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Abstract: Developing effective trend estimators is the main method to solve the online portfolio
selection problem. Although the existing portfolio strategies have demonstrated good performance
through the development of various trend estimators, it is still challenging to determine in advance
which estimator will yield the maximum final cumulative wealth in online portfolio selection tasks.
This paper studies an online ensemble approach for online portfolio selection by leveraging the
strengths of multiple trend estimators. Specifically, a return-based loss function and a cross-entropy-
based loss function are first designed to evaluate the adaptiveness of different trend estimators
in a financial environment. On this basis, a passive aggressive ensemble model is proposed to
weigh these trend estimators within a unit simplex according to their adaptiveness. Extensive
experiments are conducted on benchmark datasets from various real-world stock markets to evaluate
their performance. The results show that the proposed strategy achieves state-of-the-art performance,
including efficiency and cumulative return.

Keywords: online portfolio selection; online ensemble learning; passive aggressive algorithm

MSC: 68T09

1. Introduction

Online portfolio selection dynamically allocates wealth across real-world assets by
analyzing stream data from financial markets [1,2]. To optimize wealth allocation, port-
folio selection leverages a range of machine learning techniques, including the Newton
gradient step [3] and nearest neighbor [4]. In addition to these methods, portfolio selection
must also consider economic and financial theories and criteria, particularly investment
behaviors [5,6]. Accordingly, many of the current leading portfolio selection systems
employ historical price information to predict future prices to determine the optimal
portfolio allocation.

Reversion and momentum are two significant characteristics in finance. Numerous
state-of-the-art portfolio selection strategies develop trend estimators based on these char-
acteristics for decision-making. For example, trend estimators like the inverse price [7,8],
the simple moving average, and the exponential moving average [9] assume that the asset
price will reverse to some kind of historical average. On the contrary, the peak price [10]
assumes that the price of a well-performing asset will continue to rise due to irrational in-
vesting behaviors. Since each trend estimator is based on different prior assumptions, their
effectiveness is contingent on the financial environment aligning with these assumptions.
Furthermore, existing methods [11,12] attempt to utilize multiple trend estimators, but as
the number of trends and assets increases, the computational cost becomes very high due
to matrix calculations. It is still challenging to predetermine which trend estimator will
maximize the final cumulative wealth efficiently for online portfolio selection tasks.
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To take advantage of various trend estimators during the whole investment period
efficiently, we pay attention to the online ensemble learning framework [13]. The online
learning adaptively balances each trend estimator with evolving financial environments,
while the ensemble learning combines these estimators to enhance robustness and precision.
A simple but effective ensemble learning approach is weighted averaging [14]. Conse-
quently, developing a suitable online ensemble learning algorithm to amalgamate various
trend estimators is a viable solution.

In this paper, we address the problem of online portfolio selection with multiple trend
estimators by developing a framework named passive aggressive ensemble (PAE). The
characteristics and contributions of the proposed PAE are summarized as follows:

1. The PAE framework is introduced to employ two distinct schemes to efficiently
ensemble four different types of trend estimators with a lower time complexity of
O(Lmn), where m is the number of assets, L is the number of trends, and n is the total
investment period.

2. The PAE framework augments the performance of original trend estimators through
reasonable evaluation and weighting.

3. Extensive experiments are conducted on six real-world datasets to demonstrate that
our algorithm not only outperforms competing strategies in terms of multiple evalua-
tion criteria but also has promising scalability in terms of transaction costs.

The rest of the paper is organized as follows. Section 2 reviews some related work
regarding trend estimators and ensemble learning in the context of online portfolio selection
and formally states portfolio selection in machine learning. Section 3 presents our PAE
framework for portfolio selection. Section 4 presents the experiments and results of PAE on
real-world benchmark datasets. Finally, conclusions are made in Section 5.

2. Related Works and Problem Setting
2.1. Related Works
2.1.1. Trend Estimator

Following-the-winner strategies assume that the price of a good performing asset
will continue to rise. Based on this assumption, researchers have designed different trend
estimators. Exponential gradient [15] and its improved variants [16] estimate the asset price
as it will continue to change as of last day. The peak price tracking system (PPT) [10] and
short-term portfolio optimization with loss control [17] adopt the peak price (PP) as a trend
estimator. PP assumes the price continues to move at its maximum price in a recent time
window but fails to capture the continuous depreciation of the asset price. Recently, there
have been many works to handle the shortcomings of PP, for example, the trend peak price
tracing [11] and the peak price tracking approach [18].

Following-the-loser strategies are opposite to following-the-winner strategies, and
they assume that the asset price will reverse to some kind of historical average. The
inverse price (IP) expects the asset price to reverse on the last day. Passive aggressive mean
reversion [7] and confidence weighted mean reversion [8] adopt the IP as a trend estimator
but suffer from significant performance degradation if the underlying short-term reversion
fails to exist. On-Line Moving Average Reversion (OLMAR) [9] uses the simple moving
average (SMA) and exponential moving average (EMA) to predict the next prices. The SMA
and EMA improve the estimation of IP. The SMA utilizes the average of the asset prices
within a specified time window to estimate the future price movement. It assigns equal
weight to each asset price in the specified period, effectively smoothing out any extreme
prices within the time frame to derive the most recent price information from the financial
market. The EMA incorporates all historical asset prices but assigns higher significance to
recent prices in predicting future trends, making it generally more reflective of the actual
price trends in comparison to the SMA. Recently, Gaussian weighting reversion [19] has
used the Gaussian weighting function to enhance time validity. Vector autoregressive
weighting reversion [20] and weighted multivariate mean reversion [21] use autoregressive
moving average and multi-variate robust mean, respectively, to estimate the mean more
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precisely. The state-dependent EMA [22] predicts asset returns by additionally analyzing
market states.

