
Q1211 Q1222 Q1212

 (36)

It should be noted that the shear stiffness matrix,
[

G∗(0)
]
, is defined based on the

effective shear stiffness modulus (A∗
α3β3) instead of

[
G
]
=

〈
Qα3β3

〉
.

3.2. Extermal Force Vector

In this FE implementation, thermal and mechanical loadings were considered as
external force vectors. The corresponding external force vector considering the mechanical
loading can be obtained as follows:

[F]em =
∫

A

[
N̂
]T ·

[
T̃
]
dA (37)

where [
N̂
]
=

[
Ñ1 Ñ2 Ñ3 Ñ4 Ñ5 Ñ6 Ñ7 Ñ8

]
,[

T̃
]
=

[
p̃

u(0)
1

p̃
u(0)

2
p̃

u(0)
3

p̃
u(1)

1
p̃

u(1)
2

]T (38)

and

[
Ñ
]

i
=


Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

 (39)

Additionally, based on Equations (10) and (12), the corresponding external force vector
considering thermal loading can be defined as

[F]et =
[

Fm
to + Fb

to + Fm
t1
+ Fb

t1

]
−

[
Fs

to + Fs
t1

]
(40)
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where

[F]mto
=

∫
A [B]Tm ·

[
A
]
· [α̃] ·

[
T̃0

]
dA, [F]bto

=
∫

A [B]Tb ·
[
B
]
· [α̃] ·

[
T̃0

]
dA,

[F]mt1
=

∫
A [B]Tm ·

[
B
]
· [α̃] ·

[
T̃1

]
dA, [F]bt1

=
∫

A [B]Tb ·
[
D
]
· [α̃] ·

[
T̃1

]
dA,

[F]sto
=

∫
A [B]Ts ·

[
G∗(1)

]
·
[
T̂0
]
dA, [F]st1

= 1
2

∫
A [B]Ts ·

[
G∗(2)

]
·
[
T̂1
]
dA

(41)

where T̃(0,1), T̂(0,1), and α̃ represent vectors consisting of external temperatures and thermal
expansion coefficients, respectively, as shown below:[

T̃0

]
=

[
T0 T0 0

]T ,
[

T̃1

]
=

[
T1 T1 0

]T ,[
T̂0
]
=

[
T0,1 T0,2

]T ,
[
T̂1
]
=

[
T1,1 T1,2

]T ,
[α̃] =

[
α11 α22 α12

]T
(42)

It should be also remarked that
[

G∗(1)
]

and
[

G∗(2)
]

are derived from the effective
shear stiffness modulus given in Equation (20).[

G∗(1)
]
=

[
B∗

1313 B∗
1323

B∗
2313 B∗

2323

]
,
[

G∗(2)
]
=

[
D∗

1313 D∗
1323

D∗
2313 D∗

2323

]
(43)

Based on the above improved FE implementation, both solution accuracy and computa-
tional efficiency can be further improved in the process of describing the thermomechanical
behaviors of the laminated composite and sandwich plates.

4. Numerical Results and Discussion

In this section, the numerical performance of the proposed FE analysis model is
investigated by considering the characteristic thermomechanical problems of the laminated
composites and sandwich plates. For all numerical models, 2-D rectangular laminated
plates with simply supported boundary conditions were used as the test beds. The length-
to-thickness ratio of the laminated plates was assumed to be S = L1/h = L2/h = 4 for
mechanical problems and S = L1/h = L2/h = 5 for thermal problems.

The material properties of the composite plates were as follows [20,32,50,51].

