
Citation: Tan, H.; Wang, L.; Zhu, D.;

Deng, J. Intrusion Detection Based on

Adaptive Sample Distribution

Dual-Experience Replay

Reinforcement Learning. Mathematics

2024, 12, 948. https://doi.org/

10.3390/math12070948

Academic Editor: Cheng-Chi Lee

Received: 22 February 2024

Revised: 16 March 2024

Accepted: 19 March 2024

Published: 23 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Intrusion Detection Based on Adaptive Sample Distribution
Dual-Experience Replay Reinforcement Learning
Haonan Tan, Le Wang * , Dong Zhu and Jianyu Deng

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China;
hntan@e.gzhu.edu.cn (H.T.); zhudong@e.gzhu.edu.cn (D.Z.); dengjianyu@e.gzhu.edu.cn (J.D.)
* Correspondence: wangle@gzhu.edu.cn

Abstract: In order to cope with ever-evolving and increasing cyber threats, intrusion detection sys-
tems have become a crucial component of cyber security. Compared with signature-based intrusion
detection methods, anomaly-based methods typically employ machine learning techniques to train
detection models and possess the capability to discover unknown attacks. However, intrusion detec-
tion methods face the challenge of low detection rates for minority class attacks due to imbalanced
data distributions. Traditional intrusion detection algorithms address this issue by resampling or
generating synthetic data. Additionally, reinforcement learning, as a machine learning method that
interacts with the environment to obtain feedback and improve performance, is gradually being
considered for application in the field of intrusion detection. This paper proposes a reinforcement-
learning-based intrusion detection method that innovatively uses adaptive sample distribution
dual-experience replay to enhance a reinforcement learning algorithm, aiming to effectively address
the issue of imbalanced sample distribution. We have also developed a reinforcement learning
environment specifically designed for intrusion detection tasks. Experimental results demonstrate
that the proposed model achieves favorable performance on the NSL-KDD, AWID, and CICIoT2023
datasets, effectively dealing with imbalanced data and showing better classification performance in
detecting minority attacks.

Keywords: cyber security; intrusion detection; reinforcement learning

MSC: 68T42

1. Introduction

With the rapid development of network technologies, concepts such as smart homes,
smart vehicles, and smart cities have become a reality, bringing more convenience and
comfort to our daily lives. People are increasingly reliant on the Internet for information
transfer and data processing [1–3]. However, the threat to cyber security is also on the rise,
particularly with the proliferation of intrusion incidents. These attacks can lead to signifi-
cant economic losses, personal privacy breaches, and damage to critical infrastructure [4].
Therefore, specialized intrusion detection systems have become a vital component of cyber
security to safeguard against such threats [5].

Intrusion detection technology is designed to monitor and identify anomalous be-
havior within a network, enabling the early detection of intrusion activities through the
monitoring and analysis of network traffic, system logs, and other relevant data. Research
on intrusion detection can mainly be classified into two categories: signature-based in-
trusion detection and anomaly-based intrusion detection [6]. Signature-based intrusion
detection, also known as rule-based intrusion detection, detects intrusion behavior through
predefined rules or patterns. This technology is usually responsive to known attack types,
requiring the maintenance of a rule or database to store and manage the required rules and
patterns for detection. It also relies on experienced network security experts to create rules

Mathematics 2024, 12, 948. https://doi.org/10.3390/math12070948 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12070948
https://doi.org/10.3390/math12070948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3610-9185
https://doi.org/10.3390/math12070948
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12070948?type=check_update&version=2

Mathematics 2024, 12, 948 2 of 24

and requires regular updates of the rule repository to ensure timeliness and performance
in detection. With the rapid development and continuous evolution of network threats, the
cost of maintaining the rule repository is increasing. Therefore, more and more research is
considering anomaly-based intrusion detection. This type of approach typically employs
machine learning techniques, whereby modeling and training detection models on network
traffic, system logs, or other related data enables the detection of abnormal behaviors within
the network. As this approach is not based on predefined rules and patterns, it has the
capability to detect unknown attacks.

However, a major challenge in intrusion detection tasks is the imbalance of sample
distribution, with a significantly larger number of normal samples compared with abnormal
samples. Due to the large number of normal samples, it is difficult for the model to learn
effective classification patterns from abnormal samples. Currently, common methods to
address sample distribution imbalance include data resampling techniques [7,8], which
involve increasing the number of abnormal samples or reducing the number of normal
samples to balance the dataset. Another approach is ensemble learning [9,10], such as
boosting and stacking, which compensates for the poor prediction of a single classifier on
minority class attacks by combining predictions from multiple classifiers. Additionally,
the use of generative adversarial networks to generate synthetic samples of minority
classes [11,12] can increase the proportion of minority class attacks in the dataset, improving
the model’s generalization ability. Although these methods alleviate the impact of sample
distribution imbalance on intrusion detection to some extent, they also have limitations.
Data resampling techniques may lead to information loss, as the addition or removal of
normal or abnormal samples can affect the true distribution of data in a real network. While
ensemble learning enhances the robustness of intrusion detection models, it introduces
computational and storage overhead in practical applications. Furthermore, the quality
and diversity of the generated synthetic samples in generative adversarial networks are
points of concern.

