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Abstract: For the formation and obstacle avoidance challenges of UAVs (unmanned aerial vehicles)
in complex scenarios, this paper proposes an improved collaborative strategy based on APF (artificial
potential field). This strategy combines graph theory, the Leader–Follower method, and APF. Firstly,
we used graph theory to design formation topology and dynamically adjust the distances between
UAVs in real time. Secondly, we introduced APF to avoid obstacles in complicated environments.
This algorithm innovatively integrates the Leader–Follower formation method. The design of this
attractive field is replaced by the leader’s attraction to the followers, overcoming the problem of
unreachable targets in APF. Meanwhile, the introduced Leader–Follower mode reduces information
exchange within the swarm, realizing a more efficient “few controlling many” paradigm. Afterwards,
we incorporated rotational force to assist the swarm in breaking free from local minima. Ultimately,
the stability of the integrated formation strategy was demonstrated using Lyapunov functions. The
feasibility and effectiveness of the proposed strategy were validated across multiple platforms.

Keywords: UAV swarm; graph theory; APF; Leader–Follower method; rotational force; affine
formation; reconfiguration

MSC: 5408; 9310

1. Introduction

As the task environment becomes increasingly complex, there is a growing demand
for enhanced cluster control [1]. The control objectives now extend beyond the mere
maintenance of formation stability and facilitation of effective formation changes. They
now encompass the prevention of inter-agent collisions, secure navigation around obstacles,
and other safety considerations. Presently, collaborative control of clusters has emerged as
a central focus in current research. The utilization of multi-agent collaborative consensus
theory [2] to investigate formation reconstruction, path planning [3], and obstacle avoidance
within collaborative control has become a burgeoning area of study.

Common formation control methods encompass Leader–Follower approaches [4],
behavior-based methods [5], APF approaches [6], virtual structure methods [7], and graph
theory [8]. Graph theory methods have emerged as a novel approach in recent years for
formation control. Leveraging graphs to depict topological relationships, this methodology
transforms challenging problems within formations into a graphical representation. Conse-
quently, this paper adopts a graph theory approach to fulfill fundamental formation tasks
within swarms, utilizing its relevant knowledge [9] for the design of formation patterns and
concurrently implementing affine transformations. In the face of increasingly complex task
scenarios, there are obstacles everywhere. Therefore, how to avoid obstacles and reach the
target point while coordinating the formation is a challenge in formation control strategy.
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Scholars worldwide have conducted extensive research on the challenge of obstacle
avoidance in multi-agent systems. Commonly employed obstacle avoidance algorithms
encompass neural network approaches [10], ant colony algorithms [11], swarm intelligence
algorithms, and APF methods [12]. Zhan et al. [13] employed a biased consistency neu-
ral network for distributed solving to obtain the shortest trajectory route. This method
enables a highly parallel system with self-learning capabilities. Xia et al. [14] integrated
the ant colony algorithm for global path planning with local obstacle avoidance rules,
creating shorter and collision-free composite paths. Wang et al. [15] improved the forag-
ing and elimination mechanisms in the bee colony algorithm, ensuring the simultaneous
achievement of multi-objective optimization. A common issue among the aforementioned
methods is a notable dependence on environmental information, leading to significant
computational time. This dependency becomes particularly complicated when dealing
with swarm formation. The APF method [16] presents an effective approach to mitigating
collision issues within swarms. This method is characterized by its simplicity in design,
low computational overhead, and high real-time performance. However, the challenges
become evident when solely relying on the APF method [17]. First, it does not consider the
collaborative relationships between UAVs. The second issue lies in the shortcomings of the
method, such as local extrema and unreachable points [18].

In addressing the limitation of achieving collective collaboration under the influence of
a single APF, this paper proposes a control strategy that integrates graph theory with APF.
During the initial stages of formation, graph theory is employed to design corresponding
topological configurations. The invariance of the topology is maintained based on the
magnitude of the stress matrix, ensuring the safety distance between UAVs [19]. Based
on the positive or negative values of the stress matrix, UAVs are either attracted to or
repelled from each other, effectively preventing self-collisions among UAVs and ensuring
that individual UAVs stay within the formation. When encountering obstacles, the APF
method serves as the central approach for UAV collision avoidance, achieving spatial
obstacle avoidance within the swarm. Building upon the proposed method in this paper, a
swarm of UAVs can concurrently achieve formation control, inter-agent collision avoidance,
and obstacle avoidance [20].

Addressing the inherent limitations in the APF method [21], the approach in [22]
added virtual target points to modify the force equilibrium at those specific locations.
Reference [23] introduced random disturbance components into the attractive potential
field. Ref. [24] incorporated the path planned by the APF method as inspiration for the ant
colony algorithm to conduct path searching. In [25], the Rapidly Exploring Random Tree
(RRT) algorithm was introduced into the APF, treating nodes along the path as additional
attraction sources while reducing the influence of the target point. However, the integration
of the aforementioned methods tends to make the algorithm more complex, resulting
in a higher computational load. Considering the computational and power constraints,
this paper introduces rotational force into the foundation of the APF. This addition aims
to overcome the challenges posed by local minima. In comparison to other algorithms,
this method offers a smaller computational load, increased operability, and higher real-
time performance.