- Each ply of the composite plates for the mechanical problems

EL/ET = 25, GLT/ET = 0.5,
GTT/ET = 0.2, vLT = vTT = 0.25

(44)

- Each ply of the composite plates for the thermal problems

EL/ET = 15, GLT/ET = 0.5, GTT/ET = 0.3378, ET = 10GPa,
vLT = 0.3, vTT = 0.48, αL = 0.139 · 10−6/K, αT = 9 · 10−6/K

(45)

where the subscripts (·)L and (·)T represent the directions parallel and perpendicular to the
fiber configuration. In addition, the material properties of the sandwich plates for thermal
and mechanical problems were as follows [50,51]:

- Facial sheets of the sandwich plates

EL = 200 GPa, ET = 8 GPa, GLT = 5 GPa, GTT = 2.2 GPa,
vLT = 0.25, vTT = 0.35, αL = −2 · 10−6/K, αT = 50 · 10−6/K

(46)

- Core of the sandwich plates

E1 = E2 = 1 GPa, E3 = 2 GPa, G12 = 3.7 GPa, G13 = G23 = 0.8 GPa,
v12 = 0.35, v13 = v23 = 0.25, α1 = α2 = α3 = 30 · 10−6/K

(47)
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For the thermomechanical problems, the corresponding thermal and mechanical
loadings considered when deriving the external force vectors can be expressed as follows:

p̃3(xα, h
2 ) = P3 sin( π

L1
x) sin( π

L2
y),

T(xi) = [To + x3T1] sin( π
L1

x1)sin( π
L2

x2)
(48)

The representative layup configurations of the laminated plates are listed in Table 1.
The FE solutions of EFSDTM_TN were then compared with those obtained by conven-
tional C0-class FE analysis models (FSDT, HSDT, and LCW) [3–5,8,29] as well as 3-D
exact solutions [57,58]. The Pagano solutions for thermomechanical problems were
considered as benchmark solutions [57,58], and the SCF was assumed to be 5/6 in the
conventional FSDT.

Table 1. List of layup configurations for composite and sandwich plates.

Case Layup Layer Thickness

Case 1 Single layer Each layer: h
Case 2 [0/90/0] Each layer: h/3
Case 3 [0/90/0/90] Each layer: h/4
Case 4 [0/Core/0] Face sheet: h/5, Core: (3/5)× h
Case 5 [0/Core/90] Face sheet: h/10, Core: (4/5)× h

For reasonable comparison, the numerical results reported herein were normalized in
the following form:

Numerical results for mechanical problems

uα =
ET · uα

p · h · S3 , u3 =
100 · ET · u3

p · h · S4 , σαβ =
σαβ

p · S2 , σ3α =
σ3α

p · S
(49)

Numerical results for thermal problems

uα =
uα

αL · h · S
, u3 =

u3

αL · h · S2 ,
[
σαβ , σ3α

]
=

[
σαβ , σ3α

]
· 1

αT · ET
(50)

4.1. Validation of the Proposed FE Analysis Model

To examine the numerical errors that may occur during FE analysis, FE solutions based
on EFSDTM_TN were validated against those obtained using the analytical approach. To
this end, the convergence rate of the FE solutions was numerically verified by comparing
the central deflections of the laminated composite and sandwich plates across different
mesh densities, as listed in Table 2. The solutions for uniform temperature loading are not
compared in Table 2 because of the absence of deflections.

From Table 2, it is observed that the FE solutions gradually converge to the analytical
solutions with further refinement of the mesh. In addition, acceptable deflections were
obtained when the FE model was discretized into an 8 × 8 mesh density or higher. Although
an 8 × 8 mesh density is sufficient to describe the nodal displacement, potential numerical
errors could arise when deriving in-plane and transverse shear stresses as these involve
higher-order derivatives. The FE solutions for the in-plane and transverse shear stresses
of [0◦/90◦/0◦] laminated composite plates are illustrated in Figure 2. The accuracies of
these FE solutions, for various mesh density, were compared with those of analytical
solutions. The distributions of the transverse shear stress given in Figure 2 were derived
from following 3-D equilibrium equation:

σ3α =
∫ x3

− h
2

[
σαβ,β

]
dx3 (51)
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Table 2. Convergence rate of central deflections for EFSDTM_TN.