In addition to applying supervised or unsupervised learning methods to anomaly-
based intrusion detection, reinforcement learning, a machine learning approach that in-
volves interacting with the environment to gather feedback and improve, has become a
new intrusion detection paradigm. Reinforcement learning has been successfully validated
in various domains [13–18], these applications have showcased the remarkable capabilities
and potential of reinforcement learning. In the field of intrusion detection, for example,
Caminero et al. [19] proposed an intrusion detection model based on adversarial reinforce-
ment learning, which integrates the supervised learning paradigm with reinforcement
learning algorithms to form an intrusion detection framework. Lopez-Martin et al. [20]
proposed a method of intrusion detection using labeled datasets based on various deep
reinforcement learning (DRL) algorithms. They conceptually modified the DRL model,
which is based on interaction with a live environment, and replaced the environment with
a sampling function. Existing studies have provided insightful ideas for using reinforce-
ment learning in intrusion detection, but there are still some challenges that have not been
adequately addressed. For one thing, the current method’s environment design is not
sufficient. Reinforcement learning typically does not directly rely on existing datasets;
instead, it requires training within an environment tailored to a specific task. This en-
vironment simulates the interaction between the agent and the real world, allowing the
agent to learn the optimal actions or strategies through iteration and refinement within
the environment. Therefore, designing a universal environment is an important condition
for applying reinforcement learning to intrusion detection in different scenarios. And
for other scenarios, the existing methods for handling imbalanced data are still not ideal.
Reinforcement learning algorithms typically require a large number of samples for training
to learn accurate strategies, which further exacerbates the impact of data imbalance and
results in poor detection performance for minority class attacks.

In response to these challenges, this paper offers another feasible intrusion detection
solution based on reinforcement learning. By integrating the designed adaptive sample

Mathematics 2024, 12, 948 3 of 24

distribution dual-experience replay method to address the problem of data imbalance and
developing a reinforcement learning environment specifically for intrusion detection, the
proposed method enables reinforcement learning to be on par with supervised learning
methods and provides a promising intrusion detection paradigm. In addition, labeled
data offers a great pretraining sample for the strategy of reinforcement learning, which
enables the cold start of crucial parameters through learning with labeled data. This
provides reinforcement learning with an initial optimization space with good performance,
providing a solid foundation for future work interacting with dynamic environments. The
main contributions of our work are as follows:

1. We proposed a novel intrusion detection method based on an improved reinforcement
learning algorithm. We design the dual-experience replay buffer as the data source
for experience replay and adaptively adjust the weights of each classification class
to adjust the proportion of samples from each class in the replay buffer, aiming to
effectively address imbalanced datasets and achieve good detection performance.

2. We developed a reinforcement learning environment suitable for intrusion detection
tasks. This environment presents a versatile interface for training and evaluating the
performance of agents, providing a foundation for applying reinforcement learning to
intrusion detection tasks in different scenarios.

3. We conducted experiments on three datasets to evaluate the proposed method. The
results of the experiments demonstrate the proposed method has the capability to
efficiently detect and identify network intrusion behaviors. Furthermore, when dealing
with unbalanced data, the proposed method shows better classification performance
in detecting minority attacks.

The remaining sections of this paper are organized as follows: Section 2 introduces
related works. Section 3 presents a detailed description of the proposed method. Section 4
covers the experiments and results. This paper concludes with a summary in Section 5.

2. Related Works

In the field of cyber security, intrusion detection has always been an important task
that has attracted much attention [21–23]. There have been many important studies on
dealing with imbalanced data. In the research based on traditional machine learning, for
example, by comparing random oversampling, random undersampling, and adaptive
synthetic sampling methods on multiple datasets, Bagui et al. [24] found that oversampling
and undersampling can significantly improve recall only when the data are extremely
unbalanced. Among them, oversampling is more helpful in detecting attacks on minority
classes, but its temporal complexity is higher. Cao et al. [25] proposed an intrusion detection
model that integrates a convolutional neural network and gated recurrent unit. The model
utilizes a hybrid sampling algorithm consisting of adaptive synthetic sampling (ADASYN)
and repeated edited nearest neighbor (REN) to address the issue of imbalanced samples
in intrusion categories. Shafieian et al. [26] conducted a comparison of the applications of
bagging, boosting, and stacking techniques in the field of intrusion detection. They pre-
sented the advantages of multilevel stacking over other ensemble techniques in detecting
low-footprint network intrusions. Thakkar et al. [27] proposed employing a deep neural
network as the foundational estimator for a bagging classifier in order to address the issue
of imbalanced intrusion detection data. The bagging method and class weights are utilized
to harmonize the class distribution within the training set. Ren et al. [28] proposed a new
ensemble method combining dynamic undersampling and boosting. The dynamic under-
sampling mechanism enhances the importance of boundary samples during the sampling
process, providing a relatively balanced training set for each iteration, thus achieving better
ensemble performance. Chui et al. [29] proposed a three-stage data generation algorithm
that combines synthetic minority oversampling technique with generative adversarial net-
works (GANs) and variational autoencoder to produce high-quality data, aiming to address
the issue of generating additional training samples for minority class in adversarial attacks.
In addition to utilizing random oversampling, Dina et al. [30] employed a data synthesis

