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Received: 12 February 2024

Revised: 16 March 2024

Accepted: 20 March 2024

Published: 23 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

INLA Estimation of Semi-Variable Coefficient Spatial Lag
Model—Analysis of PM2.5 Influencing Factors in the Context of
Urbanization in China
Qiong Pang and Xijian Hu *

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China;
107552100631@stu.xju.edu.cn
* Correspondence: xijianhu@xju.edu.cn; Tel.: +86-130-7990-0717

Abstract: The Semi-variable Coefficient Spatial Lag Model (SVC-SLM) not only addresses the “di-
mension disaster” associated with the Varying Coefficient Spatial Lag Model(VC-SLM), but also
overcomes the non-linear problem of the variable coefficient, and fully explores the hidden infor-
mation of the model. In this paper, INLA is firstly used to estimate the parameters of (SVC-SLM)
by using B-spline to deal with the non-parametric terms, and the comparative experimental results
show that the INLA algorithm is much better than MCMCINLA in terms of both time efficiency and
estimation accuracy. For the problem of identifying the constant coefficient terms in the SVC-SLM,
the bootstrap test is given based on the residuals. Taking the PM2.5 data of 31 provinces in mainland
China from 2015 to 2020 as an empirical example, parametric, non-parametric, and semi-parametric
perspectives establish three models of Spatial Lag Model (SLM), VC-SLM, SVC-SLM, which explore
the relationship between the covariate factors and the level of urbanization as well as their impacts
on the concentration of PM2.5 in the context of increasing urbanization; among the three models, the
SVC-SLM has the smallest values of DIC and WAIC, indicating that the SVC-SLM is optimal.

Keywords: semi-variable coefficient spatial lag model; INLA; bootstrap; PM2.5; urbanization
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1. Introduction

The correct choice of an appropriate parametric model can lead to accurate inferences,
whereas serious errors in model selection can lead to misleading results, as Robinson (1988)
emphasized in his study [1]. Although non-parametric modeling approaches are usually
more robust and may be less accurate, a balanced approach can be adopted by using a
semi-parametric variable coefficient regression model, which combines the advantages of
both parametric and non-parametric models with a high degree of flexibility. It allows some
of the coefficients of the model to be parametric while capturing the non-linear relationship
between the variable coefficients, thus better adapting to the complexity of the data. It is
one of the most effective models developed in recent years to explain the non-linearities
and linearities between variables, and with its good explanatory power, it has received
a wealth of research and applications in the fields of economics, geography and ecology,
among others.

The spatial Econometric Model aims to study the effects of spatial correlation, depen-
dence and spatial patterns on economic phenomena, and has made considerable progress
in recent decades. The Spatial Lag Model (SLM), as one of the most important models in
Spatial Econometrics, has undergone continuous development and improvement. It has
evolved from the classical parametric form to non-parametric and semi-parametric forms
to meet various spatial data analysis needs.
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SLM is a classical parametric framework within the realm of spatial econometric
models, which was first introduced by Cliff (1970) [2]. Cliff’s pioneering work ingeniously
extended the concept of autocorrelation into the spatial domain. The general expression
of SLM is y = ρWy + ∑n

j=1 xjβ j + ε; the coefficients of xj are all linear coefficients for
β j. Although SLM has been proven effective in analyzing spatial correlation features, its
model typically assumes a linear relationship between the response variable and covariates,
and this assumption of a linear coefficient can introduce bias. Moreover, real-world data
often exhibit complex non-linear patterns, making it challenging to accurately capture
parameter estimates within the framework of parametric assumptions. In such scenar-
ios, the extension to non-parametric or semi-parametric perspectives of the SLM model
becomes crucial.

To overcome the linear constraints of SLM and better reflect the non-linear relation-
ship in the actual data, the assumption of a linear relationship between covariates and
response variables was relaxed on the basis of SLM. By introducing the variable coeffi-
cient term, the Varying Coefficient Spatial Lag Model (VC-SLM) was constructed. In the
VC-SLM, the variable coefficient is set as a function of a variable, which can be one of
the covariables or some other indicator. This paper focuses on the coefficients of the ex-
planatory variables as a function of the change about a certain variable, the expression is:
y = ρWy + ∑n

j=1 xjαj(U)+ ε, where y responds to the response covariate, xj and U are
covariates, n is the number of variables, and N is the number of samples. Here, ffj(U)
represents the variable coefficient terms, denoting an unknown non-parametric function
on the covariate U, making the VC-SLM non-parametric at this stage. Because the non-
parametric has the limitation of “dimension disaster ”, there is not much literature on this
research. Li et al. (2018) [3] crafted a generalized moment estimation technique tailored
for VC-SLM, subsequently applying it to analyze the estimation of China’s total factor
productivity growth rate. Teng et al. (2023) [4] proceeded to prove the VC-SLM using the
MCMCINLA method and effectively incorporated it into empirical studies.

In the VC-SLM, all the coefficients are defined as variable coefficients, meaning they
all change with the change in a certain variable. However, when a portion of the αj(U)
in the VC-SLM is constant, such as αj(U) = β j, 1 ≤ j < n, the variable coefficient is
transformed into a semi-variable coefficient, also called a partial variable coefficient, it
corresponds to the semi-parametric model examined in this paper, known as the Semi-
Variable Coefficient Spatial Lag Model (SVC-SLM). When all coefficients become constant,
that is, αj(U) = β j, 1 ≤ j ≤ n, the model degenerates into a parametric model, also known
as a linear model, specifically the SLM.

The SVC-SLM is a special instance of the model of VC-SLM, where a portion of the
variable coefficients are treated as constants. This characteristic endows it with remarkable
flexibility and dimensionality reduction capabilities. Currently, there is a large body
of theory and applications surrounding this model. Su et al. (2010) [5] is the earliest
literature that combines the SLM with a semi-parameter; however, it initially applied the
kernel estimation method to the non-parametric components, and then uses the cross-
section fitted great likelihood estimation method to obtain the estimation of the model
parameters, which is quite computationally intensive due to solving a large system of
equations; Su (2012) [6], building upon Su and Jin (2010) [5], proposed a more generalized
model allowing for heteroskedasticity and spatial correlation in the errors, employing a two-
step estimation method for GMM estimates; nonetheless, it struggled to seamlessly integrate
non-parametric and semi-parametric approaches for estimation. Li et al. (2013) [7] proposed
a brand new class of SVC-SLM, and derived the cross-sectional maximum likelihood
estimation for the model; however, its estimation method only performs better under small
sample conditions. Hoshino (2018) [8] constructed a semi-parametric GMM estimation and
used it for the study of crime data. Despite their contributions, all of the above estimation
methods for the SVC-SLM have an obvious shortcoming of being computationally intensive
and time-consuming.
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As for the variable coefficient models, the choice of a suitable method for approximat-
ing non-parametric components holds paramount significance. Scholars have diligently
explored various non-parametric estimation techniques, including kernel estimation [5], lo-
cal polynomial estimation [9], nearest-neighbor estimation, spline estimation, and penalized
spline [10]. Among these methods, B-spline estimation stands out for several compelling
reasons. It requires fewer parameters, primarily concerning the selection of the number
of nodes, and it displays insensitivity to the choice of nodes. Furthermore, in comparison
to local polynomial regression estimation, it eliminates the need to select window widths,
resulting in faster computation and greater stability. Therefore, by employing B-spline to
approximate the variable coefficient function, the non-parametric component of the model
can be transformed into a linear form, allowing for the derivation of a “linear SLM”.

In terms of variable coefficient selection in semivariate coefficient models,
Guo et al. (2012) [11] adopted an empirical approach of selecting non-parametric compo-
nents directly from the SLM by identifying non-significant variables whose confidence
intervals of the estimates include zero. However, with the advancement of a more ro-
bust and widely accepted bootstrap test for variable coefficient selection, this empirical
intuitive method of selecting constant coefficients appeared to have no theoretical basis.
Li et al. (2016) [12] advocated the use of residual-based bootstrapping to assess whether
parametric components in partially linear spatial autoregressive models satisfy specific
linearity constraints. Furthermore, Du et al. (2021) [13] applied bootstrap techniques to
focus on the coefficient functions in variable coefficient models. With higher statistical
rigor and reliability than empirical selection methods, these bootstrap tests have become
essential tools for making informed decisions about variable coefficients in such models.