The contributions of this paper are outlined as follows:

(1) The combination of graph theory and APF methods demonstrates robust adaptability
to environmental challenges.

Graph theory is an ingenious formation control method. However, its limitations
make it challenging to handle scenarios with obstacles. To enhance the capabilities of
cluster path planning and obstacle avoidance, this paper integrates the effective obstacle
avoidance technique of the APF method into the formation control. Unlike other studies,
the fusion control law designed in this paper is not limited to the control of a single
variable; it takes into account the consistency of multiple variables within the swarm. This
design results in stronger formation and coordination effects. After navigating through
obstacles, the tracking error of the desired positions is minimized, leading to a more stable



Mathematics 2024, 12, 954 3 of 20

formation configuration. In contrast to traditional APF, this paper considers inter-vehicle
collaboration, resulting in enhanced adaptability to the environment.

(2) Innovatively applying the Leader–Follower method overcomes the limitation of
unreachable targets in the APF.

Typically, in APF methods, both an attractive field and a repulsive field are concur-
rently designed. However, when obstacles are present near the target point, the issue
of unreachable targets may arise. This paper proposes integrating the Leader–Follower
method into the APF, thereby eliminating the influence of the target point’s attraction on
the UAVs. In turn, the attraction force on the followers is replaced with the leader UAV.
While following the leader, the follower simultaneously moves in the direction of the target
point. It avoids the problem of unreachable locations in a different way.

(3) By employing rotational force, the issue of APFs easily falling into local minima
is addressed.

Although the APF method exhibits good obstacle avoidance capabilities, its drawbacks
are quite apparent. One significant limitation is its susceptibility to becoming trapped in
local minima points, causing the UAV to remain stationary due to force equilibrium. To
address the issue of local minima encountered by APFs, a rotational force is introduced
perpendicular to the force between the UAV and obstacles. The magnitude of this force is
proportional to the repulsive force generated by the obstacles. Its direction remains parallel
to the obstacles, allowing for smoother navigation around them. This additional force is
applied to pull the UAV out of the local minima by avoiding the force equilibrium state
caused by the obstacles.

The structure of this paper is as follows: The second section covers the design of
cooperative consensus control laws based on graph theory. The third section introduces
the APF, presenting the modified design method employed in this paper. The fourth
section provides the formation model for the swarm system and details the corresponding
controllers. The fifth section outlines the process of proving system stability. The sixth
section includes the simulation analysis, and the final section concludes the paper.

2. Graph Theory-Based Cooperative Formation Control

This section presents the design of a multi-agent formation based on affine formation
theory. Firstly, it provides the foundational knowledge of graph theory and the definition
of affine. Secondly, it introduces the concepts of stress matrix and universal rigidity, along
with the design method for a globally rigid graph. Following this analysis, the nominal
formation designed in this paper and the communication topology structure of six UAVs
are presented. Finally, a cooperative controller based on consistency theory is developed
for the cluster system, enabling formation maintenance and affine transformations among
the UAVs.

Graph theory, originally an emerging branch of mathematics, now holds a significant
position in modern science. It provides a simple and systematic modeling approach for
various fields such as physics, control theory, and social sciences. Many problems can be
transformed into graph theory problems and subsequently solved using fundamental graph
theory algorithms. In the control of multi-agent formation, the agents‘ communication
relies on the establishment of network topology. From the topological graph, one can
intuitively observe the flow of information among various communication nodes.

Modeling is done using graph theory, where vertices represent intelligent agents
and edges represent the communication distance between the intelligent agents [26]. The
number of vertices and edges in a directed simple graph are determined to be n and m,
respectively. G= (ν, ε)ν = {1, 2, . . . , n}, ε ⊆ ν × ν are referred to as the vertex set and the
edge set of the graph G, respectively, where |ε| = m. The set of neighboring vertices of
vertex i, represented by Ni = {j ∈ v : (i, j) ∈ ε}, is considered. Therefore, (G, p) represented
a formation and the graph G where its vertex i map to pi.
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An affine transformation may be conceptualized as a variant of linear transforma-
tion [27]. Figure 1 illustrates how these transformations manifest through operations like
translation, rotation, scaling, shearing, or their combinations [28]. If we have a set of
points {pi}n

i=1 in Rd, we can express the affine span of these points as Equation (1).

S= {
n

∑
i=1

ai pi : ai ∈ R ,
n

∑
i=1

ai = 1} (1)
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The affine space will be used to describe the interrelations among the individuals in
the formation.

The subsequent discussion will introduce Lemma 1, which serves to establish the rank
condition for the affine span.

Lemma 1 (Rank condition for affine span). The set of points {pi}n
i=1 affinely span Rd if and

only if n ≥ d + 1 and rank(P(p)) = d + 1.