Mathematics 2024, 12, 948 4 of 24

approach called a conditional generative adversarial network (CTGAN) to balance the
data and improve the accuracy of various machine learning classifiers on the NSL-KDD
and UNSW-NB15 intrusion detection datasets. Furthermore, Gaggero et al. [31] proposed
an anomaly detection algorithm based on neural network autoencoders by analyzing the
typical architecture of the storage system in microgrids and potential vulnerabilities therein.
And observing the physical behavior of the system and combining it with autoencoders
aims to replace human operator actions, enabling rapid the detection of possible dangerous
working conditions and the implementation of countermeasures. Al-Abassi et al. [32]
proposed a method called Ensemble Stacked AutoEncoder (ESAE) based on deep represen-
tation learning to construct a new balanced representation for the data imbalance problem
in smart power systems. They combined this with a random forest classifier to detect
attacks from the new representation. Fausto et al. [33] proposed an anomaly detection
method based on machine learning. This method is different from those that only use
information from the physical or cyber domains; it detects potential anomaly events by
integrating data related to both the physical and cyber domains, making the method more
universally valuable. These studies have provided new solutions and unique insights for
intrusion detection tasks under unbalanced data.

In recent years, reinforcement learning as an adaptive learning framework has cap-
tured the attention of researchers due to its capacity for acquiring effective decision-making
strategies through interaction with the environment, bringing new possibilities to the
field of intrusion detection. Alavizadeh et al. [34] have combined Q-learning-based rein-
forcement learning with intrusion detection methods based on deep feedforward neural
networks, proposing a reinforcement learning intrusion detection model based on DQL. By
analyzing hyperparameters such as the discount factor and the number of learning cycles,
they aim to identify the optimal fine-tuning strategy for the reinforcement learning agent.
Benaddi et al. [35] introduced an IDS based on deep reinforcement learning that analyzes
the interaction between normal IDS and attackers using non-zero-sum and random game
simulations, enabling the game to achieve Nash equilibrium and converge to an optimal
decision-making strategy. Mohamed et al. [36] proposed an intrusion detection model that
combines the SARSA-based reinforcement learning algorithm with deep neural networks
and verified its performance in achieving high-precision classification in unbalanced and
modern traffic networks. Yang et al. [37] have proposed an intrusion detection method
based on reinforcement learning that operates at both the packet level and flow level.
Using image embedding techniques, the network session data are transformed into images
that are processed by CNN and 1D-CNN for packet-level detection. As for flow-level
detection, a conditional generative adversarial network (CGAN) and an ε-greedy strategy
are employed to train the reinforcement learning agent. Dake et al. [38] have proposed a
MADDPG framework for intrusion detection in an SDN environment that involves the
utilization of two agents. This framework aims to efficiently optimize multipath routing
and detect or prevent malicious DDoS traffic within an SDN. Both agents collaborate in the
same environment to fulfill network optimization tasks. Sethi et al. [39] proposed a deep
reinforcement learning intrusion detection system employing multiple distributed agents,
incorporating the attention mechanism for attack detection and classification. Additionally,
they integrated a denoising autoencoder (DAE) with the model to enhance its robustness
against adversarial attacks. These works reflect the practical value and huge potential of
reinforcement learning in intrusion detection scenarios.

3. Proposed Method

In this paper, we propose an intrusion detection method based on adaptive sample
distribution dual-experience replay reinforcement learning. The method takes network
traffic data and relevant network activity features as inputs, which are preprocessed and
extracted for the reinforcement learning model. During the training phase, the model
interacts with the reinforcement learning environment we developed for intrusion detection.
The objective is to maximize cumulative rewards, enabling it to learn attack patterns in

Mathematics 2024, 12, 948 5 of 24

network traffic characteristics and identify novel intrusions. Utilizing the attack patterns
learned by the model, it classifies the input network traffic information, determining
whether it corresponds to normal network behavior or potential intrusion activity.