2.1.2. Ensemble Learning

In recent years, ensemble learning algorithms have gained wider recognition for
their enhanced generalization ability and broader application scope. The online portfolio
selection has garnered significant interest from both industry professionals and academic
researchers. In this context, Lai et al. [12] proposed an adaptive input and composite trend
representation (AICTR) to fuse three trends. It used radial basis functions to fuse three
trends (SMA, EMA, PP) by considering both the adaptive input and each trend estimator
and reaching a time complexity of O((m + L)mn), where m is the number of assets, L is the
number of trends, and n is total investment period. Guo et al. [23] enhanced the prediction
of future returns of volatile assets by integrating an adaptive decaying factor with the
traditional moving average approach but did not analyze the time complexity. Kumar
and Segev [24] employed Bayesian methods to ensemble two strategies but not a trend
estimator, improving future portfolio decisions by learning from past prediction errors. Dai
et al. [11] introduced trend peak price tracing (TPPT), a dynamic price forecasting method
that adapts to market conditions by incorporating PP, EMA, or maintaining current values
based on trend analysis, but it reaches a time complexity of O

(
m2n

)
.

2.2. Problem Setting

In this paper, we use a standard and universal setting for portfolio selection in machine
learning [7–12]. Consider a financial market with m assets for n periods. At the end of the
tth period, a non-negative m-dimensional vector as follows:

pt ∈ Rm
+, t = 0, 1, . . . , n , (1)

represents the close price of assets. A relative price vector is introduced to see the change
of asset prices as follows:

xt ,
pt

pt−1
, xt ∈ Rm

+, t = 1, 2, . . . , n, (2)

where a division between two vectors represents element-wise division in this paper.
At the beginning of the tth period, an investment in the market is specified by a

portfolio vector in m dimensional unit simplex, as follows:

bt ∈ ∆m :=
{

b ∈ Rm
+ :

m
∑

i=1
b(i) = 1

}
, (3)

where b(i)
t denotes the proportion of total wealth invested in the ith asset. The non-negative

constrain means no short is allowed, and the equality constraint means that the portfolio is
self-financed.

For the tth trading day, a portfolio bt generated by the portfolio selection algorithm
results in a daily return b>t xt. Thus, the cumulative wealth can be calculated as St =

St−1 ·
(

b>t xt

)
, and the final cumulative wealth with a common initial wealth S0 = 1 is

given by the following:

Sn = S0
n
∏

t=1

(
b>t xt

)
=

n
∏

t=1

(
b>t xt

)
. (4)

Finally, a portfolio learning algorithm sequentially learns a set of portfolio vectors
{bt}n

t=1 to maximize the final cumulative wealth and satisfy some risk management metrics.
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3. Methodology

In this section, we propose a passive aggressive ensemble (PAE) framework and two
strategies, PAE-R and PAE-C, to take advantage of different trends and adapt to various
financial environments. We take four traditional trend estimators as the input for PAE:

SMA : x̂S,t+1(w) =
∑w−1

k=0 pt−k
wpt

, (5)

EMA : x̂E,t+1(ϑ) = ϑ1 + (1− ϑ)
x̂E,t
xt

, (6)

IP : x̂I,t+1 = 1
xt

=
pt−1

pt
, (7)

PP : x̂M,t+1 =
p̂t+1

pt
, p̂(i)

t+1 = max
0≤k≤w−1

p(i)
t−k , (8)

where w is the time window size, ϑ ∈ (0, 1) denotes the decaying factor, 1 is a m-
dimensional vector whose elements are 1, and i = 1, 2, . . . , m is the order of the asset.

3.1. Passive Aggressive Ensemble

The construction of trend composites starts with a trend back-test step. Let
{

x̂l,t+1
}L

l=1
denote a set of trends—for example, x̂1,t+1 = x̂S,t+1, x̂2,t+1 = x̂E,t+1 and x̂3,t+1 = x̂I,t+1,

where L is the total number of trends. We project
{

x̂l,t+1
}L

l=1 onto a unit simplex [25] to
obtain feasible portfolios as follows:

∼
x l,t+1 = argmin

x∈∆m

‖ x− x̂l,t+1 ‖2, l = 1, . . . , L. (9)

Then we are able to measure the return-based performance [1] of each trend estimator
in a certain time period as follows:

rl,t =
∼
x
>
l,txt, rt =

[
r1,t, r2,t, . . . , rL,t]

>, (10)

where rl,t is the back-tested return of lth trend in tth period, xt is the real relative price
factor given by (2), and rt ∈ RL is the collection of L different back-tested returns.