Integrated Nested Laplace Approximation (INLA) is an algorithm proposed by
Rue et al. (2009) [14] for approximate Bayesian inference, which is particularly suitable
for high-dimensional, complex, or large-scale data analysis. INLA is able to efficiently
compute Markov Chain Monte Carlo (MCMC) samples without the need for Bayesian
inference results, so it strikes a good balance between computational speed and accuracy,
making the estimation and inference of complex models more feasible. This has led to the
rapid development of INLA algorithms in fields such as epidemiology [15], tourism [16],
and ecology [17]. Research on INLA and spatial econometric modeling has only gradually
emerged in the last decade, with Bivand et al. (2014) [18] using INLA for inference for
spatial econometric models, but for the case where the covariates are linearly related to the
response variable. Subsequently, Gómez-Rubio et al. (2021) [19] introduced a new concept
of latent class in spatial econometric modeling and demonstrated that the basic spatial
econometric model conforms to the basic INLA framework, and is finally used to empir-
ically compare other algorithms highlighting the INLA advantages. Although Teng [4]
proved that the non-parametric SLM conforms to the INLA framework, the MCMCINLA
algorithm was ultimately used for parameter estimation, which has not yet overcome the
fact that INLA currently supports only parametric forms of spatial econometric models and
is also more time-consuming than INLA. At present, there are no scholars who estimate
non-parametric spatial econometric models or even semi-parametric spatial econometric
models with INLA.

After discussing the background of the models and algorithms, the focus turns to
the empirical level. Numerous prior methods have been employed to investigate the
determinants of PM2.5 concentration. Some scholars have conducted in-depth studies on
the relationship between PM2.5 concentration and urbanization in China by constructing
linear spatial econometric models, and have examined this association from various aspects.
For example, Liu et al. (2022) [20] examined the causal relationship between urbanization
and PM2.5 through an empirical study in China; Yang et al. (2020) [21] used the Spatial
Durbin Model to demonstrate that socio-economic factors such as population density have
a positive influence on PM2.5 concentration, with covariates including the level of urban-
ization, industrial activities, vehicular emissions. In the study of urbanization and PM2.5,
Chou et al. (2020) [22] explored in depth the spillover effect of population urbanization
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on PM2.5 concentration. Among the influencing factors of PM2.5, Lai et al. (2022) [23]
showed that PM2.5 concentration was negatively correlated with meteorological factors
such as precipitation; Wang et al. (2021) [24] highlighted the significant negative impacts of
environmental regulations on PM2.5 pollution; Gao, et al. (2018) [25] explored the impacts
of domestic, industrial and motor vehicle exhaust emissions on PM2.5. In essence, the cur-
rent research on PM2.5 mainly adopts a parametric perspective, but in practice, the linear
assumption between the factors affecting PM2.5 concentration may not be able to fully
elucidate the changes in the spatial distribution of PM2.5 concentration.

In recent years, as China’s urbanization has accelerated, it has undoubtedly driven
economic and social advancement. However, it has also brought to the forefront a press-
ing environmental issue—the proliferation of haze and the associated problem of PM2.5
pollution [26]. Recognizing the severity of this challenge, the Chinese government has
elevated haze management to a national strategic level. The Chinese State Council has
issued critical directives such as the Action Plan for Prevention and Control of Air Pollu-
tion and the Three-Year Action Plan for Winning the Battle for the Blue Sky. These plans
emphasize PM2.5 reduction as a pivotal component of comprehensive pollution prevention
and control efforts.

This paper is the first to use INLA to estimate the SVC-SLM, extending the studies of
Gómez-Rubio (2021) [19], Teng (2023) [4], Su and Jin [5]. In the algorithm aspect, the INLA
is used for the first time to estimate the SLM in the non-parametric and semi-parametric
perspectives, which fills the gap where INLA cannot estimate the parametric SLM; through
the simulation with different sample sizes, positive and negative autocorrelation, periodic
and non-periodic variable coefficient functions and the comparison with MCMCINLA
algorithm, the advantages of INLA algorithm in terms of short time consumption and
high accuracy are highlighted. In the model testing aspect, a bootstrap test under the
INLA algorithm is given for the problem of identifying the constant coefficient terms in the
SVC-SLM, and the simulations are set up to highlight the validity of the bootstrap test and
the efficacy of the test of the estimated statistics. Finally, drawing on non-parametric and
semi-parametric perspectives with urbanization as a distinctive explanatory variable, we
explore the spatial determinants of PM2.5 concentrations in 31 regions across mainland
China from 2015 to 2020. Through model comparison, hidden information is further
unearthed, highlighting the necessity of applying the SVC-SLM model and the efficiency of
the INLA algorithm in estimation.

The rest of this paper is as follows: In Section 2, data sources and preprocessing of
variables affecting PM2.5 concentration are given. The estimation of SVC-SLM based on
the INLA algorithm is carried out from four aspects: the construction of SVC-SLM, proving
whether the SVC-SLM satisfies the GMRF structure, the steps of the INLA algorithm
for SVC-SLM and the bootstrap test. Section 3 is the numerical simulation of the INLA
algorithm, which includes three parts: simulating SVC-SLM estimation based on the
INLA algorithm, performing a comparative experiment with the MCMCINLA algorithm,
and simulating the bootstrap test based on INLA to distinguish the constant coefficient of
SVC-SLM estimation. Section 4, utilizes SLM, VC-SLM and SVC-SLM models to compare
and analyze the influencing factors of PM2.5 data to prove the rationality of the proposed
INLA algorithm and bootstrap test. Section 5 gives some summary results. Finally, Section 6
puts forward the suggestion and prospect of the paper.

2. Materials and Methods
2.1. Data Sources and Preprocessing

We selected data from the annual averages of the 31 provinces in mainland China,
excluding Taiwan, Hong Kong, and Macau, for the years 2015 to 2020 as our study dataset.
This dataset allowed us to analyze the spatial distribution characteristics of haze pollution.

The previous literature [20–24] had investigated various factors influencing PM2.5
from social, economic, meteorological, and other perspectives, in summary: the causal rela-
tionship between urbanization and PM2.5 [20], socio-economic factors such as population
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density and industrial structure affecting PM2.5 [21], the impact of different levels of urban-
ization, industrial activities, and vehicular emissions on PM2.5 [22] , meteorological factors
including temperature, humidity, and wind speed affecting PM2.5 [23], and the influence
of environmental factors on PM2.5 concentrations [24]. Therefore, seven covariates are
finally selected, namely, urbanization rate, GDP per capita, per capita annual local financial
expenditure on environmental protection, industrial emissions, domestic emissions, motor
vehicle emissions, and local financial expenditure on environmental protection, and aver-
age annual precipitation. The selection of the variables covered five perspectives, including
social, economic, and human activities, as well as environmental protection and natural
meteorology. Table 1 gives the source of the data, the name of the variable of the indicator,
the domains in which the variables were selected, and the description of the variables.

To address heteroskedasticity, all explanatory variables were log-transformed.

Table 1. Description of Data Indicators.

Variable Variable Selection Angle Indicator Definitions Units Data Sources

ln_PM2.5 haze concentration Annual Average PM2.5
Concentration

micrograms/cubic
meter/year

Columbia University
Center for Social and
Economic Research

and Data

ln_Urban societies Average Annual
Urbanization Rate % China

Statistical Yearbook

ln_GDP economics Gross Domestic Product billion yuan/year China
Statistical Yearbook

ln_Industry human activity
Annual Average

Industrial Exhaust
Emissions

Ten thousand tons/year China Environmental
Statistical Yearbook

ln_Life human activity Annual Average Life
Exhaust Emission Ten thousand tons/year China Environmental

Statistical Yearbook

ln_Car human activity
Annual Average Motor

Vehicle Exhaust
Emissions

Ten thousand tons/year China Environmental
Statistical Yearbook

ln_Environment environmental protection

Per Capita Annual Local
Financial Expenditure on

Environmental
Protection

yuan/person/year China Environmental
Statistical Yearbook

ln_Rain natural environment Average Annual Rainfall millimeters/ year

European Union and
European Centre for

Medium-Range
Weather Forecasts

Spatial correlation analysis is a necessary step preceding spatial measurement analysis.
Global spatial autocorrelation measures the overall distribution of observed objects, and the
degree of correlation is often assessed using the global Moran’s I index [27]. The Moran’s
I index value falls within the range of [−1, 1]. A value greater than 0 indicates a spatial
positive correlation between PM2.5 concentration and its influencing factors in the region.
When Moran’s I index value is greater than 0, it signifies a spatially positive correlation
between regions for PM2.5 concentration and its influencing factors. Conversely, a value
less than 0 indicates a spatially negative correlation, while a value equal to 0 suggests the
absence of spatial correlation between regions.