3.1. Overall Structure

The overall structure of the proposed method is illustrated in Figure 1, which is
divided into three components: data preparation, reinforcement learning environment, and
detection model.

• Data preparation. We transform the raw data into a format that aligns with the input
requirements of the model. Also, not all attributes and values in the dataset are con-
ducive to model training; hence, it is necessary to extract meaningful data from the
dataset. According to numerous studies and practical applications, it has been demon-
strated that effective data preprocessing can have a substantial impact on the training
and predictive performance of a model [40,41]. We undertake data preprocessing
from the following three perspectives: (1) Data cleaning—eliminating redundant data,
addressing missing values, and handling outliers. (2) Feature selection—involves
analyzing and identifying effective features from the original dataset that exhibit high
correlation with the target variable and can better contribute to model training and
prediction. (3) Data transformation and encoding—values associated with different
features exhibit distinct scales and distributions and may also encompass textual and
categorical data types. As a result, it becomes necessary to perform transformations
and encodings on diverse types of data.

• Reinforcement learning environment. The environment provides foundational condi-
tions for applying reinforcement learning to intrusion detection, encompassing the
necessary action space, state space, reward feedback, state transition model, task
termination condition, etc. And the environment serves as the interface through which
the agent interacts with the external world, providing the necessary information for
the agent to perceive and act upon.

• Detection model. The detection model acts as an agent in the context of reinforce-
ment learning, serving as an intrusion detection classifier. It receives the state of the
environment, namely network traffic information, extracts network features, identi-
fies potential intrusion behavior, and subsequently classifies the traffic. Utilizing the
essence of reinforcement learning, the detection model engages in iterative experimen-
tation and exploration of the environment, refining itself to obtain the utmost optimal
strategy. In this paper, the detection model is based on our proposed adaptive sample
distribution dual-experience replay reinforcement learning algorithm, which performs
well with imbalanced samples.

3.2. Reinforcement Learning Environment for Intrusion Detection

To integrate reinforcement learning with intrusion detection, we developed a custom
intrusion detection environment suitable for reinforcement learning based on OpenAI
Gym [42]. Gym is an open-source toolkit widely used in the field of reinforcement learn-
ing. It provides a unified interface and standardized environment definition, allowing
researchers to experiment and compare their proposed reinforcement learning algorithms
on a standardized and unified platform. Specifically, the components included in our
developed intrusion detection reinforcement learning environment are as follows:

• State space. In intrusion detection tasks, we consider network traffic features such
as packet size, network protocols, and transmission information as the state, and all
states form the state space. Due to the existence of discrete features such as network
protocol types and port numbers, as well as continuous features such as packet size
and transmission rate, the overall state space will be a hybrid state space. Therefore,

Mathematics 2024, 12, 948 6 of 24

specific implementation requires the preprocessing of these features. The state space S
is represented as follows:

S = {(f1, f2, . . . , fn)| fi ∈ R}, (1)

Among these, n represents the quantity of network traffic features, with each fi
representing a distinct network traffic feature.

• Action space. The action space is responsible for labeling the incoming network
traffic data for intrusion, i.e., categorizing them as either normal or attack. Typically,
the output of a reinforcement learning algorithm is a probability distribution over
actions. Therefore, in the context of intrusion detection, the model generates a vector of
probabilities, with its shape matching the number of intrusion classes, corresponding to
each class. The agent selects an action based on the generated classification probability
vector. The action space A is represented as follows:

A = {a1, a2, . . . , am}, (2)

where m represents the number of intrusion categories (including the normal type),
and each ai represents an intrusion detection label.

• Reward function. The reward function represents the feedback on the intrusion
detection results, which considers whether the attack was successfully detected or
when there were false alarms. Therefore, if the agent’s classification action is consistent
with the actual results, a positive reward will be given; however, if the agent’s action
is inconsistent with the actual results, such as false positives or false negatives, a
negative reward will be given. Thus, the intrusion detection agent will optimize the
model according to the reward feedback, striving to obtain as much positive reward
as possible to maximize cumulative rewards. In reinforcement learning, a cumulative
reward is one of the metrics used to measure the effectiveness of learning. The reward
function R is represented as follows:

R =

{
rtcorrect , at = classt

rtincorrect , at ̸= classt
, (3)

where at is the classification action chosen by the agent at time step t, and classt is the
true intrusion type of the detection sample input at time step t.

• State transition. The concept of state transition elucidates the pattern of changes in
the environment following the actions taken by the agent. In the context of intrusion
detection tasks, state transition is represented as the result of the current time step
after classifying a certain traffic sample and then transitioning to the traffic sample of
the next time step. The state transition model is represented as follows:

st+1 =

{
next(st), p
st+1 ∼ P(S), 1 − p

, (4)

st represents the state at the current time step, while st+1 represents the new state
transitioned to after executing the state transition to the next time step. The transition
of states consists of two specific scenarios: one is the probability of transitioning to the
next sample at the current time with p, and the other is the probability of randomly
selecting a sample from the state set S with 1 − p.