Matrices are mathematical tools used in graph theory analysis. By studying the
properties of matrices, the characteristics of the communication topology graph can be
obtained. The stress matrix [29] describes the communication topology relationships among
UAVs. Utilizing the stress matrix allows not only the description of topological connections
between agents but also indicates the strength of these connections and the direction of
information flow. Numerical values with positive or negative values indicate attraction
or repulsion between UAVs. In the stress matrix, when wij > 0 is positive, it indicates
the presence of an attractive force along edge (i, j); conversely, if wij < 0 is negative, it
suggests the existence of a repulsive force. Vector wij(qj − qi) represents the force exerted by
UAV j on intelligent agent i through edge (i, j). If formation (G, q) can meet the following
requirements (2):

∑
j∈Ni

wij(qj − qi) = 0, ∀i ∈ {1, · · · , n} (2)

then, it is defined that w is equilibrium stress of (G, q). The rigidity [30] will reveal the
uniqueness of the formation structure up to congruence. The generic configuration can
be denoted by q = [qT

1 , · · · , qT
n ]

T ∈ Rnd. A framework (G, q) refers to a corresponding
graph G with its configuration. A structure (G, q) is called rigid in Rd if all the struc-
tures (G, p) equivalent to (G, q) and sufficiently close to (G, q) are congruent to (G, q) in Rd.
If all the structures (G, p) equivalent to (G, q) are congruent to (G, q), it is called globally
rigid in Rd. What is more, if this congruent relationship holds in any higher-dimensional
space RD ⊃ Rd, we say it is universally rigid [31].

According to the requirements of a rigid swarm, Lemma 2 states that the stress matrix
should satisfy the following condition [32]:

Lemma 2 (Generic universal rigidity). Let (G, q) be a generic framework on n vertices in
Rd, d ≤ n − 2 . Then, (G, q) is universally rigid if and only if there exists a positive semi-definite
stress matrix Ω such that its rank is n − d − 1.
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To simplify collaborative interactions and enhance information transmission efficiency,
we employ a Leader–Follower formation control strategy, where the desired formation
maneuvers are exclusively communicated to the leaders. We establish the assumption
that the initial nl agents in the formation are designated as leaders, while the remaining
n f = n − nl agents are termed followers. Throughout this article, l and f represent the
variables for leaders and followers, respectively [33].

Lemma 3 (Leader selection for affine localizability). The nominal formation (G, r) is affinely
localizable if and only if {ri}i∈vl

affinely span Rd.

In scenarios where there are precisely d + 1 leaders, for any given leader position pl ,
a solution (A, b) to Equation (3) always exists. However, when the number of leaders
exceeds d+ 1, the positions of the leaders become interdependent. Otherwise, the absence of
a solution (A, b) to Equation (3) is plausible, as the equation constitutes an overdetermined
linear system. For the purpose of this paper, three agents are designated as leaders within
the formation, identified as Leader 1, 2, and 3.

p∗(t) = A(t)r + b(t) (3)

Based on the formation dimension and the number of intelligent agents, the maximum
number of edges for a formation-based topology according to graph theory is provided.
By following the described method, one can calculate the upper limit of the number of
connections between formations [34].

Lemma 4 (The upper bound on the number of sides). The number of members of the constructed
tensegrity framework is bounded from above by

|ε| ≤ (d + 1)(n − d + 2
2

)

From the above Lemmas 1–4, we can derive the conditions for constructing formation
topology. According to the theory mentioned above, a configuration in a two-dimensional
plane requires three leaders, giving the design of a formation configuration consisting of
the six UAVs (Figure 2).
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Figure 2. Nominal topological connectivity graph.

The UAVs numbered from one to three serve as leaders in the formation, while the
remaining UAVs act as followers. Based on the designed formation topology, the adjacency
matrix can be obtained [35]. This paper does not present a distinct control law for leaders.
It is established that the leader’s position aligns with the expected value in the target
configuration, denoted as pl(t) = p∗l (t) for all times. Consequently, our control objective is
to guide the followers towards attaining p f (t) → p∗f (t) .
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This paper designs the following control laws (4) based on consensus theory to achieve
a consensus among the swarm of UAVs in the formation. Under the influence of these
control laws (4), the UAV swarm not only maintains velocity consensus, but each UAV also
remains at its designated position based on the topology.

uij = − ∑
j∈Ni

wij[kp(pi − pj) + kv(vi − vj)] (4)

where wij represents the element of the stress matrix, pi, pj denotes the position of UAVs i
and j, and vi, vj represents the velocity of the UAVs.

.
vj is the acceleration of the j-th UAV. In

addition, kp, kv represents the position and velocity gain coefficients between the UAV and
its adjacent.

From the above equation, it is evident that the calculation of the control input considers
the state variables of neighboring UAVs, such as velocity and position. Therefore, utilizing
the foundation of the consistency algorithm and the stress matrix, followers can maintain
the designed formation topology during the formation process, preventing collisions.
When a UAV deviates from the entire formation, the force exerted by the adjacency matrix
between UAVs acts as the attraction, pulling the deviating UAV back into the formation
and maintaining the stability of the formation shape.