The results of the global spatial autocorrelation test for each year and for the 6 years
of 2015–2020 as a whole are given in Table 2. The results show that the Moran’s I index of
PM2.5 concentration for each year and for 2015–2020 as a whole is always significant at the
5% significance level, with a p-value much less than 0.05, indicating that haze pollution is



Mathematics 2024, 12, 953 6 of 24

spatially correlated and the Moran’s I value of 0.5080 for 2015–2020 suggests that there is a
spatial positive correlation of PM2.5 concentration among provincial regions. Consequently,
it is both logical and imperative to employ spatial econometric models that encompass
spatial effects.

Table 2. Global spatial autocorrelation test for provincial-level PM2.5 in China, 2015–2020.

Year Moran I Statistic p-Value

2015 0.5374 4.57 × 10−7

2016 0.4945 2.69 × 10−6

2017 0.5011 1.91 × 10−6

2018 0.3974 1.07 × 10−4

2019 0.4345 2.84 × 10−5

2020 0.3288 9.00 × 10−4

2015–2020 0.5080 2.20 × 10−16

2.2. SVC-SLM Estimation Based on INLA
2.2.1. Model Construction

For the PM2.5 influencing factors in this study, there are as many as seven, although the
advantage of the non-parametric regression model lies in its ability to adapt without
needing to preset the specific form of the regression function, it often encounters the
“dimensionality catastrophe” problem in practical applications. At such times, the model of
SVC-SLM is more capable of explaining the actual problem [7]:

y = ρWy + ∑p
j=1 xjαj(U)+ ∑n

k=p+1 xkβk + ε, (1)

where W is the spatial weight matrix between regions, given that the focus is on the
31 provincial districts in mainland China, excluding Taiwan, Hong Kong, and Macau,
a ROOK-type neighborhood weight matrix is selected for analysis, under this matrix
two regions are considered to be adjoining on the condition that they are adjacent on the
boundary, irrespective of whether they are adjacent on the corners. The spatial lag term,
denoted by ρ in ρWy, ensures |ρ| < 1 to reflect the spatial dependence of the response
variable y, so ρ is called the spatial autocorrelation coefficient. In this empirical study,
y represents PM2.5 data sampled from 31 provinces over 6 years, resulting in N = 186.
Here, n represents the number of covariates, p represents the number of variables whose
coefficients are variable coefficients, and correspondingly, n − p is the number of variables
whose coefficients are constant coefficients, in the model of SVC-SLM we studied, n = 6.
xj and U are the covariates, U denotes urbanization in the empirical evidence, β j is the
constant coefficient, and αj(U) is the varying coefficient. ε is the error term, which can be
either Gaussian or non-Gaussian, and in order to draw more general conclusions, the main
assumption in this paper is to obey the Gaussian distribution with zero mean and diagonal
covariance matrix σ2 IN , IN is the identity matrix of order N.

2.2.2. Proof SVC-SLM of GMRF Structure

The INLA algorithm is a fast computational method provided by Rue et al. [14] for
the standard generalized linear models of Gaussian Markov Random Fields GMRF, which
includes Hidden Gaussian Random Field models [28].

Model (1) contains variable coefficient term αj(U) and is not a simple linear model;
Gómez-Rubioa [19] pointed out that INLA can deal with spatial econometric models with
random effects potential with linear predictors, in order to realize the ability to use INLA for
parameter estimation, firstly, the variable coefficients αj(U) in the Model (1) are converted
into a linear form using the B-spline transform, thus transforming the SVC-SLM into a
“linear SLM”.
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For the variable coefficients αj(U) in Model (1), refer to Teng [4] using B-spline
processing. Assuming that each variable coefficient αj(U) in Model (1) is smooth, there
exists a set of basis functions Bd

(j) and constants bd
(j) such that αj(U) ≈ ∑h

d=1 Bd
(j)bd

(j) =

B(j)b(j), which are expanded into a matrix form as follows:

αj(U) ≈ B(j)b(j) = B(j)
1 b(j)

1 + B(j)
2 b(j)

2 + . . . + B(j)
h b(j)

h (2)

at this juncture, B(j) represents a B-spline basis function, constituting a p × h-dimensional
design matrix, and b(j) denotes a spline basis, forming an h-dimensional vector. Let
Zj = xjB(j), so Model (1) is rewritten as:

y = ρWy + ∑p
j=1 xjαj(U)+ ∑n

k=p+1 xkβk + ε

= (IN − ρW)−1(∑p
j=1 Zjb(j) + ∑n

k=p+1 xkβk + ε)

= (IN − ρW)−1(Zb + Xβ + ε)

. (3)

where the variable V = (Z, X) with Z = ∑
p
j=1 Zj and X = ∑n

k=p+1 xk, thus the coefficients

are changed to ψ = (b, β), accordingly, b = ∑
p
j=1 b(j) and β = ∑n

k=p+1 βk . Rewrite the
Model (3) as:

y = (IN − ρW)−1(Vψ + ε) (4)

The Model (4) is a general form of SLM, but it cannot be directly fitted to INLA yet,
we need to construct potential classes to conform to the INLA framework. Model (4) is
written as a new potential SLM given in literature [19]:{

y = η+ ζ

η = (IN − ρW)−1(Vψ + ε)
(5)

where ζ is the small error of y added to Model (5).
ψ has a Gaussian prior with zero mean and precision matrix Q; the potential effects

are already defined in Model (5), so Q is fixed [19], and ε obeys a Gaussian distribution
with zero mean and precision matrix τIN , where τ is the precision parameter. Based on
the previous analyses, (η, ψ) is a GMRF with zero mean and precision matrix K (structure
below), and therefore, the Model (1) conforms to the INLA framework. (Only the main
results are shown here, see Appendix A for the exact proof procedure).

K =

(
P −P(IN − ρW)−1V

−V ′(IN − ρW)−1P Q + τV ′V

)
=

(
τ(IN − ρW ′)(IN − ρW) −τ(IN − ρW ′)V

−τV ′(IN − ρW) Q + τV ′V

)
2.2.3. Steps of the INLA Algorithm for SVC-SLM

The INLA algorithm is essentially a fast computational method used to estimate the
posterior distribution of parameters.

In the potential Model (5), after the B-spline basis expansion, the prior distribution
is first assigned to the set of coefficients ψ , and the spatial autocorrelation parameter ρ,
so the set of hyper-parameters to be estimated by the model is Θ = {ρ, ψ} = {ρ, b, β}.
The main purpose of INLA is to obtain the joint conditional posterior distribution for η and
Θ [14]. The INLA algorithm estimates the marginal posterior distribution of η and Θ in
three steps: estimate π(Θ|y), estimate π(Θj | y), and estimate π(ηj | Θ, y). The specific
INLA estimation process is shown in Figure 1.
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Figure 1. Flow chart of SVC-SLM for INLA algorithm.

As shown in Figure 1, the whole algorithmic process is carried out in five main steps:

1. From the SVC-SLM of Model (1) B-spline is processed into a linear SLM, i.e., Model (4).
2. Section 2.2.2 has demonstrated that SVC-SLM satisfies the INLA framework, suggest-

ing the Model (1) is suitable for processing using the INLA methodology.
3. For the three main steps of the INLA method, INLA first requires different prior dis-

tributions to describe the different parameters in the model, including the coefficient
vector ψ, the spatial autocorrelation parameter ρ, and the precision of the error term
τ. By default, the coefficient vector ψ is distributed with a multivariate Gaussian
distribution with zero mean and precision matrix Q (which must be specified), The
code for setting the parameters of ψ is :

betaprec < −0.0001

Q.beta < −Diagonal(n = ncol(mmatrix), betaprec)

τ conforms to a log gamma distribution, and in order to control the spatial autocor-
relation parameter of ρ in the (0, 1) interval, set the prior distributions of τ and ρ
with hyper:

hyper < −list(prec = list(prior = “loggamma”, param = c(0.01, 0.01)),
rho = list(initial = 0, prior = “logitbeta”, param = c(1, 1)))

After the parameter setting, the a posteriori estimation of the regression coefficients
can be obtained by using the inla() function, the key code for the process is as follows:

inla(y ∼ −1 + f (idx, model = “slm”,
args.slm = list(rho.min = rho.min, rho.max = rho.max,

W, X, Q.beta), hyper), data, . . .)

here, rho.min and rho.max are determined by the spatial weighting matrix of W ,
which are the minimum and maximum eigenroots of W , respectively; data represents
the complete data set, W is the spatial weight matrix as above, X stands for V in
Model (5), i.e., the set of all variables.
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4. The a posteriori estimate of Θ = {ρ, b, β} can be obtained using the summary()
function; note, that the b obtained directly at this point is an estimate on b(j).