• Termination condition. The termination condition defines the circumstances under
which the task should conclude. In our setting, the fixed time steps serve as the
criterion for task completion, wherein the agent ceases to interact with the environment
after handling a predetermined amount of traffic samples.

Mathematics 2024, 12, 948 7 of 24

Figure 1. Overall structure of the proposed method. Data preparation is responsible for preprocessing
network traffic data, while the reinforcement learning environment provides the necessary conditions
for conducting intrusion detection tasks. The detection model, also referred to as the agent, interacts
with the environment as a classifier and generates detection results.

In summary, the environment we developed presents a versatile interface for training
and evaluating the performance of agents. The environment also supports customized
reinforcement learning algorithms, customized reward function design, and configurable
parameter options to facilitate model training and optimization.

The interaction process between the agent and the environment is depicted in Figure 2.
During both the training and testing phases, the agent, acting as a reinforcement learning
model for intrusion detection, interacts with the environment. During each time step, the
agent receives the current state provided by the environment, which includes information
such as current network traffic features. Based on the learned policy, the agent selects an
action for classifying the current network traffic and applies it to the environment. The
environment provides the agent with immediate rewards based on the action taken by
the agent, while also returning updated information on network traffic status. The agent
updates its knowledge and strategies based on environmental feedback rewards to better
adapt to the environment. The process will continue over a duration of time, as the agent
engages in continuous interactions with the environment, ultimately refining its strategy
to attain more cumulative rewards. More cumulative rewards signify that the agent has
acquired valuable knowledge from the characteristics of network traffic and is capable of
accurately classifying network traffic information.

Mathematics 2024, 12, 948 8 of 24

Figure 2. Interaction process between agent and environment. The environment provides the state
space and action space, rewarding or penalizing the agent based on its actions. As the agent interacts
with the environment, it continuously learns and adjusts its strategy to maximize long-term rewards.

3.3. Detection Model Based on Adaptive Sample Distribution Dual-Experience Replay RL

The adaptive sample distribution dual-experience replay reinforcement learning al-
gorithm that we proposed is an improvement based on the Deep Q-Network (DQN) [43].
DQN is a reinforcement learning algorithm that combines the ideas of deep neural net-
works and Q-learning. It utilizes neural networks to approximate the Q-value function,
enabling learning and decision making in complex environments, and the Q-value function
is utilized to evaluate the value of taking a specific action in a given state. The realization
of DQN involves two crucial techniques, namely experience replay and target networks.
The DQN stores the agent’s past experiences, which are the quadruples of state, action,
reward, and next state obtained by the agent during each interaction with the environment,
in an experience replay buffer. It then randomly samples from these experiences during the
training process for learning. The purpose of doing so is to disrupt the temporal correlation
between samples and enhance the efficiency of sample utilization. The target network is
utilized to compute the target Q-value, contributing to the stability of the training pro-
cess. This is a network with a structure that is the same as the primary network but with
independent parameters, which are regularly updated based on the parameters in the
primary network.

However, in intrusion detection scenarios, the highly imbalanced nature of network
traffic data often results in models being biased towards the majority class samples. While
using resampling techniques may alleviate the problem of imbalanced sample distribution,
it could potentially result in the loss of crucial information. Therefore, we require an
approach that can address imbalanced sample distribution and accurately reflect the true
distribution of data samples.

We propose a reinforcement learning algorithm based on adaptive sample distribution
dual-experience replay, wherein a second experience replay buffer is added to DQN. The
experiences in the second buffer are distributed based on the weights of samples from each
class, determining their proportion in the experience buffer. As depicted in Algorithm 1, in
addition to initializing the primary experience replay buffer, we also initialized a secondary
experience buffer and allocated initial weights for each class, while setting up a switch
window for experience replay buffers. During the experience storage phase, we store the
experience quadruples in both experience buffers simultaneously. However, unlike the
primary buffer which collects all experiences, the secondary buffer decides whether to
add the current experience to the buffer based on the weight of each class. During the
experience replay phase, the algorithm will determine which experience buffer to use based
on the experience replay buffer switch window. After completing a batch of neural network
updates, the algorithm will examine the current batch of updates in comparison to the
previous one to determine whether the loss has increased or decreased. We refer to this as
the loss trend. We hypothesize that if the loss trend has increased, it indicates the presence
of potentially difficult-to-classify minority class samples. As a result, we proceed with
weight updates to adjust the distribution of samples in the secondary experience buffer.