3. Design Improvement of the APF Method

The principle of the APF method proposed by Khatib is to model the environment
as a potential field [36]. In this space filled with the potential field, there is a repulsive
field around obstacles and an attractive field around the target point [37]. Under the
combined influence of attraction and repulsion, the UAV moves towards the target point,
and the resultant force generated by the superposition of various potential fields determines
the direction of the UAV motion. Compared to other obstacle avoidance algorithms,
APF possesses advantages such as lower computational complexity and high real-time
performance. However, it also has its own drawbacks, such as issues with local minima
and unreachable targets.

3.1. Designing an Improved APF Method

Inaccessibility to the target is a significant drawback of the APF method [38], and this
situation may arise in the following scenarios: (1) There are obstacles around the target,
and the repulsion force acting on the UAV next to the target is greater than the attraction
force. (2) When the attraction force at the current position is greater than the repulsion
force, the UAV moves towards the target point. However, in the next moment, the situation
is the opposite. This situation can lead to the UAV repeatedly jumping around the current
position but never truly approaching the target point.

There has been some research on improving the APF method, as mentioned above.
However, the environments considered in these studies are relatively simple, and they
do not take into account the scenario of multiple UAV formations. In addressing the
issue of an unreachable target, this study innovatively integrates the Leader–Follower
formation method into the traditional APF. A repulsive field is established only around
obstacles, eliminating the attractive field around the target point. The UAVs’ attractive force
is generated by the force exerted by the leader on the followers, and its magnitude depends
on the designed formation topology. By planning a trajectory in advance that reaches the
target point, the leader enables the followers to avoid the issue of target inaccessibility
through their guidance. This enhancement provides a more realistic simulation of complex
environments. Assuming the environment has multiple obstacles, the definitions for the
detection area and collision area (Figure 3) for the m-th obstacle are in (5) and (6).
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The collision region of obstacle m:

βcollision ≜ {x|∥x − xom∥ ≤ rm } (5)

The detection region of obstacle m:

βdetection ≜ {x|rm < ∥x − xom∥ ≤ Rm } (6)

Effectively defining the detection and collision zones for UAVs simplifies the com-
putations by excluding repulsive forces when the UAVs are distant from obstacles. The
improved repulsive field function (7) is designed as

Eaom(x) =

{
β1(

χ(x,xom )

R2
m

− 2 ln χ(x,xom )
Rm

− 1
χ(x,xom )

) χ(x, xom) ∈ βcollision

0 χ(x, xom) /∈ βcollision
(7)

where Eaom represents the repulsive field function, and xom and Rm represent the center
position and the effective range of the force of obstacle m, respectively. β1 is the repulsion
gain coefficient. χ(x, xom) = ∥x − xom∥ is the distance from the UAV to the center of
the obstacle.

The negative gradient of the modified repulsive function (8) is calculated, resulting in
the following obstacle repulsive force:

Faom(x) = −∇Eaom(x) =

{
β1(

1
χ(x,xom )

− 1
R )

2
χ(x, xom) ∈ βcollision

0 χ(x, xom) /∈ βcollision
(8)

In the equation, Faom is the force exerted on the agent due to repulsion. According to
the improved APF, it can be observed that, when calculating the repulsive force of obstacles
on drones, the distance between the UAV and the center of the obstacle χ(x, xom) is first
calculated. Since various obstacles may be present in the environment, the repulsive
force acting on an individual is the sum of the repulsive forces, as in (9), generated by
all obstacles.

Faoi =
n

∑
m=1

Faom (9)

In Equation (9), Faoi represents the sum of the repulsive forces exerted by multiple
obstacles on the i-th intelligent agent.

Based on the improved APF mentioned above, with the guidance from the leader to
the followers, the attractive force field is omitted, thus avoiding the problem of unreachable
targets. The action range of each field is clearly defined, continuously monitored during the
formation process. When encountering obstacles, the obstacle avoidance mode is triggered,
generating corresponding repulsive forces to assist the UAV swarm.
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3.2. Addressing the Issue of Local Extrema in the APF Method

When facing obstacles with special shapes or specific combinations, UAV systems
may encounter local extremum points. In other words, the resultant force of the repulsive
forces acting on the UAV becomes zero, leading to a halt in motion [39]. The three common
situations where the UAV can be trapped in extremum points are illustrated in the following
Figure 4. Some scholars have attempted to introduce perturbations. However, extensive
experiments indicate that perturbation-based approaches suffer from low reliability. The
second approach involves proactively abandoning the pursuit of the target point, designing
new subgoals, and altering its gravitational source. Nonetheless, there is a possibility that
the gravitational effect of the next subgoal point may not show a significant improvement or
that there is no defined next subgoal point. In such cases, our method becomes impractical.
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Figure 4. The three cases of local extremum points. ((a) and (b) are the cases where the obstacle
and the target point are collinear, and the attraction and repulsion forces are equal in magnitude
and opposite in direction. (c) is the case where the sum of the repulsive forces generated by the two
obstacles is equal to the attraction of the target point).