Drawing upon from the cross-entropy [26], we also propose an indicator to evaluate
each trend estimator called cross-entropy-based performance as follows:

cl,t = −
∼
x
>
t log

∼
x l,t, ct =

[
c1,t, c2,t, . . . , cL,t]

>, (11)

where
∼
x t is the projection of the real relative price vector by (9). The cross-entropy allows

us to measure the gap between the trend estimator and the true price movement.
Two ensemble targets are defined to meet the goal of our approach. We aim to ensure

that our ensembled trend estimator is at least as effective as the average performance of
any single trend estimator over the investment period, aligning with investment intuition.
Smaller values for cross-entropy-based performance indicate a better trend estimator, while
the opposite holds true for returns-based performance. Our ensemble targets are defined
as follows:

r∗,t , argmax
1≤l≤L

1
w

w−1
∑

k=0
rl,t−k, (12)

c∗,t , argmin
1≤l≤L

1
w

w−1
∑

k=0
cl,t−k, (13)
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where w is the window size in the most recent time. We average the back-tested perfor-
mance of each trend estimator in the most recent time window and select the one with the
best average performance.

Combining the passive aggressive principle [27] and online ensemble framework [13],
a weighting vector wt ∈ ∆L for weighted averaging is first defined. Then, we propose two
new loss functions to combine all the trends and consider their performance for our PAE-R
and PAE-C strategies, respectively:

PAE-R :lξr (w; (rt, r∗,t)) =
{

0 r∗,t −w>rt ≤ ξr
r∗,t −w>rt − ξr otherwise

, (14)

PAE-C: lξc(w; (ct, c∗,t)) =
{

0 w>ct − c∗,t ≤ ξc
w>ct − c∗,t − ξc otherwise

, (15)

where r∗,t and c∗,t are the performance of ensemble targets, ξr is the tolerance threshold
between the return-based performance of ensemble target and weighted averaging trend
estimators, and ξc is the tolerance threshold between the cross-entropy-based performance
of ensemble target and weighted averaging trend estimators.

We update the weighting vector at the end of each trading period through the following
optimization problem as follows:

wt+1 = argmin
w∈∆L

1
2‖ w−wt ‖2 s.t.

{
lξr (w; (rt, r∗,t)) = 0 PAE-R
lξc(w; (ct, c∗,t)) = 0 PAE-C

. (16)

On one hand, if our weighted averaging trend estimators outperform or are close to
the ensemble target, our approach passively maintains the weighting vector w in the next
trading period. On the other hand, when the weighted averaging trend estimators perform
much worse than the ensemble target, our approach aggressively adjusts w to seek a better
weight. The problem will be solved in Section 4.3.

3.2. Online Portfolio Selection with Multiple Trend Estimators

The next step is to decide the proportion of the wealth being allocated to each asset of
the stock based on the weighting and trend estimators received from the previous step. First
proposed by Li et al. [7,9,27], portfolio selection through passive aggressive algorithms is
widely used today [19,21,24], especially in single trend estimator situations. We extend the
application of this algorithm to the case of multiple trend estimators. Our basic idea to form
the final portfolio is to maximize the ensemble trend estimator and keep the last portfolio
information through a regularization term. The final portfolio optimization problem can be
expressed as follows:

bt+1 = argmin
b∈∆m

1
2
‖ b− bt ‖2 s.t. b>X̂t+1wt+1 ≥ ε, X̂t+1 = [x̂1,t+1, . . . , x̂L,t+1], (17)

where X̂t+1 ∈ Rm×L is the collection of L different trends, wt+1 ∈ ∆L is the weighting
vector, ε is the reversion threshold, and X̂t+1wt+1 is the ensemble trend estimator.

If the expected return b>X̂t+1wt+1 is greater than the threshold, we passively maintain
the original investment portfolio vector. If the expected return is less than the threshold,
we aggressively adjust the investment portfolio vector to maximize our returns. X̂t+1wt+1
is capable of combining various trends via the weighting vector wt+1 as the output of (16).
We will solve this problem in Section 4.3.

3.3. Solving Algorithm

In this subsection, we will derive the solutions for the above optimization problem
and summarize the whole procedure for PAE algorithms in Algorithm 1.



Mathematics 2024, 12, 956 6 of 19

Theorem 1. Without considering the non-negativity constraint, the solution of the PAE-R type
optimization problem (16) is as follows:

wt+1 = wt + τ1,t(rt − r̄t1), (18)

where r̄t =
1>rt

L is the mean value of back-tested return-based performance and τ1,t is computed as
follows:

τ1,t = max
{

0, r∗,t−w>rt−ξr

‖rt−r̄t1‖2

}
. (19)

The proof of this theorem is in Appendix A.