Mathematics 2024, 12, 948 9 of 24

Algorithm 1: Dual-Experience Replay DQN

1 Initialize primary replay buffer D1 and second replay buffer D2 to capacity N, M,
respectively

2 Initialize sample distribution weights W =
{

w1, w2, . . . , wlen(labels)

}
and replay

buffer switch window H
3 Initialize action-value function Q with random weights θ

4 Initialize target action-value function Q̂ with random weights θ
′

= θ
5 for episode = 1 do
6 Initialize sequence s1 = x1 and preprocessed sequence φ1=φ(s1)
7 for t = 1, T do
8 With probability ε, select a random action at otherwise select

at = argmaxaQ(φ(st), a; θ)
9 Execute action at in the emulator and observe reward rt and image xt+1

10 Set st+1 = st , at , xt+1 and preprocess φt+1 = φ(st+1)
11 Store transition (φt, at, rt, φt+1) in D1
12 Store transition (φt, at, rt, φt+1) in D2 according to weights W
13 Sample random minibatch of transition (φj, aj, rj, φj+1) from D
14 Set

yi =

{
rj, if episode terminate at step j + 1
rj + γmaxa′ Q̂(φj+1, a

′
; θ−), otherwise

15 Perform a gradient descent step on (yj − Q(φj, aj; θ))2

with respect to the network parameters θ
16 Update sample distribution weights W if loss trend increases
17 Every C step reset to Q̂ = Q
18 end
19 end

The weights of each class in the secondary experience buffer are subject to an adaptive
and dynamically updating process, which we refer to as the adaptive sample distribution.
Its update is illustrated in Algorithm 2. We initiated by computing a classify metric that
combines the F1-Score of each class with the loss trend, aiming to assess the relative
significance of samples in each class and thereby capture the impact level of each class’s
samples on the overall classification performance. The calculation of the classify metrics
is shown as (5), where Lcurrent represents the loss from the current training batch, Llast
represents the loss from the previous training batch, and the difference between the two
indicates the loss trend. And fi represents the F1-Score of class i; ϵ is a factor ensuring that
the denominator is not zero, with a value of 1 × 10−7 .

mc
i =

(Lcurrent − Llast)
2

fi + ϵ
, (5)

In order to comprehensively consider the classification performance and the distri-
bution of samples in different classes, thus finely adjusting the weights of each class, we
propose an analysis metric. The formula for calculating the analysis metrics is shown as (6),
where si represents the number of samples belonging to the class i, S is the total number of
samples in each batch, and N represents the number of classes. This metric integrates the
classify metric from the previous step and the proportions of samples in each class among
all samples.

ma
i =

mc
i√

si
S + ϵ

, S =
N

∑
i=1

si, (6)

Mathematics 2024, 12, 948 10 of 24

Algorithm 2: Adaptive Sample Distribution

1 Initialize historical factor y and class number N
2 Get training loss Lcurrent and Llast
3 for i = 1, N do
4 Calculate F1-Score fi of class i
5 Calculate the classify metric mc

i of class i with F1-Score fi and loss trend
Lcurrent − Llast

6 Get total sample number S of current batch and count the sample number si of
class i

7 Calculate analysis metric ma
i of class i with metric mc

i and the sample
proportions of class i

8 Calculate historical weights sequences wh
i combing the historical factor y

9 Calculate weight wi of class i according to historical weights wh
i , analysis

metric ma
i , and historical factor y

10 end
11 Normalize the weights W = {w1, w2, . . . , wN} as W ′

12 Update weights W = W
′

For each class, we computed its classify and analysis metrics, incorporated them as
part of the weight’s calculation, and introduced historical factors that adjust the impact
of the current analysis metric and the previous weights on the new weight to balance the
weight between current metrics and historical weights. Finally, we normalized the weights
for all classes. The updated formula for the weight wi in class i is shown below:

wi = (1 − λ) · ma
i + λ · wh

i , (7)

wh
i = wk−1

i + λwk−2
i + · · ·+ λk−1w1

i (8)

N

∑
i=1

wi = 1, w ∈ W, W = {w1, w2, . . . , wN}, (9)

where λ denotes the historical factor, k denotes the number of weight iterations, and wh
i

represents the historical weights sequence of the class i. When considering historical
weights sequences, we weight the previous k − 1 historical weights by gradually decaying
them according to a weight factor and then compute the weights’ sum. This process
preserves the influence of historical weights on the new weight, but as the historical factor
decays, the impact of earlier historical weights on the new weight gradually diminishes.
This balancing mechanism allows the weight to retain the influence of historical information
while also focusing more on the most recent situation.