5. Finally, it is also necessary to multiply b(j) with the design matrix B(j), and the final
value of the variation coefficient of αj(U), can be obtained by using Model (2) with
αj(U) = B(j)b(j). In the end, INLA successfully estimated all coefficients, denoted as
Θ = {ρ, αj(U), β}.

2.2.4. Bootstrap Test for Constant Coefficients

In the context of the SVC-SLM, it becomes crucial to contemplate whether the regres-
sion coefficients vary based on certain variables. This essentially involves testing whether
specific regression coefficients remain constant. In other words, it involves scrutinizing
whether the coefficient function αj(U) within an SVC-SLM remains invariant and equal
to β j.

To test whether some of the coefficients of the independent variables vary with some
covariate U is crucial for the identification of the constant coefficients of an SVC-SLM,
hence, the following assumptions:{

H0 : αj(U) = βk, k = p + 1, . . . , n
H1 : all αj(U)(j = 1, . . . , n) changing with U

For this hypothesis, in the null hypothesis H0 , the corresponding model is SVC-SLM,
which is the focus of this paper, and the INLA method proposed in this paper can be used
to fit it. The model under the alternative hypothesis H1 is VC-SLM, the specific model is
Model (6), and the definition of Model (6) is basically the same as that of Model (1), where
the coefficients are all variable coefficients αj(U).

y = ρWy + ∑n
j=1 xjαj(U)+ ε (6)

Since Teng [4] proved that the VC-SLM conforms to the INLA framework, INLA
is also used to estimate the VC-SLM under H1 . The selection of window width draws
on the suggestion of Fan et al. (2005) [29], that is, the same window width is used to fit
the null hypothesis and the alternative hypothesis, so that their logarithmic likelihood is
comparable. In the actual implementation, the window width selected by the model under
the alternative hypothesis H1 is selected as the window parameter for model fitting.

The statistic of the bootstrap test selects the generalized likelihood ratio statistic [30],
which is an important metric to measure the goodness of fit difference between the original
model and the alternative model. Constructing the generalized likelihood ratio statistic as
T is expressed as follows:

T =
RSSH0

− RSSH1

RSSH1

(7)

here, RSSH0
and RSSH1

are the residual sum of squares obtained after the calculation for
the null hypothesis and the alternative hypothesis, respectively.

The p-value estimated by the bootstrap test is:

p = pH0(T ≥ t) (8)

where pH0(•) represents the probability calculated under the null hypothesis H0 , and t
is the observed value of the statistic T. α is the given significance level, if ρ < α , null
hypothesis H0 is rejected; otherwise, the opposite.

See Appendix B for the detailed bootstrap process.
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3. Simulation of the INLA Algorithm
3.1. Simulation of the SVC-SLM Using INLA

According to the “Voronoi subdivision method” proposed by Stakhovych et al. (2009) [31]
for generating ROOK-type spatial weight matrices for the simulated data, SVC-SLM refers to
the following model:

y = (IN − ρW)−1(x1β1 + x2β2 + x3α1(U)+ x4α2(U)+ ε) (9)

Let the covariate be x1 ∼ U[−1, 1], x2 ∼ U[−3, 2], x3 ∼ U[−3, 3], x4 ∼ U[0, 2], U ∼
U[−1, 1] and the standard deviation be σ = 0.1.

To be more relevant, the two variable coefficient functions are set as periodic and
non-periodic functions, respectively:

α1(U) = 0.5 × e(U
2+3×U), α2(U) = 2 × sin(3 × Π × U)

In order to compare the effect of different parameters on the estimation effect, there
are the following settings.

1. The sample values N are a small sample 30, medium sample 100 and large sample 400;
2. β1 = 0.4, β2 = 0.6;
3. ρ = −0.9,−0.5 − 0.1, 0.1, 0.5, 0.9.

A total of 18 sets of simulation experiments with different scenarios were carried out,
each group was simulated 100 times to evaluate the estimation performance and robustness
of the algorithm under different sample sizes and different degrees of positive and negative
autocorrelation. The estimates presented in Tables 3 and 4 are averages based on the results
of 100 times of INLA simulations.

The mean square error (MSE) and the deviation information criterion (DIC) are se-
lected as test indexes for model and parameter fitting, and the smaller the value of MSE
and DIC, the better the estimation performance. Note, that in order to fit the model, the fol-
lowing simulation experiments set the variance of Gaussian likelihood to the same fixed
small value for the same sample size (by setting the log precision to 15), so this results
in the same DIC value for the same sample size in the same model, this setup refers to
Gómez-Rubio et al. [19]. These complex calculations are performed using the R-INLA
(http://www.r-inla.org, accessed on 1 March 2022) R4.2.3 package.

According to the results in Tables 3 and 4, it can be seen that INLA can provide
robust parameter estimation results under various circumstances. The results show that for
three different samples and six different correlations, with the larger the sample size and the
larger the spatial autocorrelation contained in the model, the MSE of the estimation results
of parameter ρ, the estimation results of constant-coefficient β1, β2, and the estimation
results of variable coefficient α1(U), α2(U) all become smaller and smaller, indicating that
the fitting effect is becoming better and better. In addition, the DIC value decreased with
the increase in the sample size, indicating that the model fitting effect became better and
better with the increase in the sample size.

Figures 2 and 3 show the fitting curves of the coefficient function α1(U), α2(U) of the
forward autocorrelation variable coefficient term simulated by each example, respectively.
The red dotted line is the true curve, the black solid line is the fitting curve, and the gray
band is the 95% confidence interval. In the figure, CaseA, CaseB, and CaseC represent the
cases when N = 30, N = 100, and N = 400, respectively. (Since similar conclusions are
reached about negative correlations, only coefficient estimates for positive correlations are
given here).

Comparing Figure 2 with Figure 3, it is found that no matter a small sample or large
sample, the fitting graph of non-periodic function α1(U) is better than that of periodic
function α2(U), whether it is the width of the confidence interval or the coincidence
between the real curve and the fitting curve.

http://www.r-inla.org
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Table 3. ρ estimation results, MSE and DIC of six simulation cases of SVC-SLM.

N ρ ρ̃ MSEρ MSEy DIC

30 −0.9 −0.8707 2.94 × 10−5 4.81 × 10−13 −334.86
−0.5 −0.4850 7.47 × 10−6 3.98× 10−13 −334.86
−0.1 −0.1040 5.56 × 10−7 1.01 × 10−13 −334.86
0.1 0.0890 4.07 ×10−6 2.79 × 10−13 −334.86
0.5 0.4842 8.30 × 10−6 1.64 × 10−13 −334.86
0.9 0.8922 2.04 × 10−6 9.93 × 10−13 −334.86

100 −0.9 −0.8981 4.09 × 10−8 3.69 × 10−12 −1116.21
−0.5 −0.4980 3.70 × 10−8 3.33 × 10−12 −1116.21
−0.1 −0.0991 8.54 × 10−9 3.20 × 10−12 −1116.21
0.1 0.1006 3.49 × 10−9 3.17 × 10−12 −1116.21
0.5 0.4997 8.96 × 10−10 3.31 × 10−13 −1116.21
0.9 0.8997 7.02 × 10−10 3.73 × 10−12 −1116.21

400 −0.9 −0.8999 8.31 × 10−11 9.39 × 10−12 −4464.85
−0.5 −0.5002 6.45 × 10−11 8.60 × 10−12 −4464.85
−0.1 −0.1034 6.07 × 10−12 5.07 × 10−12 −4464.85
0.1 0.0994 7.78 × 10−10 8.09 × 10−12 −4464.85
0.5 0.4993 1.09 × 10−9 8.42 × 10−12 −4464.85
0.9 0.8997 2.90 × 10−10 9.47 × 10−12 −4464.85

Table 4. Estimation results of constant and variable coefficients for six simulation examples of
SVC-SLM.