Theorem 2. Without considering the non-negativity constraint, the solution of the PAE-C type
optimization problem (16) is as follows:

wt+1 = wt + τ1,t(c̄t1− ct), (20)

where c̄t =
1>ct

L is the mean value of the back-tested cross-entropy-based performance and τ1,t is
computed as follows:

τ1,t = max
{

0, w>ct−c∗,t−ξc

‖c̄t1−ct‖2

}
. (21)

Because the proof of Theorem 2 is almost the same as Theorem 1, we omit the proof.
No matter which type of loss function is considered, wt+1 should be further projected

onto the L-dimensional unit simplex [25] to satisfy the non-negativity constraint of weighted
averaging as follows:

wt+1 = argmin
w∈∆L

‖ w−wt+1 ‖2. (22)

Theorem 3. Without considering the non-negativity constraint, the solution of problem (17) is as
follows:

bt+1 = bt + τ2,t

(
bt − µ1(m)

)
, (23)

where 1(m) denotes the m-dimensional 1 vector to distinguish with L-dimensional 1 in (19) and
(21), and µ = 1

m 1>(m)X̂t+1wt+1 is the average value of trend composite. Then, τ2,t is calculated as
follows:

τ2,t = max
{

0, ε−b>t X̂t+1wt+1

‖X̂t+1wt+1−µ1(m)‖
2

}
. (24)

The proof of Theorem 3 is in Appendix B.
bt+1 is further projected onto a m-dimensional unit simplex [25] to satisfy the non-

negativity constraint as follows:

bt+1 = argmin
b∈∆m

‖ b− bt+1 ‖2. (25)

Algorithm 1 summarizes the general computing process of PAE-R and PAE-C.
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Algorithm 1 PAE framework

Input:
Given parameters w, ξr, ξc, ε, the trends

{
x̂l,t−k

}w−1
k=−1 and the actual price relatives

{xt−k}w−1
k=0 in recent time window, the current weighting vector wt and the current

portfolio bt.
Output: The next portfolio bt+1.

1 Calculating the feasible portfolio
{∼

x l,t−k

}w−1

k=0
by (9);

2 Calculating the recent back-tested returns
{

rl,t−w
}w−1

k=0 by (10) and
{

cl,t−w
}w−1

k=0 by (11) to
measure the performance of each trend;
3 Defining the ensemble target r∗,t by (12) and c∗,t by (13);
4 Setting parameter τ1,t :

τ1,t =


max

{
0, r∗,t−w>rt−ξr

‖rt−r̄t1‖2

}
PAE-R

max
{

0, w>ct−c∗,t−ξc

‖c̄t1−ct‖2

}
PAE-C

;

5 Updating weighting vector:

wt+1 =

{
wt + τ1,t(rt − r̄t1) PAE-R

wt + τ1,t(c̄t1− ct) PAE-C
;

6 Normalizing the next weighting vector wt+1 by (22);
7 Setting parameter τ2,t by (24);

8 Updating bt+1 = bt + τ2,t

(
bt − µ1(m)

)
;

9 Normalizing the next portfolio bt+1 by (25).

3.4. Complexity Analysis

In the context of online portfolio selection, running efficiency is a crucial factor to
consider as the application has time constraints. The ideal candidate for high-frequency
trading [28] would be a portfolio selection strategy that effectively balances wealth accu-
mulation and computational efficiency. The main factors that affect the computational cost
of PAE are the total investing periods n, the number of assets m, and the number of trends
L. All the steps of PAE cost O(m) except step 7, which consumes O(Lm). Table 1 shows the
time complexity for different portfolio selection strategies. Since L is usually much smaller
than d, our PAE algorithm achieves the lowest complexity when using multiple trend
estimators. As the number of trends and assets increases, PAE is still efficient to compute.
To be specific, PAE maintains the complexity of O(Lmn), which makes it applicable to
time-limited applications.

Table 1. Complexity comparison with other strategies.

Type Strategies Complexity

Single trend estimator OLMAR O(mn)
PPT O

(
m2n

)
Multiple trend estimators

AICTR O((m + L)mn)
TPPT O

(
m2n

)
PAE O(Lmn)

4. Experiments and Results

In this section, we mainly focus on the comparison studies. First, we introduce
experimental datasets and competing portfolio strategies and criteria of evaluation in turn.
Then, we conduct experiments on parameter settings and ensemble effectiveness. Finally,
we report and analyze the results of comparison studies and also discuss transaction costs
and running time.
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4.1. Data

To improve the reproducibility of the experiments and get close to the recent market,
we conducted comparison studies on four popular traditional datasets and three new
datasets. All of them are publicly available. Three traditional datasets include NYSE(N) [8],
TSE [29], and MSCI [7]. Three new datasets include NYSE19 [17], ZZ28 [30], and ETF23.

They contain real-world daily close price relatives from different stock and index
markets, including the New York Stock Exchange (NYSE(N), NYSE19), the Toronto Stock
Exchange (TSE), the MSCI World Index (MSCI), and the China Securities 500 index (ZZ28).
In 2023, China’s ETF market experienced significant development, with a total scale ex-
ceeding 1.8 trillion yuan, marking a nearly 40% increase from 2022. The remarkable growth
of this market underscores its importance, leading us to propose the ETF23 dataset. This
dataset includes the largest ETFs by market capitalization from 23 different industries in
the Chinese ETF market. Detailed information about these datasets is provided in Table 2.

Table 2. Detailed information for six datasets.

Dataset Region Time Days Assets

NYSE(N) US 1 January 1985–30 June 2010 6431 23
TSE CA 1 January 1994–31 December 1998 1259 88

MSCI Global 1 April 2006–31 March 2010 1043 24
NYSE19 US 2 January 2015–4 September 2019 1167 47

ZZ28 CN 4 January 2000–1 April 2020 4905 28
ETF23 CN 1 February 2021–1 October 2023 647 23

4.2. Competing Portfolio Strategies

For comparison, we consider some benchmarks and a number of existing online
portfolio management strategies (including some state-of-the-art ones). In the following,
we show these benchmarks and strategies, where the parameters of each strategy are set
according to the recommendations of the corresponding studies.