By incorporating adaptive sample distribution dual-experience replay, the overall
architecture of our algorithm is depicted in Figure 3. We input the network traffic fea-
tures as the state into the model and approximate the state-action value function (i.e.,
Q-function) through a deep neural network. During the training process, the agent en-
gages in interactions with the environment, classifying traffic samples and storing the
experience in two separate experience replay buffers. Subsequently, the agent selects a
buffer based on the switch window within the experience buffers and performs experience
sampling. The target Q-value is computed using a target network, which represents the
expected long-term cumulative reward for predicting a certain classification label given
the network traffic feature information. Then, the loss function is optimized to update
and upgrade the network parameters, continuously learning and updating the Q-value to
approximate the optimal classification action strategy. In addition, predictive results and
the training status of the neural network are used to generate corresponding classification
and analysis metrics. Combined with the historical weights sequence, the experience distri-
bution in the experience buffer is adaptively adjusted to achieve better intrusion detection
classification effects.

Mathematics 2024, 12, 948 11 of 24

Figure 3. Adaptive sample distribution dual-experience replay RL.

We assume there are n traffic data samples and m discrete actions (representing
different classification labels); s represents the feature information of the current network
traffic, a represents the classification label predicted by the agent, r is the feedback on the
correctness of the agent’s prediction, γ is the discount factor, and s

′
represents the feature

information of the next network traffic after the agent takes action a. The Q-value update
formula can be summarized as the following equation:

Q(s, a) = (1 − α) · Q(s, a) + α · (r + γ · maxa′ Q(s
′
, a

′
)), (10)

Among which s, s
′ ∈ S, a, a

′ ∈ A. Additionally, we also employ the ε-greedy strategy
to strike a balance between exploration and exploitation. When making decisions, the agent
will choose a random action with a probability of ε, while selecting the currently known
optimal action with a probability of 1 − ε. This approach serves to balance the likelihood of
exploring unknown actions and exploiting the benefits of known optimal actions, aiding
the agent in optimizing its strategy.

The proposed algorithm of adaptive sample distribution dual-experience replay rein-
forcement learning aims to address the issue of sample imbalance in intrusion detection.
By introducing a second experience buffer, the algorithm focuses on the fewer and more
challenging minority class samples, effectively preventing the minority class samples from
being overshadowed by the majority class samples. We also implemented an adaptive dy-
namic updating mechanism, enabling the flexible adjustment of the distribution of samples
in the experience buffer for each class. This allows the model to focus more on samples that
are deemed challenging in the current stage, thereby enhancing the learning effectiveness
for minority categories. Furthermore, the inclusion of a window for switching between
experience buffers allows the model to seamlessly transition between the two, preventing
an excessive focus on one experience buffer and the subsequent neglect of others. This
ensures a comprehensive learning approach across all classes. This innovative design
enhances the model’s versatility and robustness, enabling it to adapt to evolving intrusion
detection scenarios and more accurately reflect the true distribution of a sample.

4. Experiments and Results
4.1. Datasets

In order to validate the usability and effectiveness of the proposed method in intru-
sion detection research, we conducted experiments on three different intrusion detection
datasets: NSL-KDD, AWID, and CICIoT2023. We chose these datasets from three per-
spectives: (1) they all have a considerable amount of data and cover a large amount of
network information, thus providing a better simulation of real-world network scenarios,
which is crucial for evaluating intrusion detection models; (2) they cover a comprehensive
range of attack types, allowing for a full assessment and improvement of the accuracy and
robustness of intrusion detection models for various types of attacks; (3) the datasets that
have already been divided into training sets and test sets will be given priority considera-
tion, which allows researchers to train and optimize models on the same training set and

Mathematics 2024, 12, 948 12 of 24

evaluate the performance of models on the same testing set, thus making the comparison
results between different models more objective and fair.

The NSL-KDD dataset [44] is one of the commonly used datasets for researching net-
work intrusion detection. It is an improved version of the KDD’99 dataset [45], addressing
issues such as redundancy in the training set and repetition in the test set. The NSL-KDD
dataset consists of KDDTrain+, KDDTest+, KDDTrain+_20Percent, and KDDTest-21, with
KDDTrain+_20Percent and KDDTest-21 being subsets of KDDTrain+ and KDDTest+, re-
spectively. In this study, we use the KDDTrain+ and KDDTest+ datasets with 125973 and
22544 samples, respectively. Featuring 43 attributes, of which 39 are numeric and 3 are
categorical, the dataset also includes a label indicating “normal” or “attack”. The attack
class in the dataset is divided into four major types: DoS (Denial of Service), Probe, R2L
(Remote to Local), and U2R (User to Root). The sample distributions in the training and
test datasets are shown in Table 1 and Table 2, respectively.

Table 1. The distribution of samples in the KDDTrain+ dataset.

Attack Type Number of Samples Proportion

Normal 67,343 53.46%
DoS 45,927 36.46%

Probe 11,656 9.25%
R2L 995 0.79%
U2R 52 0.04%

Table 2. The distribution of samples in the KDDTest+ dataset.