N ρ β̃1 β̃2 MSEβ1 MSEβ2 MSEα1 MSEα2

30 −0.9 0.7306 0.5925 3.65 × 10−3 2.02 × 10−6 6.58 × 10−2 3.45 × 10−2

−0.5 0.6931 0.6228 2.86 × 10−3 1.74 × 10−5 3.66 × 10−2 3.10 × 10−1

−0.1 0.6379 0.6524 1.89 × 10−4 9.15 × 10−5 2.34 × 10−2 2.93 × 10−1

0.1 0.6105 0.6642 1.48 × 10−3 1.37 × 10−4 2.24 × 10−2 2.92 × 10−1

0.5 0.5720 0.6756 9.86 × 10−4 1.90 × 10−4 2.34 × 10−2 2.94 × 10−1

0.9 0.5346 0.6650 6.04 × 10−4 1.41 × 10−4 2.44 × 10−2 2.93 × 10−1

100 −0.9 0.4325 0.6073 1.06 × 10−5 5.35 × 10−7 8.16 × 10−4 4.30 × 10−3

−0.5 0.4322 0.6074 1.04 × 10−5 5.41 × 10−7 8.12 × 10−4 4.25 × 10−3

−0.1 0.4317 0.6073 1.01 × 10−5 5.36 × 10−7 7.91 × 10−4 4.16 × 10−3

0.1 0.4315 0.6073 9.93 × 10−6 5.32 × 10−7 7.80 × 10−4 4.12 × 10−3

0.5 0.4311 0.6072 9.65 × 10−6 5.18 × 10−7 7.56 × 10−4 4.06 × 10−3

0.9 0.4307 0.6072 9.44 × 10−6 5.16 × 10−7 7.43 × 10−4 4.02 × 10−3

400 −0.9 0.4059 0.5981 8.60 × 10−8 9.17 × 10−9 1.98 × 10−4 9.52 × 10−4

−0.5 0.4062 0.5980 9.48 × 10−8 9.89 × 10−9 1.98 × 10−4 9.48 × 10−4

−0.9 0.4059 0.5981 8.60 × 10−8 9.17 × 10−9 1.98 × 10−4 9.52 × 10−4

0.1 0.4066 0.5979 1.07 × 10−7 1.06 × 10−8 1.95 × 10−4 9.37 × 10−4

0.5 0.4067 0.5979 1.12 × 10−7 1.08 × 10−8 1.92 × 10−4 9.31 × 10−4

0.9 0.4067 0.5979 1.12 × 10−7 1.15 × 10−8 1.92 × 10−4 9.26 × 10−4

In general, the confidence interval of the coefficient function of the variable coefficient
term is relatively wider in the case of small samples, and the fluctuation between the
boundary and trough and peak is larger. With the increase in the sample size, the estimation
accuracy of the coefficient function of the variable coefficient term is effectively improved
in the case of medium and large samples, starting from the sample N = 100. The overall
curve fitting of both non-periodic function α1(U) and periodic function α2(U) is almost
close to the true value, and the estimation effect is quite good, which further shows that
B-spline can deal with the problem of variable coefficients very well.
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Figure 2. Nonperiodic function α1(U) fit for 6 simulation cases.
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Figure 3. Periodic function α2(U) fit for 6 simulation cases.
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3.2. Comparison of INLA and MCMCINLA Algorithm

In order to highlight the accuracy of the SVC-SLM estimation of the INLA algorithm,
the simulation comparison of the MCMCINLA algorithm is given here. The prerequisite
for the use of the MCMCINLA algorithm is to satisfy the basic framework of INLA [4],
and it has been proved in Section 2.2.2 and Appendix A that the SVC-SLM conforms to
the basic framework of INLA, which indicates that the SVC-SLM is also suitable for the
MCMCINLA algorithm.

So as to minimize the impact of sample size and spatial autocorrelation on parameter
estimation, N = 400 and the spatial autocorrelation coefficient ρ = 0.5 are set here. Set
the burn-in simulation 20 times, burn-in rejection to keep one of the five iterations, and
the final total of 80 iterations of the simulation analysis.

Based on the findings presented in Tables 5 and 6, it is apparent that INLA outperforms
MCMCINLA in terms of both estimation time and accuracy. The estimation time required
for MCMCINLA is approximately 425 times longer than that of INLA, and for the test index
of parameter fitting, the MSE of MCMCINLA is higher than the MSE of INLA. Moreover,
the operation of INLA is simple and easy, while the adjustment process of MCMCINLA is
relatively cumbersome and requires manual adjustment of the sampling parameters such
as step size. In summary, after a thorough comparison and analysis of the two algorithms,
it becomes evident that the INLA algorithm excels in terms of both time efficiency and
estimation accuracy.

Table 5. Estimation results of each parameter of SVC-SLM under INLA/MCMCINLA algorithm
and time.

Algorithm ρ̃ β̃1 β̃2 Time

INLA 0.4993 0.4067 0.5979 9.96 1

MCMCINLA 0.4983 0.3852 0.6041 4234.32 1

1 The unit of time is second.

Table 6. MSE for the estimation of each parameter of the SVC-SLM under the INLA/MCMCINLA
algorithm.

Algorithm MSEρ MSEβ1 MSEβ2 MSEα1(U) MSEα2(U) MSEy

INLA 1.09 × 10−9 1.12 × 10−7 1.08 × 10−8 1.92 × 10−4 9.31 × 10−4 8.42 × 10−12

MCMCINLA 7.23 × 10−9 5.47 × 10−7 4.20 × 10−8 3.95 × 10−4 1.06 × 10−3 9.48 × 10−12

3.3. Bootstrap Simulation Experiment

Aimed at verifying the practicability of the bootstrap test for the INLA algorithm,
the corresponding bootstrap simulation of Model (9) is given as follows. See Appendix B
for the specific bootstrap verification process.

In order to be more appropriate to the actual situation, the two variable coefficient
functions are set as periodic function and aperiodic function, respectively, so as to explore
the study of variable coefficient in different cases by the INLA algorithm. The standard
deviation of ε is σ = 1 , and the value range of each covariable and the setting of its
coefficient are shown in Table 7.

Table 7. Bootstrap tested the value range and coefficient setting of each covariable of the model.

Concomitant Variable Variable Value Coefficients of Covariates Setting of Coefficient

x1 U(0, 3) α1(U) 0.2e(U
2+3U)

x2 U(0, 3) α2(U) 0.3 sin(3ΠU)
x3 U(0, 3) β1(U) 0.4 + c sin(3ΠU)
x4 U(0, 3) β2(U) 0.6 + cU(3 − 4U)
U U(0, 1) - -



Mathematics 2024, 12, 953 14 of 24

Table 7 of c is a constant, and the efficacy of the test is evaluated by the value taken for
c. When c = 0, it means that H0 is true and c ̸= 0 means that H1 is true, and the deviation
between H0 and H1 increases with the absolute value of c.

To examine the influence of error distribution on the test performance, two different
error distributions with distinct characteristics are considered, such as N(0, 1), U(−4, 4).
The null hypothesis at this point is H0 : β1(U) = β1 and β2(U) = β2.

For each simulation, according to the Appendix B and Model (A7), b = 500 bootstrap
samples were taken from each repetition to calculate the p-value analyzed in terms of both
the size of the test and the efficacy of the test, respectively, and the experiment is repeated
K = 100 times.

(1) The Validity of the Test
Make the coefficient function β1(U) and β2(U) for c = 0 , namely, H0 is true and

β1(U)=0.4, β2(U)=0.6, then in the original hypothesis and alternative hypothesis and each
setting calculate the frequency of 100 repetitions less than a given level of significance
(i.e., the rejection of H0 ); from the results of Table 8 it can be seen when H0 is true in all
the experimental settings, regardless of whether it is a small sample of N = 30 or a large
sample of N = 100, the rate of rejection of the null hypothesis under the null hypothesis is
also reasonably close to the α = 0.05 significance level, and there is no significant difference
in the simulation results regardless of whether the error distribution is normal or uniform.
All these demonstrate the effectiveness of the bootstrap approach to zero distribution.

(2) Test Statistic Efficacy
To evaluate the efficacy of the test statistics, the article considers scenarios where

c ̸= 0 namely H1 is true, assuming that all coefficients are variable coefficients. In this case,
the values of c in the coefficient function β1(U) and β2(U) were set to 0.4 + c sin(3ΠU)
and 0.6 + cU(3 − 4U). As the sample size increased or c increased, the deviation between
the alternative hypothesis and the null hypothesis led to a gradual increase in the p-value
for the test, converging toward a value of 1.

The results presented in Table 8 demonstrate that under different error distributions
and two distinct values of spatial lag coefficients ρ, the resulting probabilities do not exhibit
significant differences. This indicates that the bootstrap test method employed exhibits
strong test efficacy and robustness, even in the face of variations in the degree of spatial
autocorrelation and error distribution.

Table 8. Probability of bootstrap test rejecting H0 at significance level α = 0.05.