To address the potential issues described earlier, our study introduces a “rotational
force”. By adjusting the force direction, the agent’s movement deviates. The rotational
force’s magnitude is proportional to the repulsive force from the nearest obstacle to the
UAV, aligning with the obstacle’s normal direction. The specific direction of the rotational
force depends on the target point’s position relative to the obstacle. For example, if the
target point is to the right of the obstacle, the rotational force will direct to the right. The
details are illustrated in Figure 5.
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Figure 5. Rotational force diagram.

The rotational force enables the UAV to move parallel to the obstacles, resulting in a
smoother trajectory. This is because avoiding local extremum points does not necessarily
require moving away from them; instead, it involves making local adjustments to the force
direction. Therefore, introducing the rotational force does not impact the overall stability
of the swarm. The magnitude of the force (Facm ) is equal to the product of the repulsive
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force magnitude and the gain coefficient. The specific formula for the calculation is as
Equation (10).

Facm(x) =
{

ζ1Faom(x), χ(x, xom) ≤ η1R
0, χ(x, xom) > η1R

(10)

In the equation, ζ1 represents the gain coefficient, and η1 is a parameter related to
the effective range of the rotational force. The effective range parameter indicates that the
rotational force is only active when the UAV is at a certain distance from obstacles or when
the net external force is zero. In all other situations, the rotational force is set to zero. This
design allows the UAV to escape from the local extremum point.

4. Control of UAV Swarm Formation Based on the Improved APF Method

The position deviation based on the consensus protocol can guide all UAVs to converge
to the desired topological positions while ensuring a safe distance between them. With the
introduction of APF [40], utilizing the repulsive forces generated by obstacles on UAVs, the
coordinated avoidance control objective can be achieved through the multiple repulsive
potential fields. The introduction of rotational force allows the UAV to promptly escape
extremum points and reach the target point.

Taking a single UAV as an example, to maintain the formation, the UAV adjusts its
attractive or repulsive force concerning the real-time information and the configuration. In
the event of a UAV deviating from the formation, the inter-agent attractive force is utilized
to pull it back into the formation. In the case of two UAVs being too close, repulsive forces
are applied between them, guiding each UAV to its desired position under this force. When
facing obstacles, the established APF comes into play [41]. The control diagram for an
individual UAV is depicted below (Figure 6).
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Building upon the aforementioned single UAV control, the focus shifts to achieving
overall formation control for a swarm. Employing a Leader–Follower formation approach,
the design incorporates knowledge from graph theory to establish the formation topology.
Building on the principles of consistency, the control system coordinates the relative po-
sitions and velocities of the leader and followers. As these variables gradually converge,
maintaining stability in the formation, the ultimate goal of formation control is achieved.

The second-order continuous system model for formation control is represented
by (11). { .

xi = vi.
vi = ui

(11)

In Equation (11), xi, vi, ui ∈ Rn represent the position, velocity, and applied control
force of the UAV, while n denotes the dimensionality of the state variables. The role of
the leading UAV is crucial for the overall formation, and in this study, it is assumed that
the leader has been well-planned, with a safe path to reach the target point. Followers
only need to track the leader’s trajectory to maintain formation stability. Throughout the
formation process, the repulsive force generated proves effective in avoiding obstacles. In
summary, considering the combined effect of various forces, the resultant force experienced
by the UAV in the swarm formation is (12).
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Fall = Fij +
M

∑
m=1

Faom + Facm (12)

Fall represents the total resultant force experienced by the UAV, and Fij represents
the interaction forces designed based on consistency theory, as expressed in Equation (4).

M
∑

m=1
Faom denotes the resultant force from the repulsive effects generated by multiple ob-

stacles, with the repulsive force expression provided in Equation (8). Facm stands for the
rotational force utilized by the UAV after force equilibrium to escape extremum points,
with its expression outlined in Equation (10).

Therefore, based on the resultant force experienced by the UAV, the velocity and
position update states for each UAV can be obtained through the following (13)–(15)
calculations.

at+1 =
Fall
mi

(13)

vt+1 = vt + at+1 × ∆t (14)

pt+1 = pt + vt+1 × ∆t (15)

In Equations (13)–(15), mi represents the total mass of UAV i, at+1 is the acceleration at
time t + 1, vt+1, pt+1 represents the velocity and position at time t + 1, vt, pt represents the
velocity and position at time t, and ∆t is the time interval for state updates.

The computational process of the swarm formation control algorithm based on the
enhanced APF is as follows:

1. Initialization Phase: Initialization of the number and spacing of UAVs in the for-
mation, positions of obstacles, and the range of repulsive forces; computation of the
adjacency matrix and stress matrix for configuration topology; initialization of the
parameters for the enhanced APF and consistency algorithm.

2. Generate Interaction Force: Calculate the control forces needed to maintain the
formation configuration among UAVs based on the formation structure, stress matrix,
and the positions and velocities of neighboring UAVs.