Loading Layup Analytical Solutions

Finite Element (FE) Solutions

Mesh Density

2 by 2 4 by 4 8 by 8 16 by 16 32 by 32

P3 ̸= 0

Case 1 1.66159 1.26559 1.64281 1.66051 1.66153 1.66159
Case 2 2.19845 1.83353 2.18186 2.19749 2.19839 2.19845
Case 3 2.03651 1.60041 2.01537 2.03528 2.03643 2.03650
Case 4 0.54663 0.43513 0.54148 0.54634 0.54662 0.54663
Case 5 0.73095 0.61316 0.72561 0.73064 0.73093 0.73095

T1 ̸= 0

Case 1 0.010552 0.009867 0.010498 0.010548 0.010551 0.010552
Case 2 0.010965 0.010213 0.010910 0.010962 0.010965 0.010965
Case 3 0.0087188 0.0080404 0.0086695 0.0087157 0.0087187 0.0087188
Case 4 0.016710 0.015622 0.016629 0.016705 0.016709 0.016710
Case 5 0.032876 0.030004 0.032685 0.032864 0.032875 0.032876

Mathematics 2024, 12, 963 13 of 21 
 

 

analytical solutions. The distributions of the transverse shear stress given in Figure 2 were 
derived from following 3-D equilibrium equation: 

3

3 , 3
2

x
h dxα αβ βσ σ

−
 =    (51)

Figure 2 shows that an FE model with a 16 × 16 mesh density or higher can yield 
precise numerical solutions for predicting the local distributions of in-plane and trans-
verse shear stresses. In particular, it can be observed that the FE solutions with a 32 × 32 
mesh density can closely approximate the analytical solutions, even for transverse shear 
stresses that require third-order derivatives. This means that the FE model with a 32 × 32 
mesh density can be reasonably applied in thermomechanical analysis of laminated com-
posite and sandwich structures with arbitrary geometry, loading, and boundary condi-
tions. 

 
Figure 2. Comparison between analytical and FE solutions for stresses of [0 / 90 / 0 ]o o o  laminated 
composite plates: (a) transverse shear stresses under mechanical loading; (b) in-plane stresses under 
uniform temperature loading; (c) transverse shear stresses under linear temperature loading. 

Based on the numerical validation given in Table 2 and Figure 2, the FE solutions for 
all of the thermomechanical problems were obtained based on a 32 × 32 mesh density to 
ensure computational accuracy. Considering laminated composites and sandwich struc-
tures discretized with a 32 × 32 mesh density, kinematic unknown variables and corre-
sponding total DOFs of the FE models were compared in Table 3. 

Table 3. Kinematic unknown variables and total DOFs of the FE models (32 × 32 mesh density). 

Theory Element Type DOFs per Node 
Number of Node 

(32 × 32 Mesh Density) Total DOFs 

FSDT C0 element 5 3201 16,005 
HSDT C0 element 9 3201 28,809 
LCW C0 element 11 3201 35,211 

EFSDTM_TN C0 element 5 3201 16,005 

Table 3 shows that the total DOFs of the proposed FE model are the same as FSDT, 
representing reductions of 45.5% to 55.6% as compared to the total DOFs of the HSDT and 
LCW, respectively. Therefore, the proposed FE model can clearly improve its computa-
tional efficiency in the process of thermo-mechanical analysis. 

4.2. FE Solutions for the Mechanical Problem 
In this subsection, the mechanical behaviors of the laminated composite and sand-

wich plates are evaluated to verify the numerical performance of the proposed FE model 
based on EFSDTM_TN. For the mechanical problems, transverse external loading ( 3 0P ≠
) was applied to the top surfaces of the laminated plates. 

Figure 2. Comparison between analytical and FE solutions for stresses of [0◦/90◦/0◦] laminated
composite plates: (a) transverse shear stresses under mechanical loading; (b) in-plane stresses under
uniform temperature loading; (c) transverse shear stresses under linear temperature loading.

Figure 2 shows that an FE model with a 16 × 16 mesh density or higher can yield
precise numerical solutions for predicting the local distributions of in-plane and transverse
shear stresses. In particular, it can be observed that the FE solutions with a 32 × 32 mesh
density can closely approximate the analytical solutions, even for transverse shear stresses
that require third-order derivatives. This means that the FE model with a 32 × 32 mesh
density can be reasonably applied in thermomechanical analysis of laminated composite
and sandwich structures with arbitrary geometry, loading, and boundary conditions.