C ρ N N(0, 1) U(−4, 4)

0 0.3 30 0.00 0.02
100 0.02 0.05

0.5 30 0.00 0.01
100 0.04 0.04

0.3 0.3 30 0.97 0.97
100 0.98 1.00

0.5 30 0.92 0.97
100 0.98 0.98

0.6 0.3 30 0.95 1.00
100 0.97 0.98

0.5 30 0.97 0.96
100 0.99 0.98

4. Analysis of Spatial Influencing Factors of PM2.5

In order to reflect the superiority and practical value of the SVC-SLM studied in this
paper and the INLA method studied in this paper, the SLM, VC-SLM and SVC-SLM models
are discussed from three perspectives of parameter, non-parameter and semi-parameter
under the background of continuous improvement of urbanization level, the relationship
between covariate factors and urbanization level and their impact on PM2.5 concentration.
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4.1. Three Model Construction

The variable PM2.5 in Table 1 is selected as the response variable of y, and the re-
maining seven variables of ln_Urban, ln_GDP, ln_Industry, ln_Life, ln_Car, ln_Rain and
ln_Environmen are selected as covariables xj, j = 1, 2, . . . , 7 to construct the SLM. See
Section 2.1 for specific data preprocessing.

ln_PM2.5 = (IN − ρW)−1(β1ln_Urban + β2ln_GDP + β3ln_Industry

+ β4ln_Li f e + β5ln_Car + β6ln_Environment + β7ln_Rain + ε)
(10)

where the W is a space weight matrix of ROOK-type in N × N dimensions, N = 186
representing a total of 186 sample data from 31 provinces in mainland China, excluding
Taiwan, Hong Kong, and Macau, covering the six years from 2015 to 2020.

Based on Model (10), relaxed the assumption of a linear relationship between co-
variates and the response variable and introduced variable coefficient terms αj(U). U
represents the urbanization indicator, i.e., ln_Urban is taken as U in the variable coeffi-
cient function, and PM2.5 is still taken as response variable y; the remaining six variables
served as covariates, where j = 1, 2, . . . , 6. A model of the VC-SLM model is constructed to
further explore the relationship between various influencing factors and PM2.5 under the
background of urbanization. The VC-SLM is denoted as:

ln_PM2.5 = (IN − ρW)−1(α1(U)ln_GDP + α2(U)ln_Industry

+α3(U)ln_Li f e + α4(U)ln_Car

+α5(U)ln_Environment + α6(U)ln_Rain + ε)

(11)

The premise of constructing SVC-SLM is to use the INLA estimation method and
bootstrap test method to identify whether the Model (11) has constant coefficients. Table 9
conducts a series of tests on different null hypotheses, and the model corresponding to H1
in this case is Model (11). Correspondingly, the null hypothesis and alternative hypothesis
in Table 9 are: {

H0 : αj(U) = βk, k = p + 1, . . . , 6
H1 : all αj(U) changing with U

As mentioned in Section 3.3, the bootstrap test is applicable to such kinds of tests.
Similarly, the hypothesis corresponding to Table 9 can be substituted into the bootstrap test
process in Appendix B to obtain the corresponding p-value of the trip. b = 500 bootstrap
samples were extracted in 100 repetitions to calculate the p-value. Table 9 shows the p-value
of the test for bootstrap.

Table 9. p-Values for different null hypotheses αj(U) = β j, j = 1, 2,. . . , 6 and their bootstrap tests at
significance level α = 0.05.

Null Hypothesis Covariates p-Value

α1(U) = β1 ln_GDP 0.35
α2(U) = β2 ln_Industry 0.81
α3(U) = β3 ln_Life 0.00
α4(U) = β4 ln_Car 0.00
α5(U) = β5 ln_Environment 0.00
α6(U) = β6 ln_Rain 0.85

αj(U) = β j, j = 1, 2, 6 ln_GDP, ln_Industry, ln_Rain 1.00

As can be seen from Table 9, the p-values of the bootstrap test of ln_GDP, ln_Industry
and ln_Rain are all significantly greater than the significance level α = 0.05, so the null
hypothesis of these three covariables cannot be rejected, which indicates that their regres-
sion coefficient is a constant and is not affected by covariable U. In addition, the results
in the last row of Table 9 show that the p-value of the bootstrap test for adding ln_Life,
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ln_Car and ln_Environment to the null hypothesis is also greater than the significance
level α = 0.05, which indicates that the hypothesis accepts the null hypothesis. That is the
three regression coefficients (ln_Life, ln_Car, and ln_Environment) all change with the
change in the covariable U.

Finally, an additional hypothesis is further verified, that is, whether the three remaining
regression coefficients ln_Life, ln_Car and ln_Environment change with the change of
covariable U at the same time. In this case, the alternative hypothesis changes to the
last row of Table 9. The null hypothesis is changed to add one or more of the remaining
coefficients of α3(U), α4(U), and α5(U) to the null hypothesis in the last row of Table 9.
The p-value of the results is between 0.00 and 0.03, indicating that the coefficients α3(U),
α4(U), α5(U) do change simultaneously with the covariable U.

So the SVC-SLM is:

ln_PM2.5 = (IN − ρW)−1(α3(U)ln_Li f e + α4(U)ln_Car

+ α5(U)ln_Environment + β1ln_GDP

+ β2ln_Industry + β6ln_Rain + ε)

(12)

4.2. Model Selection

Since DIC [32] is often used to evaluate the fitting effect and model complexity of
different Bayesian models, and the widely applicable information criterion (WAIC) can ap-
proach the results of Bayesian cross-validation without being affected by parameterization,
therefore, in this study, DIC and WAIC were used to evaluate the relative advantages and
disadvantages of the three models.

The smaller the DIC and WAIC values, the better the prediction ability and generaliza-
tion ability of the model, that is, the model has a better fitting performance on the unseen
data. Table 10 shows the fitting DIC and WAIC values of the three models.

Table 10. The fitting evaluation results of the three models.

Variable SLM VC-SLM SVC-SLM

DIC −1082.24 −1058.70 −1114.87
WAIC −1106.40 −1099.96 −1127.99

As shown in Table 10, the DIC and WAIC values of SVC-SLM are the smallest, which
is smaller than models of SLM and VC-SLM. This verifies the correctness that SVC-SLM
is the best model to fit the data in this paper, even though the values of DIC and WAIC
for the SLM are smaller than for the VC-SLM, indicating that it is inappropriate to use
VC-SLM to improve on the basis of SLM. The applicability of SVC-SLM in this paper is
further explained.

4.3. Analysis of Influencing Factors of PM2.5 by Three Models

The INLA algorithm is used to fit the Models (10)–(12). The obtained estimates of
spatial autocorrelation parameters and the posterior estimates of regression coefficients of
each influencing factor are shown in Table 11. The autocorrelation charts of the three models
are shown in Figure 4, the regression coefficients of each influencing factor of Model (11) are
shown in Figure 5, and the regression coefficients of some influencing factors of Model (12)
is shown in Figure 6.

According to Figure 4 and Table 11, the spatial autocorrelation of PM2.5 in SLM, VC-
SLM and SVC-SLM models are all positive. They are 0.8008 (95%CI: 0.6610, 0.9050), 0.6858
(95%CI: 0.5941, 0.7678) and 0.5499 (95%CI: 0.4041, 0.6781), respectively, indicating that
there is a significant spatial positive correlation between PM2.5 concentrations in the three
model provinces. To a certain extent, PM2.5 in one province will affect the transmission of
PM2.5 concentrations in the surrounding provinces. Further investigation shows that the
spatial autocorrelation parameter of ρ in the model (range from 0.8008 to 0.5499) and (range
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from 0.6858 to 0.5499) gradually decrease as SLM to SVC-SLM or VC-SLM to SVC-SLM.
This phenomenon may be attributed to the fact that in the context of the semi-parametric
model of SVC-SLM avoids assuming simple linear relationships between variables (as in
SLM) and avoids making arbitrary non-parametric assumptions about all parameters (as in
VC-SLM), instead adopting a more balanced approach that helps prevent overestimation.
The spatial autocorrelation parameter of ρ in SVC-SLM can be estimated more accurately.

Figure 4. Density plots of autocorrelation coefficients of the three models.

Figure 5. Figure of regression variable coefficient αj(U), j = 1, 2, ..., 6 of VC-SLM.

Figure 6. Figure of the regression variable coefficient αj(U), j = 3, 4, 5 of SVC-SLM.

The corresponding results of VC-SLM and SVC-SLM in Table 11 are Models (11) and (12),
respectively. The values of all variable coefficients of VC-SLM and part of the variable
coefficients of SVC-SLM in Table 11 are calculated to obtain the mean value.
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Table 11. Posterior estimation of covariate regression coefficients under three models.