3. Computation and Detection: Compute the distances between each UAV and various
obstacles and determine whether obstacle avoidance is necessary. Calculate the
repulsive forces acting on each UAV based on the designed potential field.

4. Force Summation: Following steps 2 and 3, obtain the resultant force acting on the
UAV and assess whether the UAV is trapped in a local extremum. If so, introduce
rotational force and update the net external force.

5. Update States: Update the time, and according to the swarm model, calculate the
positions, velocities, and accelerations of each UAV for the next time step.

6. Evaluation Outcomes: Check whether the UAVs have reached the target point. If
they have, the formation task concludes. If not, return to step 2.

Draw the flowchart based on the steps of the cluster formation operation.

5. Stability Verification of the UAV Swarm System

Divide the UAV cluster into leaders and followers, assuming that the leader has
already planned a path to reach the target safely and achieved global stability. Next, we
only need to demonstrate that, under the control laws (16) designed in this paper, the
followers can maintain global stability [42]. Therefore, the controls discussed below are
specifically related to the follower UAVs (Figure 7).

ui = − ∑
j∈Ni

wij[kp(x̂i − x̂j) + kv(v̂i − v̂j)] + FAPF
i (16)
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FAPF
i represents the total APF forces acting on the i-th follower, and ui denotes the

control force of the following UAV.
Assuming vectors x̂i = xi − xi

′ and v̂i = vi − vi
′, where xi

′ and vi
′ are, respectively,

the desired position and desired velocity of the UAV. x̂ =
[
x̂T

1 x̂T
2 · · · x̂T

n
]T ∈ Rn×2,[

v̂ = v̂T
1 v̂T

2 · · · v̂T
n
]T ∈ Rn×2, and FAPF =

[
FT

1 FT
2 · · · FT

n
]T . Therefore, the control

inputs of the entire UAV formation system can be rewritten as (17):

.
v = −kpΩx̂ − kvΩv̂ + FAPF (17)

Assume x′ =
[
(x1

′)T (x2
′)T · · · (xn

′)T
]T

∈ Rn×2, v′ =
[
(v1

′)T (v2
′)T · · · (vn

′)T
]T

.
Separate the real-time state values of each from the desired values. Then, we can

achieve Equation (18).

.
v = −kpΩx − kvΩv + kpΩx′ + kvΩv′ + FAPF (18)

Thus, the kinematic model of the UAV formation system can be described as (19).[ .
x
.
v

]
=

[
0n In

−kpΩ −kvΩ

][
x
v

]
+

[
0n

FAPF

]
+

[
0n 0n

kpΩ kvΩ

][
x′

v′

]
(19)

First, consider the stability of the following homogeneous Equation (20):[ .
x
.
v

]
=

[
0n In

−kpΩ −kvΩ

][
x
v

]
+

[
0n

FAPF

]
(20)

Use Equation (21) to define the Lyapunov function [43].

V(x, v) =
1
2

vTv +
1
2

kpxTΩx + U(x) (21)

where U(x) represents the total potential energy of the follower UAVs under the APF.
Taking its derivative yields the potential field force (22) acting on the UAVs.
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.
U(x) = FAPF =

.
v + kpΩx̂ + kvΩv̂ (22)

Taking the derivative of the Lyapunov function yields Equation (23):

.
V(v) = vT .

v + kpvTΩx + vT(−∇xU) = vT(−∇xU +
.
v + kpΩx

)
= vT(−( .

v + kpΩx + kvΩv
)
+

.
v + kpΩx

)
= −kvvTΩv

(23)

Due to the positive semi-definiteness of matrix Ω, it follows that
.

V(v) ≤ 0. Therefore,
when t → ∞ , V(x, v) monotonically decreases. Define set LV(c) = {(x, v)|V(x, v) ≤ c} as
a bounded set in this case. If the initial state of the UAV is (x(0), v(0)) ∈ LV(c),
then V(x(t), v(t)) ≤ c holds for all times t, and LV(c) is an invariant set. For ∀(x, v) ∈
LV(c),

.
V(v) is a semi-negative definite. According to LaSalle’s invariance principle,

if t → ∞ , the UAV system will converge into the largest invariant set of LV(c), denoted
as Ω = {v}

.
V(v). Therefore, solving for

.
V(v) = 0 yields v1 = v2 = v1 = · · · = vn = 0.

At the same time, the total potential energy of the UAV formation system is represented
by U(x) ≥ 0, and the potential field is zero only when the system is free from obstacle
interference and internally stable.

Next, we solve for the particular solution of the nonhomogeneous equation. Assuming
that, when the UAV system is only influenced by the potential field forces and not by
inter-agent interactions, at this point, the system achieves consensus, which leads to the
solution [x, v]T = [x′, v′]T when substituted. The general solution of the nonhomogeneous
equation is the sum of its homogeneous equation general solution and its particular solution.
Therefore, when t → ∞ , the solution of Equation (20) converges gradually to [x′, v′]T .