Based on the numerical validation given in Table 2 and Figure 2, the FE solutions for all
of the thermomechanical problems were obtained based on a 32 × 32 mesh density to ensure
computational accuracy. Considering laminated composites and sandwich structures
discretized with a 32 × 32 mesh density, kinematic unknown variables and corresponding
total DOFs of the FE models were compared in Table 3.

Table 3. Kinematic unknown variables and total DOFs of the FE models (32 × 32 mesh density).

Theory Element Type DOFs per Node Number of Node
(32× 32 Mesh Density) Total DOFs

FSDT C0 element 5 3201 16,005
HSDT C0 element 9 3201 28,809
LCW C0 element 11 3201 35,211

EFSDTM_TN C0 element 5 3201 16,005
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Table 3 shows that the total DOFs of the proposed FE model are the same as FSDT,
representing reductions of 45.5% to 55.6% as compared to the total DOFs of the HSDT and
LCW, respectively. Therefore, the proposed FE model can clearly improve its computational
efficiency in the process of thermo-mechanical analysis.

4.2. FE Solutions for the Mechanical Problem

In this subsection, the mechanical behaviors of the laminated composite and sandwich
plates are evaluated to verify the numerical performance of the proposed FE model based
on EFSDTM_TN. For the mechanical problems, transverse external loading (P3 ̸= 0) was
applied to the top surfaces of the laminated plates.

Figure 3 shows the mechanical solutions of the in-plane displacements and stresses for
cross-ply laminated composite plates. From Figure 3a, it can be seen that the EFSDTM_TN
precisely describes the unsymmetrical zigzag distribution of the in-plane displacement
in [0◦/90◦/0◦/90◦] laminated composite plates. As shown in Figure 3b, EFSDTM_TN
can provide a reliable local solution for the in-plane stress by capturing its noncontinuous
distribution. However, other theories are only useful for predicting the global behavior of
in-plane displacement.
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For the [0◦/Core/0◦] sandwich plate, the distributions of the in-plane displacements
and transverse shear stresses are shown in Figure 4. In terms of the in-plane displacement
(Figure 4a), it should be noted that EFSDTM_TN can provide a sufficiently reliable solu-
tion for the in-plane displacement, even for a sandwich plate. In addition, as shown in
Figure 4b, the severe kink distribution of the transverse shear stress is completely captured
by EFSDTM_TN.
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4.3. FE Solutions for the Thermal Problem

To further investigate the numerical capabilities related to the thermal analysis of
laminated composites and sandwich plates, several thermal problems were also analyzed.
In the case of thermal problems, uniform and linearly distributed temperatures were
considered as external loads.