• BAH: the uniform Buy-And-Hold trading strategy. The strategy invests equally in
m assets at the onset and maintains this allocation throughout.

• OLMAR [9]: It takes the moving average to predict the future price. The parameters
are set as follows: w = 5 and ε = 10.

• AICTR [12]: It combines three trends (SMA, EMA, PP) and market conditions through
radial basis functions. The parameters are set as follows: w = 5, σ2

l = 0.0025, and
ε = 1000.

• SPOLC [17]: The short-term portfolio optimization with loss control strategy with the
window size w = 5 and the mixing parameter γ = 0.025.

• TPPT [11]: It uses adjustable historical windows and slope values for price prediction.
The parameters are set as follows: w = 5, α = 0.5, and ε = 100.

4.3. Evaluation Criteria

For ease of calculation, we assume that the initial wealth is 1 [31]. Under such a
circumstance, the single-period growth rate equals the portfolio’s cumulative return at
the tth period, and the cumulative growth rate is equal to cumulative wealth. Then, we
evaluate the characteristics of the aforementioned portfolio strategies using two criteria and
five performance metrics. The two criteria are return and risk-adjusted return. Basically,
the higher the values of metrics in return and risk-adjusted return criteria, the better the
portfolio strategy performs.

• Cumulative Wealth (CW). The CW serves as the principal metric for evaluating the
investment performance of each portfolio selection algorithm. The CW is computed
by (4).
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• Annualized Percentage Yield (APY). The APY is a widely used metric for evaluating
investment returns. It represents the average return of a strategy over the course of a
year. APY is computed as follows:

APY = Sn
1/y − 1, (26)

where y represents the number of years according to n trading days. In this study, all
datasets consist of daily prices. Therefore, y is calculated as n divided by 252, which is
the average number of annual trading days.

• Sharpe Ratio (SR). In the realm of financial trading, it is often observed that higher
returns are accompanied by elevated levels of risk. Thus, it is crucial for an investment
algorithm to strike a balance between maximizing returns and managing risks. The SR
serves as a widely utilized metric for evaluating risk-adjusted returns and is defined
as follows:

SR =
r̄s − r f

σ(rs)
, (27)

where r̄s is the mean of rs, r f is the return of a risk-free asset and is set to 0 in this
paper since we do not consider a risk-free asset, and σ(rs) is the standard deviation of
return rs estimated by the samples rs,t in n trading periods.

• Information Ratio (IR) [32,33]. The IR is a performance evaluation metric that quanti-
fies the excess risk-adjusted return of an investment strategy compared to a benchmark.
It is defined as follows:

IR =
r̄s − r̄m

σ(rs − rm)
. (28)

• Calmar Ratio (CR) [34]. The CR is a comparison of the average annual compound
return and the maximum drawdown (MDD) risk, which is widely adopted in fund
management. The calculation formula is CR = APY/MDD, where MDD = max

t∈[1,T]

Mt−St
Mt

,

Mt = max
k∈[1,t]

Sk.

In addition, to test whether the strategy achieves its returns just by luck [32], we
introduce the statistic t-test method into the measurement of the proposed strategies.
Particularly, a regression model of portfolio excess returns and market excess returns is
established as follows:

rs,t = α + βrm,t . (29)

By assuming that parameter α follows a normal distribution, we conduct a statistical t-test
on α and derive the probability of achieving the excess return by luck.

4.4. Results
4.4.1. Parameter Setting

We conduct a comprehensive analysis of the parameter setting of PAE through experi-
ments using benchmark data sets. Similar to previous studies [9,17,19,35,36], we adopt an
empirical method to determine the parameters based on their CW computed by (4).

We take four trends (x̂S,t+1, x̂E,t+1, x̂I,t+1 and x̂P,t+1) as the input of PAE and initiate
the weighting vector as w = [1/4, 1/4, 1/4, 1/4]. The value of w is set to 5. It aligns with
previous research [9–12,17] and is a commonly used time window size in stock and futures
investment because it reflects the recent financial environment. To run the trend back-test
step, the PAE strategies require at least w + 1 days of data. For fairness, all strategies adopt
their respective algorithm outputs for investment from the sixth day.

Regarding the threshold parameters ξr, ξc and ε, an initial approximation is made,
followed by fine-tuning in incremental steps. For PAE-R, a fixed value of ξr = 6× 10−4 is
determined, with ε being varied between 10 and 110. The results shown in Figure 1 indicate
that PAE-R is stable at ε = 30. Subsequently, a fixed value of ε = 30 is determined, with ξr
being varied between 5.5× 10−4 and 7.5× 10−4. The results shown in Figure 2 indicate
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that PAE-R is stable at ξr = 6× 10−4. For PAE-C, we repeat the above process and show
the experimental results in Figures 3 and 4. From the experimental results, we recommend
choosing ε = 30 and ξr = 6× 10−4 for PAE-R, ε = 30 and ξc = 1.5 for PAE-C. The rest of
the experiments adopt this parameter setting for comparison.
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4.4.2. Ensemble Effectiveness

To assess the effectiveness of the PAE framework in combining diverse trends to
improve investment performance, we compare its performance against a single trend
situation and analyze the distribution of the weight vector.