Variable SLM VC-SLM SVC-SLM

ρ 0.8008 (0.6610, 0.9050) 0.6858 (0.5941, 0.7678) 0.5499 (0.4041, 0.6781)

ln_Urban 0.1036 (−0.1643, 0.3731) − −
ln_GDP 0.2574 (0.1604, 0.3551) 0.0495 (−0.5375, 0.6361) 0.0241 (−0.0438, 0.0917)

ln_Industry 0.1320 (0.0767, 0.1872) 0.2085 (−0.1317, 0.5484) 0.1578 (0.09561, 0.2196)
ln_Life −0.0202 (−0.0569, 0.0163) −0.0488 (−0.2755, 0.1777) −0.0445 (−0.2238, 0.1347)
ln_Car −0.2022 (−0.3309, −0.0731) 0.0244 (−0.7439, 0.7881) 0.1821 (−0.1413, 0.5052)

ln_Environment −0.1956 (−0.2671, −0.1230) −0.0807 (−0.5116, 0.3499) −0.0378(−0.2655, 0.1896)
ln_Rain −0.2887 (−0.3927, −0.1851) −0.1257 (−0.7930, 0.5410) −0.1161 (−0.1933, −0.0390)

4.3.1. The Linear Influencing Factors of PM2.5 under SLM

The results of SLM in Table 11 show that the 95% confidence interval of the linear
coefficient of ln_Urban and ln_Life both contain 0, indicating that the influence of these
two factors on PM2.5 concentration is not statistically significant. However, it is worth not-
ing that ln_Life has a significant negative impact on PM2.5 concentration, which contradicts
common sense and the findings of Li et al. (2023) [33]. This uncertainty is to be studied
in the model later in this paper. ln_GDP and ln_Industry have significant positive effects
on regional PM2.5 concentration, with a posterior mean of 0.2574 and 0.1320, respectively.
Among them, ln_GDP has the strongest promoting effect on PM2.5 concentration. This may
be due to the fact that regions with high GDP tend to have more industrial production and
economic activity, as well as higher levels of car ownership and usage, leading to increased
emissions and particulate matter production, thereby raising PM2.5 concentrations. Both
ln_Environment and ln_Rain have negative effects on PM2.5, indicating that Environmental
treatment and rainfall have the same significant impact on air pollution.

4.3.2. The Influencing Factors of PM2.5 of VC-SLM in the Background of Urbanization

Similarly, the INLA algorithm was used to estimate the Model (11). Surprisingly,
when all the influencing factors are affected by urbanization, ln_Life has a promoting
effect on PM2.5 concentration, which is consistent with the findings of common sense and
Li (2023) [33]. This suggests that previous simple linear assumptions about the effect of
ln_Life on PM2.5 concentrations may not be appropriate. In addition, under the scenario
that all influencing factors are affected by urbanization, ln_Industry has replaced ln_GDP
as the most significant positive influencing factor for provincial PM2.5 concentration, while
ln_Rain is still the strongest inhibiting factor for provincial PM2.5 concentration. According
to Figure 5, it is possible to further observe the changing trend of PM2.5 concentration
and all factors under the scenario of intensified inter-provincial urbanization in China.
The specific analysis of each factor of the VC-SLM is not conducted here. The influence of
each factor of the SVC-SLM on PM2.5 concentration will be introduced in detail next.

4.3.3. The Influencing Factors of PM2.5 of SVC-SLM in the Background of Urbanization

As can be seen from the bootstrap test results in Table 9, the regression coefficients
α3(U),α4(U),α5(U) of the three covariables ln_Life, ln_Car and ln_Environment in Model (12)
change with the change of covariable U. It should be emphasized that in Model (10), ln_Car
and ln_Environment have significant impacts on PM2.5. However, bootstrap test results
show that these two variables should be regarded as non-parametric components. This find-
ing confirms that the previous method of directly selecting non-significant variables (that is,
coefficient confidence intervals containing 0) as non-parametric components from “linear
SLM” is too subjective and slightly lacking in theoretical basis. This emphasizes the impor-
tance and necessity of bootstrap testing of constant coefficients in semi-parametric models.
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According to the results in the last column of Table 9, SVC-SLM regression results are
written as follows:

ln_PM2.5 = (IN − ρW)−1(0.0241ln_GDP + 0.1578ln_Industry

− 0.0445ln_Li f e + 0.1821ln_Car

− 0.0378ln_Environment − 0.1161ln_Rain + ε)

(13)

The Model (13) has three linear influences on the concentration of PM2.5, they are
ln_GDP, ln_Industry and ln_Rain. ln_Rain is still the factor that exerts the greatest inhibitory
effect on air pollution concentration, with a posterior mean of −0.1161. ln_Industry shows
a significant linear contribution to the PM2.5. The 95% confidence interval for ln_GDP
contains 0, indicating that GDP has no effect on PM2.5.

The Model (13) of non-linear effects on PM2.5 concentration are ln_Life, ln_Car and
ln_Environment. Figure 6 shows the regression coefficient changes of the three influencing
factors of the Model (12) with increasing urbanization.

As shown in Figure 6, the influence of three non-linear influencing factors on PM2.5
is a curve of change, which once again confirms that there is no direct linear relationship
between these three influencing factors and PM2.5, as confirmed by the bootstrap test.
Next, there will be an in-depth study on the changes in PM2.5 concentration and these
three factors under the scenario of increasing urbanization at the provincial level in China.

In the analysis of ln_Life in the early stage of urbanization, ln_Life had a mild inhibitory
effect on PM2.5, which may be related to the relatively low exhaust gas emissions in the
early stage of urbanization development. This weak inhibitory effect may be attributed to
increased environmental awareness and the initial implementation of policies.

As for ln_Car, the overall impact pattern of ln_Car on PM2.5 concentration is similar
to “N-shaped”. In other words, with the advancement of urbanization, the impact of life
and motor vehicle emissions on PM2.5 concentration is as follows: promoting in the initial
stage, inhibiting in the middle stage, and transiting from inhibiting to positive in the later
stage. Here, is a possible explanation: (1) In the initial stage, with the advancement of
urbanization, the urban population grows and economic activities expand. This has led to
an increase in the number of motor vehicles and industrial output, resulting in increased
emissions of motor vehicle exhaust and industrial exhaust gases. Therefore, this contributes
to the increase in PM2.5 concentration, which has a positive impact. This is consistent with
the results of Chen et al. (2023) [34] that industrial, urban, and automobile exhaust gases
play a role in promoting PM 2.5. (2) In the middle stage of urbanization, social concern
about environmental pollution may, over time, prompt the government to take measures
to control motor vehicle exhaust and industrial exhaust emissions. These measures could
include restricting vehicle access, promoting the use of clean energy and enforcing stricter
emissions standards. (3) In the later period, economic growth and energy demand are
expected to increase as urbanization continues. The ability to implement policies may also
fluctuate. Therefore, the inhibiting effect of motor vehicle and industrial emissions on
PM2.5 concentration gradually wanes and eventually becomes a promoting effect.

In the analysis of ln_Environment, the chart of the impact of ln_Environment on PM2.5
concentration seems to be an inverted “N-shape”, which is opposite to the chart of ln_Car in
a certain sense, which is in line with practical significance. As Figure 6 shows, in the initial
phase of increased urbanization, the effects of investment in environmental governance
accumulate over time. This gradual accumulation enhances their suppressive effect on
pollutant emissions, thus restraining the rise in PM2.5 concentrations until they peak. How-
ever, as the impact of governance investment becomes apparent, it will eventually approach
a certain limit. At this critical juncture, even if investments in environmental governance
persist, their lasting impact is limited because governance measures have reached a certain
level of effectiveness. In addition, technological advances and policy adjustments may
introduce new governance effects at specific stages, making the inhibitory effect weaker.
In the process of advancing urbanization, population and economic growth will lead to
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the emergence of new sources of pollution. These new sources may weaken the inhibitory
effect or even reverse it to a boosting effect. However, with the continued development of
urbanization, the government has sought to better control pollution and improve air qual-
ity by increasing investment in environmental governance. Such ongoing environmental
governance will continue to have an inhibitory effect on PM2.5 concentrations [35].

5. Result

In this paper, the INLA algorithm is used for the first time to estimate and empirically
analyze the SVC-SLM model. The specific conclusions are as follows:

(1) In simulation experiments, a comparison with the MCMCINLA algorithm reveals
that the INLA algorithm not only outperforms in terms of parameter fitting accuracy
but also has a faster computational speed, fully demonstrating the feasibility of the INLA
algorithm.

(2) In the empirical analysis of the influencing factors of PM2.5 concentration, this
study comprehensively analyzes the three models of SLM, VC-SLM, and SVC-SLM from
three perspectives: parametric, non-parametric, and semi-parametric. In terms of model
selection, the SVC-SLM exhibits the smallest values of DIC and WAIC, highlighting its
applicability in this study.