The in-plane and transverse shear stresses for a single-layer composite plate under
uniform temperature loading (T0 ̸= 0) are shown in Figure 5. As stated in Section 2.2,
the transverse normal strain effect plays an important role in analyzing the thermal be-
haviors of laminated composites and sandwich plates. Furthermore, this effect becomes
significant under a uniform temperature loading. Considering this aspect, FESDTM_TN
and LCW, which reasonably consider the transverse normal strain effect, can accurately
describe the thermal stresses of a single-layer composite plate under uniform tempera-
ture loading. Another interesting observation from Figure 5 is that the FSDT and HSDT,
which cannot consider the transverse normal strain effect, provide meaningless solutions
for these thermal stresses.
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Figure 6 compares the thermal distributions of the in-plane displacements and stresses
of the cross-ply laminated composite plates under uniform-temperature loading (T0 ̸= 0).
As shown in Figure 6, EFSDTM_TN and LCW can precisely capture not only the parabolic
distributions of the in-plane displacements, but also the noncontinuous distributions of
the in-plane stress, whereas the other theories fail to describe the local distributions of the
corresponding thermal behaviors.
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The thermal distributions of the in-plane and transverse shear stresses of the sandwich
plates under uniform temperature loading (T0 ̸= 0) are shown in Figure 7. As shown in
Figure 7a, the thermal solutions obtained by EFSDTM_TN and LCW are in good agreement
with the exact solutions by precisely describing the severe noncontinuous distribution of
the in-plane stress. In addition, Figure 7b indicates that EFSDTM_TN and LCW provide
the best compromised thermal solutions for the local distribution of the transverse shear
stress. Consequently, Figures 5–7 demonstrate that the transverse normal strain effect
should be considered to accurately describe the thermal behavior of composite materials
and sandwich structures subjected to uniform temperature loading.
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For linear temperature loading (T1 ̸= 0), the thermal distributions of the in-plane and
transverse shear stresses of a single-layer composite plate are shown in Figure 8. Similar
to Figure 5, it can be observed that the EFSDTM_TN and LCW provide reliable solutions
in describing the in-plane and transverse shear stresses of a single-layer composite plate
under linear temperature loading. Furthermore, as shown in Figure 8, the accuracy of all of
the theories considered in this study improved, relative to those obtained under uniform
temperature loading. This tendency is attributed to the fact that linear temperature loading
can cause bending behavior of the plates.

Mathematics 2024, 12, 963 16 of 21 
 

 

The thermal distributions of the in-plane and transverse shear stresses of the sand-
wich plates under uniform temperature loading ( 0 0T ≠ ) are shown in Figure 7. As shown 
in Figure 7a, the thermal solutions obtained by EFSDTM_TN and LCW are in good agree-
ment with the exact solutions by precisely describing the severe noncontinuous distribu-
tion of the in-plane stress. In addition, Figure 7b indicates that EFSDTM_TN and LCW 
provide the best compromised thermal solutions for the local distribution of the trans-
verse shear stress. Consequently, Figures 5–7 demonstrate that the transverse normal 
strain effect should be considered to accurately describe the thermal behavior of compo-
site materials and sandwich structures subjected to uniform temperature loading. 

 
Figure 7. Thermal solutions for sandwich plates under uniform temperature loading: (a) in-plane 
stresses for [0 / / 0 ]o oCore  sandwich plate; (b) transverse stresses for [0 / / 90 ]o oCore  sandwich 
plate. 

For linear temperature loading ( 1 0T ≠ ), the thermal distributions of the in-plane and 
transverse shear stresses of a single-layer composite plate are shown in Figure 8. Similar 
to Figure 5, it can be observed that the EFSDTM_TN and LCW provide reliable solutions 
in describing the in-plane and transverse shear stresses of a single-layer composite plate 
under linear temperature loading. Furthermore, as shown in Figure 8, the accuracy of all 
of the theories considered in this study improved, relative to those obtained under uni-
form temperature loading. This tendency is attributed to the fact that linear temperature 
loading can cause bending behavior of the plates. 

 
Figure 8. Thermal solutions for a single-layer composite plate under linear temperature loading: (a) 
in-plane stresses; (b) transverse shear stresses. 
Figure 8. Thermal solutions for a single-layer composite plate under linear temperature loading:
(a) in-plane stresses; (b) transverse shear stresses.

Figures 9 and 10 illustrate the corresponding thermal behavior when the linear
temperature loading (T1 ̸= 0) is applied to [0◦/90◦/0◦] laminated composite and
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[0◦/Core/0◦] sandwich plates, respectively. From Figure 9, it can be concluded that
the solutions obtained by EFSDTM_TN and LCW closely approximate the exact solu-
tions, while the local solutions obtained from other theories are relatively inaccurate.
Considering the thermal behavior of the sandwich plate, as shown in Figure 10, it is
noteworthy that the EFSDTM_TN provides the best compromised solution for the in-
plane thermal stress by accurately capturing the noncontinuous local distribution. It can
thus be concluded on the basis of Figures 3–10 that EFSDTM_TN and LCW can provide
reliable thermomechanical solutions for laminated composites and sandwich plates
because these theories reasonably consider the transverse normal strain effect. Although
LCW provides the most accurate solution for some thermal problems, EFSDTM_TN has
a prominent computational advantage due to its C0-based 5-DOF FE implementation,
which can be highly compatible with commercial FE software. Therefore, it can be
concluded that the FE implementation based on EFSDTM_TN is a useful approach in
the thermomechanical analysis of laminated composites and sandwich plates.
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5. Conclusions