Different trend estimators exhibit significant variability in performance across various
datasets. As we initially emphasized, it is impossible to predict which trend estimator
will demonstrate the best performance over the entire investment period. Therefore, we
evaluate the effectiveness of our ensemble strategy from two perspectives. First, we expect
the strategy to improve performance. Second, the baseline for evaluating this strategy is
that its performance should not be inferior to that of any single trend estimator.

In Table 3, SMA, EMA, IP, and PP mean the corresponding weight in the weight
vector w is 1, and the others are 0 (for example, SMA means w = [1, 0, 0, 0]) in the entire
investment period. The best performing strategy is highlighted in bold, while the two
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worst performing strategies are underlined. The results from Table 3 clearly show that
our PAE-C and PAE-R strategies consistently exceed the baseline method. Furthermore,
they demonstrate leading performance on most datasets. It significantly validates the
effectiveness of the PAE strategy in integrating trend estimators.

Table 3. Cumulative wealth of different trend estimators. The best performing strategy is highlighted
in bold, while the two worst performing strategies are underlined. PP, EMA, SMA, and IP mean the
corresponding weight in the weight vector w is 1, and the others are 0.

Trend Estimator NYSE(N) MSCI TSE ZZ28 NYSE19 ETF23

PP 2.08 × 109 8.33 226.84 906.7 1.46 1.4
EMA 4.64 × 108 23.6 680.83 283.58 2.46 1.69
SMA 4.26 × 108 14.1 76.77 134.64 1.14 1.26

IP 1.16 × 106 10.28 1.39 × 103 185.13 9.34 0.84

PAE-C 6.83 × 108 23.63 706 348.31 2.51 1.29
PAE-R 4.15 × 109 14.98 2.26 × 103 867.83 2.44 1.71

In addition to the cumulative wealth of different trend estimators, Figure 5 illustrates
the evolution of the weighting vector during the entire investment on ZZ28. In most times,
the PAE-R and PAE-C frameworks are able to balance each trend estimator. To be specific,
from time 0 to 3000, we can observe that the investment performance of IP is poor compared
with the other three trends. In the case of PAE-C, the IP has less weight and ultimately
decreases to 0, while increasing the weights of EMA and PP leads to better investment
performance. In the entire investment, the average respective proportions of SMA, EMA,
IP, and PP are 6.3%, 71.4%, 3.0%, and 19.3%.
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Compared with PAE-C, PAE-R is better at capturing changes in short-term investment
performance across different trend estimators and is more aggressive in adjusting weights.
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From time 0 to 3000, the average proportions of SMA, EMA, IP, and PP are 25.4%, 17.3%,
25.1%, and 32.2%. But, from time 4000 to the end, IP performed very well, and its invest-
ment performance even caught up with SMA. During this period, the average respective
proportions of SMA, EMA, IP, and PP are 17.9%, 17.6%, 30.3%, and 34.3%. The decrease
in the proportion of SMA and the increase in the proportion of IP indicate that PAE-R can
integrate different trend estimators.

4.4.3. Comparison Studies

Table 4 shows the performance of PAE and competing strategies on six real-world
datasets. We evaluate the portfolio strategies comprehensively with respect to return and
risk-adjusted return.

Table 4. Performance of different strategies. The best performing strategy for each row is highlighted
in bold.

Dataset Metrics BAH OLMAR AICTR SPOLC TPPT PAE-C PAE-R

NYSE(N)

CW 18.29 4.19 × 108 1.01 × 109 1.99 × 107 2.63 × 109 6.83 × 108 4.15 × 109

APY 0.121 1.177 1.254 0.932 1.339 1.219 1.382
SR 0.046 0.104 0.106 0.105 0.108 0.105 0.113
IR −0.025 0.096 0.099 0.095 0.102 0.097 0.107
CR 0.225 1.28 1.374 1.082 1.561 1.298 1.629

MSCI

CW 0.89 14.5 12.38 7.34 10.81 23.63 14.98
APY −0.027 0.908 0.837 0.618 0.776 1.147 0.923
SR 0.001 0.116 0.108 0.09 0.103 0.132 0.116
IR −0.036 0.169 0.158 0.132 0.155 0.193 0.17
CR −0.041 1.889 2.026 1.13 1.483 2.677 1.901

TSE

CW 1.56 57.79 544.47 277.1 265.10 706 2.26 × 103

APY 0.093 1.252 2.529 2.083 2.055 2.717 3.692
SR 0.048 0.082 0.111 0.111 0.101 0.114 0.129
IR −0.002 0.078 0.108 0.107 0.098 0.111 0.127
CR 0.311 1.527 3.81 4.087 2.672 4.779 5.127

ZZ28

CW 31.76 124.58 195.73 853.07 123.5 348.31 867.83
APY 0.194 0.281 0.311 0.415 0.280 0.351 0.416
SR 0.048 0.05 0.053 0.068 0.050 0.057 0.063
IR 0.002 0.024 0.029 0.044 0.024 0.034 0.043
CR 0.335 0.389 0.436 0.711 0.430 0.474 0.548