In summary: when gains kp and kv are positive, all state values of the UAVs within the
formation will tend to become the largest invariant set. All UAVs’ state values can converge
into the desired position and velocity, achieving consensus. The inter-agent spacing can
converge into the optimal distance and asymptotically maintain stability, forming a stable
formation.

6. Simulation Analysis of Drone Swarm on Multiple Platforms

To validate the effectiveness of the proposed strategy, simulations and real-world ex-
periments were conducted during the UAV formation flight phase. The simulation involved
validation using both the MATLAB (R2022b) platform [44] and the ROS (Robot Operating
System) [45]. The corresponding swarm formation results were analyzed separately, and
comparisons were made with other algorithms. Finally, the feasibility of the proposed
method was reaffirmed through experiments on quadcopter UAVs.

6.1. MATLAB Simulation

Simulation verification of the formation strategy for the six UAVs in a two-dimensional
environment was conducted. The results included the overall formation route map, velocity
curves, heading angles, inter-UAV distances, and the minimum distance graph. This
illustrates that the strategy is capable of successful obstacle avoidance and reaching the
target point in the presence of multiple obstacles.

6.1.1. Formation Control Simulation Analysis

The simulation scenario involves six UAVs performing multiple obstacle avoidance
maneuvers and the overall formation turns while moving forward. The six circles represent
the UAVs, with the red circles numbered 1–3 serving as leaders and the blue circles 4–6 as
followers. The simulation parameters are as follows:

Based on the topology configuration of the six UAVs designed in Figure 2 combined
with the adjacency matrix, the stress matrix can be calculated as shown (Table 1).
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Table 1. Stress matrix wij of the six UAVs’ formation topology.

j\i 1 2 3 4 5 6

1 −0.3992 0.3922 0.3922 0 −0.3922 0
2 0.3922 −0.7845 0 0.1961 0.3922 −0.1961
3 0.3922 0 −0.7845 −0.1961 0.3922 0.1961
4 0 0.1961 −0.1961 −0.1961 0.1961 0
5 −0.3922 0.3922 0.3922 0.1961 −0.7845 0.1961
6 0 −0.1961 0.1961 0 0.1961 −0.1961

Assuming the UAVs initiate the formation from randomly chosen initial positions, they
quickly shape the designed triangular formation in the early stages. During the progress,
they repeatedly avoid obstacles and then maintain a straight line formation for turning,
ultimately reaching the endpoint. The initial positions are shown in Table 2.

Table 2. Different starting positions for the UAVs.

Drone Number Drone Role Initial Position

1 Leader (200, 0)
2 Leader (−900, −200)
3 Leader (200, −500)
4 Follower (−100, −1500)
5 Follower (800, −1250)
6 Follower (1000, −750)

In the simulation, three cylindrical obstacles are introduced to simulate a complex
formation environment. Table 3 provides the positional coordinates of the three obstacles.
The detailed simulation parameter information for the formation control is presented in
Table 4.

Table 3. Obstacle position coordinates.

Obstacle Number Position Coordinate Sphere of Influence Rm

1 (700, 2000) 300 m
2 (−250, 3600) 250 m
3 (650, 5200) 250 m

Table 4. Simulation parameter table.

Parameter Value

kp 0.5
kv 2

vleader (Speed of a leader) 45 m/s
vmin (Minimum speed of the follower) 8 m/s

vmax (The maximum speed of the follower) 62 m/s
rj 200 m
Rj 400 m
β1 30
ζ1 0.05

Based on the known formation reconstruction and obstacle avoidance parameters
mentioned above, the trajectory routes of the six drones are shown in the diagram below.
The drone swarm rapidly forms a triangular configuration from random initial positions
and then, in three separate instances, maneuvers around cylindrical obstacles. At time
t = 176 s, the cluster transitions from a triangular configuration to a straight line formation.
At time t = 230 s, the six drones collectively form a half-circle formation, ultimately
reaching the target point in an evenly spaced straight line configuration (Figure 8).
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The speed curves under different control strategies are presented in Figure 9. Figure 9a
depicts the formation and obstacle avoidance speed profile achieved by combining the APF
and PI controller. Figure 9b illustrates the formation strategy adopted in this paper. It can
be observed that, when encountering various obstacles in the environment, the traditional
APF approach leads to significant oscillations and shaking, with a large overshoot. The
speed fluctuates rapidly within a short period, ranging from 10 m/s to 59 m/s. However,
with the control strategy proposed in this paper, the drone cluster exhibits smoother motion
when encountering obstacles, with minimal overshoot, swiftly navigating around obstacles.
At time T1, the formation transitions from a triangular configuration to a single file pattern,
resulting in speed changes for the other drones as they accelerate to align with the position
of drone number one on the same horizontal line. At time T2, the cluster collectively forms
a circular pattern. Due to the distinction between the inner and outer circles, the sixth
drone in the innermost circle slows down due to the shorter distance traveled, while the
fourth drone, covering the maximum circular path, accelerates to maintain the formation.
Ultimately, the cluster maintains a velocity of 45 m/s towards the target point.