In this study, an FE formulation based on EFSDTM_TN was developed and numer-
ically validated for the reliable thermomechanical analysis of laminated composites and
sandwich plates. The main features of the proposed FE model are summarized as follows:
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• MVT was employed in the proposed FE model to independently assume the displace-
ment (FEST_TN) and transverse stress (EHOPT_TN) fields. The displacement and
transverse stress fields were systematically interconnected in the MVT by establishing
reasonable energy relationships. Based on the predefined relationships, the proposed
FE model can not only embrace the explicit computational advantages of FSDT_TN,
such as the C0-based 5-DOF FE implementation, but also ensure the solution accuracy
of EHOPT_TN.

• The transverse displacement field was enhanced by incorporating the components of
external temperature loading to account for the contribution of the transverse normal
strain effect efficiently. Consequently, the proposed FE model can provide reliable
thermal solutions without introducing additional unknown variables.

In the proposed FE model, an 8-node serendipity element was employed to effec-
tively derive higher-order derivatives while evaluating stress distributions. To demon-
strate the numerical performance of the proposed FE model, several cases of thermal-
mechanical problems for laminated composites and sandwich structures were analyzed.
The solutions obtained herein were then compared with those of conventional theories
(FSDT, HSDT, and LCW), as well as 3-D exact solutions. From the numerical results, it can
be concluded that the proposed FE model based on FESDTM_TN provides reliable ther-
momechanical solutions for laminated composites and sandwich plates. Consequently, it
is expected that the proposed FE model can be applied to the thermomechanical analysis
of laminated composites and sandwich structures with arbitrary geometries, loadings,
and boundary conditions.
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Nomenclature

αγω thermal expansion coefficient.
Cijkl elasticity stiffness tensor.
Qαβγω reduced elastic stiffness tensor.
∆T external temperature distribution consisting of T0 and T1.
T0, T1 uniform and linear temperature loadings.
σ2D

αβ , εαβ, γ3α stress and strain components based on the displacement field.
σ∗

α3, γ∗
3α stress and strain components based on the transverse stress field.

S(k)
α coefficient of linear zigzag function to enforce shear continuity conditions.

S(k)
3

layer-wise constant to enforce continuity conditions of transverse
normal displacement.

φ(k) layer-wise constant to enforce the plane stress condition.

Φ(k)
αβ in-plane warping functions derived from transverse stress field.
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a(k)αβ , b(k)αβ , c(k)αβ

function of material properties to satisfy shear continuity conditions in the
transverse stress field.

b(k)33 , c(k)33
function of material properties to satisfy continuity conditions of transverse
normal displacement.

CN
α , CM

α in-plane correction factors derived by matching the force and moment resultants.

cN,M(u∗ ,T0,T1)
αβ coefficient of in-plane correction factors (CN

α , CM
α ).

Ni shape functions for the element in FE implementation.[
d
]e

unknown displacements for each element.[
d
]

i
unknown displacements for each node.

[B](m,b,s) membrane, bending, and transverse shear part of the strain matrix.
[K]e stiffness matrix for each element.

[K](m, mb, b, s)
membrane, membrane-bending coupling, bending, and transverse shear part of
the element stiffness matrix.

[F]eM external force vector for each element derived from the mechanical loading.
[F]eT external force vector for each element derived from the thermal loading.[

T̃
]

mechanical loading applied in each element.

F(m, b, s)
To

membrane, bending, and transverse shear part of the external force vector
derived from the uniform temperature loading.

F(m, b, s)
T1

membrane, bending, and transverse shear part of the external force vector
derived from the linear temperature loading.
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