NYSE19

CW 1.37 0.98 1.79 2.45 1.56 2.51 2.44
APY 0.07 −0.005 0.133 0.214 0.101 0.22 0.213
SR 0.034 0.018 0.032 0.04 0.029 0.04 0.039
IR −0.022 0.009 0.024 0.033 0.021 0.033 0.032
CR 0.288 −0.006 0.168 0.299 0.128 0.277 0.301

ETF23

CW 0.87 1.19 1.28 0.84 1.07 1.29 1.71
APY −0.053 0.07 0.102 −0.064 0.027 0.104 0.231
SR −0.012 0.023 0.028 −0.003 0.016 0.029 0.048
IR −0.005 0.036 0.043 0.005 0.028 0.043 0.067
CR −0.185 0.156 0.24 −0.181 0.057 0.224 0.532

In terms of return, PAE-R demonstrates the best performance for most datasets, es-
pecially in TSE and NYSE(N), where its CW far exceeds that of other strategies. PAE-C
performs well in the MSCI and ETF23 datasets but is generally inferior to PAE-R for the
remaining datasets. To provide a visual representation of the trajectory’s evolution, CW
plots are presented in Figure 6, revealing that the PAE algorithm consistently attains higher
wealth returns compared to others over the majority of time periods, demonstrating the
superiority of the model in portfolio decision-making. Regarding risk-adjusted returns,
PAE-R outperforms other strategies for most datasets, especially in ETF23 and TSE. PAE-C
exhibits advantages on specific datasets, such as MSCI and NYSE19. Notably, SPOLC,
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optimized for maximum drawdown, demonstrates comparable performance to PAE in
terms of risk-adjusted returns. PAE-C shows strength in the MSCI and NYSE19 datasets
but is generally inferior to PAE-R for other datasets.
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In addition to the quantitative evaluation results, Table 5 lists the results of the t-test
to justify the effectiveness of the proposed PAE. Table 5 shows that except for NYSE19 and
ETF23, it is almost impossible for PAE-C to produce the corresponding returns simply by
luck at a high confidence level of 97%. There is also around an 80% confidence level for
PAE-C not to produce their returns by luck in the other datasets. The results also indicate
that the values of α for PAE-R are significantly larger than 0 at a high confidence level of
99% on four datasets, while the rest are higher than 90%.

In general, PAE shows noticeable advantages over other competing strategies in terms
of comprehensive performance.
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Table 5. Statistical t-test of the performance of PAE-C and PAE-R. MER stands for mean excess return.

Statistics
NYSE(N) MSCI TSE ZZ28 NYSE19 ETF23

PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R

MER 0.0032 0.0035 0.0033 0.0030 0.0066 0.0076 0.0007 0.0008 0.0011 0.0011 0.0010 0.0012
MER-market 0.0006 / 0.0000 / 0.0004 / 0.0009 / 0.0004 / −0.0001 /

α 0.0030 0.0033 0.0033 0.0029 0.0061 0.0071 0.0007 0.0009 0.0009 0.0014 0.0008 0.0012
β 1.3411 1.3561 1.2009 1.1946 2.2057 2.0434 1.0666 1.0718 1.7696 1.4239 1.1315 1.1495

t-statistics 7.3420 8.0863 6.3287 5.5531 3.6954 4.2855 2.2146 2.8055 1.3519 1.7481 1.1124 1.7443
p-value 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0268 0.0050 0.1769 0.0807 0.2664 0.0816

4.4.4. Transaction Costs

The paramount concern in practical real-world trading is the transaction cost. When
there is a transaction cost rate of r for each trade in the portfolio re-balancing process, the
CW can be determined using the proportional transaction cost model [9] as follows:

Sr
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n
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is the price adjusted portfolio of asset i in the tth period and b0 is

set to
[
0, . . . , 0]> . The term (r/2)∑m
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∣∣∣∣∣b̂(i)
t −

∼
b
(i)

t−1

∣∣∣∣∣ represents the transaction cost incurred

from the adjustment of portfolio
∼
bt−1 to bt through re-balancing.

To evaluate the practicality of the portfolio selection strategies, we perform experi-
ments on CW while changing the transaction cost rate r between 0 and 0.5%. The findings,
displayed in Figure 7, indicate that PAE-R delivers superior results on NYSE(N), MSCI, TSE,
and ETF23. Additionally, PAE-R shows comparable performance to other state-of-the-art
strategies on the remaining datasets, excelling in managing transaction costs. PAE-C also
demonstrates competitive performance, particularly in MSCI and NYSE19.
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This underscores the capability of PAE as a robust framework for managing transaction
costs, making it well-suited for real-world financial environments.

4.4.5. Running Time

To evaluate the computational cost of the PAE, we conducted 5 iterations of the
algorithms on each dataset using a Ryzen 5 3500X CPU, which was designed by AMD in
the USA, paired with two 16GB DDR4 3200 MHz RAM modules.. The average running
times (in seconds) of PAE-C per trading period are 0.0064, 0.0064, 0.0071, 0.0064, 0.0067,
and 0.0073 on NYSE(N), MSCI, TSE, ZZ28, NYSE19, and ETF23, respectively. The average
running times (in seconds) of PAE-R per trading period are 0.0056, 0.0056, 0.0063, 0.0057,
0.0056, and 0.0060. The average running times (in seconds) of TPPT per trading period are
0.0092, 0.0099, 0.0117, 0.0098, 0.0090, and 0.0111. The average running times (in seconds)
of AICTR per trading period are 0.0149, 0.0145, 0.0145, 0.0141, 0.0150, and 0.0172. In
comparison, TPPT and AICTR exhibit higher average running times per trading period,
suggesting that PAE demonstrates efficient computations suitable for handling multiple
trend estimators.

