Supplementary Materials

Lemma S1. Under C.1-C.4, |lg,(B)|| = O,(n;'"*) and |1g,(Bo)ll = O,(1).

Proof. Without loss of generality, independent correlation structure and canonical link is consid-
ered. The true correlation matrix is approximated by A~'/2M;A~'/2, Under canonical link, if we
assume the scale parameter equals 1, then duy (B8)/0B = Ay X Let Xk, = X9 o for all r, the
submatrix of Xj ;) with columns consist of observed covariates.

By CA4,
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By Chebyshev’s inequality and C.1-C.3, [|[1/m 31, X!, A2 M gl = O,(n;'"%). Also, K and
number of imputations are both finite, implying n;, = O(n). Therefore, g (Bl = 0,(n~172).
Because each element of g,(8,),
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is bounded in probability by Law of Large Number, C.1-C.2, and the finite number of imputa-
tions. It follows that [|g,(Bo)ll = O,(1). O
Lemma S2. Ler Qu(B) = g1 (B) Ci(B)~'g,(B). Under C.1-C.4, we have
C.(Bo) = 28] Bo)CulBo)™ 2(Bo) + 0,(1)
and

Ou(Bo) = 28 (Bo)Ci(Bo) ™' 2.(Bo) + 0,(1).
Proof. By C.3 and Law of Large Number, we have [|Ci(By)|| = O,(1). Thus,
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where Ci(By)~" is a three-dimensional array and is bounded in probability. Similarly, we can
show that
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Proof of Theorem S1

Proof. It suffices to prove that for any € > 0, with probability at least 1 — ¢, there exist a constant
C. such that a local minimizer exists within the ball
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{Bo +nu : |jul|l < C.).

Let Ok = g.(B) C(B) ' g(B), where Ci(B) = 1/n; X7 1g,”(ﬁ)g,zi(ﬂ). We notice that Q(B) =
Z =1 Qk(B) since C is a block-diagonal matrix.
By Taylor expansion,
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We further expand 7, by Taylor expansion
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where B” is an intermediate value between ﬁ and By.
By Lemmas S1 and S2,
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By C.6,
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Notice that
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and
I < max {r, (|,30]|) el = o0,(nHlul.

By choosing sufficient large |lu||, /; + I, will be dominated by I,,, which is positive. Thus,
S(ﬂo + n_l/zu) - S(ﬂo) > 0.

O
Proof of Theorem S2
Proof. To prove sparsity, it suffices to prove that there exist My > 0 such that foranyj e N,
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By Taylor expansion,
S (B) _ 90B)
+ p), (Bjsign(B;)
0ﬂj aﬁj A J
_00(Bo) < OB
= o8, + Z BB, (B — Bor)
)4 3 %
0 Q(ﬁ ) P P ’ P, : P,
2 W(Bl = Bo)(Bx — Bow) + Py, (1B1)sign(B))

:Il+12+13+14,

where B” is an intermediate value between ﬁ and By.
By Lemma S2, |[I}]| = O,(n"'/?). By the Cauchy-Schwarz inequality and Therorem 1, we have
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and ||| = op(n‘”z).
Because A, — 0 and A, Vn/a, — oo,
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dominates I, I, and I5. Therefore, S (B) /0B; has the same sign as B ;. This finishes the proof of
sparsity.
Next we prove the asymptotic normality. By the Taylor expansion,
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where P;n(lﬂb is a vector consisting of P}n(|ﬂ|) and SD’A'”(LBD is a diagonal matrix consisting of
P; (IB]). Because B is a local minimizer, indicating that 9§ (B)/9B# = 0, we obtain
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By the definition of SCAD penalty, #; (Boal) = 0, Vi, (Boal) = 0, and var, = 0. By
Lemma S2,
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By C.6 and Law of Large Numbers, C(8) N Y, 0g(Bo)/ 0B A 2 H, and +/ng(By) < N(0,XQ).
By C.6, Slutsky’s Theorem, and continuous mapping, we have
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Similarly, we can show that
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Again, by Slutsky’s Theorem, Vn(B.4— Boa) dN((), V), where V= (HX'Q'H") .
Proof of Theorem S3

Proof. We use the similar notation as Theorem S2 with V = (HC™'Q'H")™". It suffices to prove
that HC-'H" > HC'H" . Because V and V are block-diagonal matrices, we have
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Obviously, HC™'H” > HC-'H" will hold if, for any k, H,C;'H! > H,C;'H'.
Let Gi(B) = (g1(B), - - -, 8, (B). Then, we reordering the row of Gi(B) by letting B be a
matrix such that BiG(B) = (G],(B), GL,(B))", where Gy, (B) are the estimating equations con-

structed based on complete cases and Gy, () are the remaining estimating equations. We make
the following transformation
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Gio(B) = G(p) - |:n_kal(ﬂ)GZ2(ﬁ)] [n—kal(ﬂ)GL(ﬂ)] Gu(P).



It follows that le(ﬂ)Gk20 ) = 0. Let Uy be a matrix such that UG (B) = (G{,(B), GL,,(B)".
Define H U] = (Hy, Hy»). Thus
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where Ckz =1 /nkazo(ﬂ)szo ). The last equality is because
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Note that quZE;; 17,{2 is a positive semidefinite matrix. Thus, H,C'H] > flkazlﬁg. O

Lemma 83. Under D.1, ||Qx(Bo) — E{OBol = Op(pyn™").
Proof. By D.1 and Chebyshev’s inequality, for any & > 0,
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Proof of Theorem S4

Proof. The proof is similar as Theorem S1. It suffices to prove that for any € > 0, with probability
at least 1 — ¢, there exist a constant C, such that a local minimizer exists within the ball
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We first notice that by D.2,
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Thus, by Taylor expansion,
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By D.1, |I11ll = Op(pun Hllull.
From Lemma S3,
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By choosing sufficient large ||u||, I;; + I12 + I>; + I, will be dominated by I;,, which is positive.
Thus, S (Bo + pr/*n"2u) — S (By) > 0.
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