Figure 10a illustrates the variation in distances between each UAV and UAV 1 under
the influence of formation control. The final steady-state distances between the UAVs are
related to the designed initial formation spacing, denoted as l = 250 m. After experiencing
fluctuations through three obstacles, the distances between UAVs 2 and 5 from UAV 1 are
both 250 m, between UAVs 3 and 4 from UAV 1 are 500 m, and UAV 6 is the farthest, with a
distance of 750 m. Figure 10b represents the minimum distances between the UAVs. At
the initial position, the minimum distance between the UAVs is 500 m. By the end of the
motion, the formation has been achieved and maintained, with the minimum inter-UAV
distance stabilizing at 250 m. The spacing diagram presented above indicates that there
were no collisions between the unmanned aerial vehicles.
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6.1.2. Local Extremum Issues in APF

To address the local minima problem in the APF, this paper introduces a rotational
force. When a UAV becomes trapped in a local minimum and cannot escape, an external
force is applied to disrupt its force equilibrium. Figure 11 compares different methods.
Under PI control, in case 1, the UAV circumvents obstacles from the outer circle, which
increases the total path length and extends the time to reach the destination. Case 2
represents the situation without rotational force, causing the UAV to become stuck in local
minima when facing multiple obstacles. In case 3, the method designed in this paper is
employed. Even when trapped in a local minimum, the UAV can still change its overall
force with the help of the rotational force. Compared to PI control, the proposed method
offers a shorter formation path, potentially saving more fuel and time.
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Figure 11. Diagram of a single drone falling into a local extreme point. Case 1: Using PI and APF
control for the UAV cluster. Case 2 is the extreme point at which the UAV falls. Case 3: The UAV
jumps out of the extreme point after adding a rotational force. (At the center of the image are several
circles of different sizes, representing obstacles in different areas of influence. The red circle numbered
1 represents the drone and the blue line represents the drone path.)

6.2. The Simulation on the ROS

In order to further validate the proposed formation control algorithm in this paper, we
utilized the 3D dynamic simulator Gazebo within the ROS environment. This combination
accurately and effectively simulates the formation and reconfiguration capabilities of UAVs.
The bridge between ROS and Gazebo, known as gazebo plugins, enables the ROS to control
the UAVs simulated in Gazebo.

Formation and Reconstruction of UAV Swarm

The initial positions of the four UAVs in Gazebo are as follows, forming a square
(Figure 12).
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The following depicts the transition of four UAVs from a triangular configuration to a
line in Gazebo. The UAVs fly at an altitude of 2 m, with an overhead view at an 45◦ angle.
The shadows of the UAVs’ flights are projected onto the grid (Figure 13). The images in the
first row, from left to right, show the triangular configuration, the transition from triangular
to a line, and the line. Below each image, there are corresponding x, y-axis coordinate
changes for the four UAVs in different states. In Figure 14, it can be observed that, during
the transition, the x-axis position of UAV 2 changes from 2 m to 0. In Figure 15, after the
transformation, the y-axis coordinates show the four UAVs with a spacing of 2 m. This
further validates the effectiveness of the formation control proposed in this paper within
the ROS.
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6.3. Formation Transformation of Quadcopter UAV Swarm

This paper conducted another validation on actual UAVs. Figure 16 shows a graph of
four quadcopter UAVs at their initial positions, labeled as UAV 1–4. Figure 17 illustrates the
trajectory of the drones as seen from the QGC (QGroundControl) interface. In Figure 17b,
after takeoff from the initial point, UAV 3 moves forward while the other drones maintain
the formation, forming a triangular pattern. In Figure 17c, the route map depicts the
transition of the four drones from triangular to a line. Except for UAV 3, all the other UAVs
start flying from the initial point towards positions perpendicular to UAV 3.
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7. Conclusions

This paper integrates a variety of formation methods and successfully addresses the
challenges of cooperative formation and obstacle avoidance in UAV swarms. The forma-
tion topology is designed by graph theory, while a collision between UAVs is effectively
prevented through the stress matrix. The APF approach enables drones to navigate safely
in environments with obstacles. The Leader–Follower method reduces the dependence
on the gravity of the target point, thus avoiding the unreachable problem. Additionally,
rotational forces aid in preventing swarms from becoming trapped in local minimums. By
combining these various approaches, the UAV formation achieves its target point without
any physical collisions.

The algorithm presented in this paper is successfully simulated and verified using
MATLAB(R2022b), ROS (Melodic), and physical machines, thereby demonstrating the fea-
sibility and stability of the proposed strategy. In comparison to the traditional APF method,
our algorithm exhibits smoother and faster obstacle traversal with reduced overshoot,
demonstrating enhanced robustness in navigating around obstacles.

In the future, we can avoid obstacles in situations where there are multiple types
and dynamic obstacles. Additionally, we can explore more challenging task scenar-
ios, such as UAV communication failure, information transmission delay, and variable
topological configurations.
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