5. Conclusions and Future Work

In this study, we present a passive aggressive ensemble (PAE) framework, a new
approach for online portfolio selection that integrates multiple trend estimators. PAE
stands out by efficiently combining different estimators and enhancing their performance
through a novel weighting mechanism. Our extensive experiments across various real-
world datasets demonstrate that PAE not only outperforms the competing algorithms in
key evaluation metrics but also shows potential for managing transaction costs effectively.
This approach is particularly notable for its adaptability to different market conditions and
scalability, making it suitable for practical financial applications.

This paper envisages three primary directions for future research. First, the exploration
of different loss functions: In our framework, the weighting factors of different trend
estimators are determined by their relative loss to the market. Identifying more optimal
loss functions to evaluate the effectiveness of trend estimators could significantly enhance
the overall performance of the framework. Second, the investigation into the application
of regularization techniques in ensemble methods: Regularization techniques can prevent
overfitting and bolster the robustness of the ensemble approach. Finally, we acknowledge
that our model has substantial room for improvement in high transaction fee environments.
Therefore, refining the PAE model to improve its performance by considering transaction
costs is also a pivotal aspect of our forthcoming research endeavors.
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Appendix A

Proof of Theorem 1. When lξr = 0, the constraint in (16) is satisfied by wt, and it becomes
the optimal solution. For the case where lξr 6= 0, we can solve the optimization problem by
introducing the Lagrangian of the problem in (16):

L(w, τ1,t, λ) =
1
2
‖ w−wt ‖2 + τ1,t

(
r∗,t −w>rt − ξr

)
+ λ

(
1>w− 1

)
, (A1)

where τ1,t ≥ 0 and λ are the Lagrangian multipliers. Taking the gradient with respect to w
and setting it to zero, we obtain the following:

∂L

∂w
= (w−wt)− τ1,trt + λ1 = 0. (A2)

By left multiplying 1> on both sides, we obtain the following:

1 = 1− τ1,t1>rt + λL, (A3)

λ = τ1,t r̄t, (A4)

where r̄t =
1>rt

L is the mean value of back-tested returns. Plugging the above equation to
(A2), we obtain the update of w as follows:

w = wt + τ1,t(rt − r̄t1). (A5)

Simplifying the formula after plugging (A4) and (A5) to Lagrangian (A1), we obtain
the following:

L(τ1,t) = − 1
2 τ2

1,t‖ rt − r̄t1 ‖2 + τ1,t
(
r∗,t −w>t rt − ξr

)
. (A6)

Taking derivative with respect to τ1,t and setting it to zero, we have the following:

∂L
∂τ1,t

= −τ1,t‖ rt − r̄t1 ‖2 +
(
r∗,t −w>t rt − ξr

)
= 0 , (A7)

which implies the following:

τ1,t =
r∗,t −w>t rt − ξr

‖ rt − r̄t1 ‖2 . (A8)

Further projecting τ1,t to [0,+∞), we complete the proof of (19). �

Appendix B

Proof of Theorem 3. The Lagrangian of the optimization problem (17) is as follows:

L(b, τ2,t, η) =
1
2
‖ b− bt ‖2 + τ2,t(ε− b>

ˆ
Xt+1wt+1) + η(1>b− 1), (A9)

where τ2,t ≥ 0 and η are the Lagrangian multipliers. Taking the gradient with respect to b
and setting it to zero, we have the following:

∂L

∂b
= (b− bt)− τ2,tX̂t+1wt+1 + η1(m) = 0, (A10)
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where 1(m) denotes the m-dimensional 1 vector. By left multiplying both sides with 1>(m),
we have the following:

1 = 1− τ2,t1>(m)X̂t+1wt+1 + ηm, (A11)

η = τ2,tµ, (A12)

where µ = 1
m 1>(m)X̂t+1wt+1. Plugging the above equation to (A10), we have the update of b

as follows:
b = bt + τ2,t

(
bt − µ1(m)

)
. (A13)

Simplifying the formula after plugging (A12) and (A13) to Lagrangian (A9), we have
the following:

L(τ2,t) = − 1
2 τ2

2,t‖ bt − µ1 ‖2 + τ2,t

(
ε− b>X̂t+1wt+1

)
. (A14)

Taking the derivative with respect to τ2,t and setting it to zero, we arrive at the
following:

∂L

∂τ2,t
= −τ2,t‖ bt − µ1 ‖2 +

(
ε− b>t X̂t+1wt+1

)
= 0, (A15)

which can be simplified to the following:

τ2,t =
ε−b>t X̂t+1wt+1

‖X̂t+1wt+1−µ1(m)‖
2 . (A16)

Further projecting τ2,t to [0,+∞), we finally complete the proof of (24). �
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