(3) In Section 4.3.3 of the empirical study, directly selecting non-significant variables
(that is, coefficient confidence intervals containing 0) as non-parametric components from
linear SLM models is too subjective and slightly lacking in theoretical basis. This em-
phasizes the importance of the SVC-SLM from a semi-parameter perspective, utilizing
bootstrap tests to determine the significance and necessity of which regression coefficients
are constant and which are variable. Therefore, employing bootstrap tests in this paper is
deemed rational and prudent.

(4) Empirical research results indicate that rainfall has become the most crucial factor
in reducing PM2.5 concentration.

(5) The results of the empirical study show that when the linear SLM transitions to the
SVC-SLM, i.e., in the context of accelerating urbanization, the inhibitory effect of investment
in environmental governance on PM2.5 concentrations diminishes. The posterior mean
value moves from −0.1956 to −0.0378. On the contrary, the effect of motor vehicle tailpipe
emissions on PM2.5 concentrations undergoes a transition from inhibition to facilitation.
The a posteriori mean value moved from −0.2022 to 0.1821.

In summary, the results verify the applicability of the INLA algorithm and SVC-SLM
model from both theoretical and empirical aspects, which highlights the significance of
this study.

6. Discussion

(1) The empirical research findings offer valuable insights for relevant government
departments to strengthen policies in areas such as environmental governance investment,
changes in motor vehicle emissions, and rainfall suppression. For instance, in controlling
automotive exhaust emissions, it is advisable to consider implementing stricter emission
standards, requiring new and existing vehicles to reduce emission levels. Exploring in-
centives or mandates for the use of electric or hydrogen fuel cell vehicles, along with
improving the accessibility and efficiency of public transportation systems, can contribute
to reducing individual car usage. In terms of environmental protection investment, in-
creasing government funding for air pollution control and encouraging private sector
participation in environmental projects, especially in clean energy initiatives, could be an
effective strategy. Additionally, given the impact of rainfall and wind direction on PM2.5
concentration, addressing meteorological conditions is crucial for maintaining air quality.
Developing early warning systems and emergency measures related to meteorology would
be beneficial.

(2) For this study, there are still several areas that could be further explored. Firstly,
the part of the variable coefficient term studied in this paper is αj(U) , which reflects
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the dynamic variations of y concerning a covariable U. Future research could consider
partial coefficient terms as, reflecting the dynamic variations of αj(T) concerning time
T. Secondly, this paper focuses on longitudinal data analysis, and future research could
extend it to spatial panel data, adjusting the coefficient terms to explore deeper insights
into the changes in αj(u, v) based on spatial geographical locations.
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Appendix A

Appendix A is proof of the GMRF structure of the SVC-SLM. The SVC-SLM in this
paper is:

y = ρWy + ∑p
j=1 xjαj(U)+ ∑n

k=p+1 xkβk + ε (A1)

Model (A1) is written as a new potential SLM model as:{
y = η+ ζ

η = (IN − ρW)−1(Vψ + ε)
(A2)

Since inside R-INLA is the joint distribution of η and ψ, which is [η, ψ]. So the goal is
to prove [η, ψ] is the GMRF as a sparse precision matrix to make it conform to the INLA
framework. According to Bayes’ theorem, we first calculate the conditional distribution of
η over ψ as [η|ψ].

Assuming that the joint distribution is Gaussian, and therefore, the conditional dis-
tribution [η|ψ] is also Gaussian, the expectation and variance of [η|ψ] are expressed
as follows:

E = E(η | ψ) = (IN − ρW)−1Vψ

and
D = var(η | ψ) = var((IN − ρW)−1Vψ + (IN − ρW)−1ε | ψ)

= (IN − ρW)−1 1
τ

IN((IN − ρW)−1)
′

=
1
τ
(IN − ρW)−1((IN − ρW)−1)′

The precision of [η|ψ] can be expressed as P:

P = prec[η | ψ]=
1
D

= τ(IN − ρW
′
)(IN − ρW)

https://sedac.ciesin.columbia.edu/
http://www.stats.gov.cn
https://data.cnki.net/yearBook/single?id=N2023070120
https://data.cnki.net/yearBook/single?id=N2023070120
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
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The precision matrix P is symmetric and sparse, so that the joint distribution of η and
ψ is

[η, ψ] = [η|ψ][ψ] ∝ exp{−1
2
(η− E)′P(η− E)} exp{−1

2
ψ′Qψ}

= exp{−1
2
(
η′Pη− η′PE − E′Pη+ E′PE + ψ′Qψ

)
}

= exp{−1
2
(η, ψ)′K(η, ψ)}

where K is the precision matrix, and its matrix structure is

K =

(
P −P(I − ρW)−1V

−V
′
(IN − ρW)−1P Q + τV

′
V

)
=

(
τ(IN − ρW

′
)(IN − ρW) −τ(IN − ρW

′
)V

−τV
′
(IN − ρW) Q + τV

′
V

) (A3)

Note, that in order to obtain the result of Model (A3), the following formula was used:

ηPE = η′τ(IN − ρW ′)(IN − ρW)(IN − ρW)−1Vψ

= τη′(IN − ρW ′)Vψ

E′Pη = (η′PE)′ = τψ′V ′(IN − ρW)η

and
E

′
PE = τψ

′
V

′
(IN − ρW

′
)−1(IN − ρW

′
)(IN − ρW)(IN − ρW)−1Vψ

= τψ
′
V

′
Vψ

So that,
E(η, ψ) = 0 (A4)

Therefore, (η, ψ) is a GMRF with a mean of 0 and a precision matrix of K, where
matrix K is a highly sparse block matrix, so Model (A1) conforms to the INLA framework.

Appendix B

As mentioned in Section 2.2.4, for the SVC-SLM, the question of common interest is
whether some of the coefficients can be regarded as constants, hence the following bootstrap
hypothesis: {

H0 : αj(U) = βk, k = p + 1, . . . , n
H1 : all αj(U)(j = 1, . . . , n) changing with U

For this hypothesis, the corresponding model under the original hypothesis H0 is
SVC-SLM. The specific form is:

y = ρWy + ∑p
j=1 xjαj(U)+ ∑n

k=p+1 xkβk + ε (A5)

Alternative hypothesis H1 corresponds to VC-SLM:

y = ρWy + ∑n
j=1 xjαj(U)+ ε (A6)

The detailed bootstrap procedure is as follows:

1. Using the initial values {yi; xij, xik; Ui}(i = 1, 2, . . . , N; j = 1, 2, . . . , p; k = p + 1, . . . , n;
p ≤ n) and the determined window width based on H1. Fitting the VC-SLM model
under the alternative assumption H1, i.e., estimating Model (A6) using the INLA
algorithm, yields estimated parameters that are the lag coefficient ρ̃ and variable coef-
ficients of α̃j(U) , resulting in the residual vector ε̃ = (ε̃1, ε̃2, . . . , ε̃N)

′
, and compute

the sum of squared residuals RSSH1 ;
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2. Based on the original data and the window width determined in step 1, fit the variable
coefficient model under the null hypothesis H0 . With INLA estimating the Model (A5)
to obtain the lag coefficient ρ̂, the variable coefficient of α̂j(U) and constant-coefficient
β̂k are calculated. Then, calculate the sum of squared residuals RSSH0 and substitute
it into Model (7) to obtain the observed value T for this statistic.

3. Centering the residual vector ε̃ obtained in step 1 to obtain ε̃c = (ε̃1c , ε̃2c , ..., ε̃Nc)
′
,

where ε̃ic = ε̃i − 1
N ∑N

i=1 ε̃i, i = 1, 2, ..., N;
4. Sampling back from the centered residual vector to obtain a new residual ε∗ =

(ε1
∗, ε2

∗, . . . , εN
∗)

′
, generating a new observation y∗ of the response variable, specifi-

cally, y∗ = ρ̂Wy∗ + ∑
p
j=1 xjα̂j(U)+ ∑n

k=p+1 xk β̂k + ε* , and thus generating bootstrap
data {yi∗; xij, xik; Ui}(i = 1, 2, . . . , N; j = 1, 2, . . . , p; k = p + 1, . . . , n; p ≤ n);

5. Utilizing the generated bootstrap data, refit the models corresponding to the null and
alternative hypotheses, calculating the sum of squared residuals RSSH0

∗ and RSSH1
∗

at this point. Substitute these values into Model (7) to compute the bootstrap observed
value T∗ for this statistic;

6. Repeat step 4 and step 5 a total of K times to obtain the b bootstrap observation of
the test statistic T, which we denote by t∗1 , t∗2 , . . . , t∗K, Then the p-value estimate of the
bootstrap test, i.e., the p-value in Model (8) is estimated as:

p̃ =
1
K ∑K

i=1 I(t∗i ≥ t) (A7)

where I(•) is the schematic function, and t is the observed value of the statistic T.
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