Attack Type Number of Samples Proportion

Normal 9711 43.08%
DoS 7458 33.08%

Probe 2421 12.22%
R2L 2754 10.74%
U2R 200 0.89%

AWID is the intrusion detection dataset based on 802.11 wireless networks released
by the University of the Aegean [46], which consists of data collected from real-world
wireless network environments. The dataset is available in two versions: the full dataset
and a smaller dataset. It is worth noting that the smaller version is not a subset of the
larger dataset but is rather created from different time periods, devices, and environments.
Both versions are divided into training and testing sets. For this experiment, we utilize the
smaller version of the dataset, with AWID-CLS-R-Trn serving as the training set and AWID-
CLS-R-Tst as the testing set. Despite being the smaller version, the AWID dataset is still
substantial, with 1,795,575 and 575,643 records in the training and testing sets, respectively.
Each record in the dataset consists of 155 features, with attack labels categorized into three
types: flooding, impersonation, and injection. The sample distribution in the training and
testing sets can be found in Table 3 and Table 4, respectively.

Table 3. The distribution of samples in the AWID-CLS-R-Trn dataset.

Attack Type Number of Samples Proportion

Normal 1,633,190 90.96%
Injection 65,379 3.64%

Impersonation 48,522 2.70%
Flooding 48,484 2.70%

Mathematics 2024, 12, 948 13 of 24

Table 4. The distribution of samples in the AWID-CLS-R-Tst dataset.

Attack Type Number of Samples Proportion

Normal 530,785 92.21%
Injection 20,079 3.49%

Impersonation 16,682 2.90%
Flooding 8097 1.41%

The CICIoT2023 dataset [47] constitutes a compendium of Internet of Things (IoT)
attack data, spearheaded by the University of New Brunswick. The topology, compris-
ing 105 authentic IoT devices, delineates a record of 33 categories of attack data emanating
from IoT devices. These assaults are categorizable into seven distinct types, namely: DDoS,
Brute Force, Spoofing, DoS, Recon, Web-based, and Mirai. The dataset is exceedingly vast,
comprising a total of 46,686,579 instances across 46 features. The distribution of its samples
is delineated in Table 5.

Table 5. The distribution of samples in the CICIoT2023 dataset.

Attack Type Number of Samples Proportion

Normal 1,098,195 2.35%
DDoS 33,984,560 72.79%

Brute Force 13,064 0.03%
Spoofing 486,504 1.04%

DoS 8,090,738 17.33%
Recon 354,565 0.76%

Web-based 24,829 0.05%
Mirai 2,634,124 5.64%

4.2. Performance Metrics

The experiment in this paper is conducted using the mentioned two intrusion detection
datasets for a multiclassification task. These datasets consist of various classes of attacks,
and our objective is to effectively distinguish between normal and attack instances, while
also identifying the corresponding attack categories. In the context of multiclassification
tasks, TP (true positive) indicates the number of correctly classified positive samples by
the classifier, FP (false positive) represents the number of samples incorrectly predicted
as positive, TN (true negative) represents the number of samples correctly predicted as
negative, and FN (false negative) signifies the number of samples incorrectly predicted
as negative. Our experiment utilizes TP, FP, TN, and FN to compute the more intuitive
performance metrics of Accuracy, Precision, Recall, and F1-Score.

Accuracy is the most frequently employed classification metric, signifying the pro-
portion of correctly classified samples by the classifier to the total number of samples. Its
computation is determined by the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision is a measurement of the proportion of true positive samples among the
samples predicted as positive by the classifier. It is calculated as follows:

Precision =
TP

TP + FP
(12)

Recall represents the proportion of true positives that are correctly predicted as positive
by the classifier, and it is calculated as follows:

Recall =
TP

TP + FN
(13)

Mathematics 2024, 12, 948 14 of 24

F1-Score represents the harmonic mean of Precision and Recall, utilized for a com-
prehensive evaluation of the classifier’s performance. It indicates the classifier’s ability to
make good predictions for both positive and negative cases. The calculation for F1-Score is
as follows:

F1−Score = 2 × Precision × Recall
Precision + Recall

(14)

4.3. Implementation
4.3.1. Dataset Preparation

We preprocess the data based on three aspects: data cleaning, feature selection, and
data transformation and encoding.

• Data cleaning. Both datasets were cleaned by removing columns where all values
were either the same or empty. For the AWID dataset, we replaced the numerous
occurrences of “?” with NaN, rather than directly substituting with 0, as it signifies a
missing value rather than a specific numerical value. This approach avoids potential
interference with subsequent data analysis and processing.

• Feature selection. For the NSL-KDD dataset, we removed the “difficulty” feature,
which represents the classification difficulty of samples, as it does not provide any
valuable assistance to our model. The final set of features used is shown in Table 6.
For the AWID dataset, due to a large number of missing values, we calculated the
percentage of missing values for each column in the dataset and removed columns with
missing values exceeding 60%. Additionally, we eliminated features with constant
values. The final set of features used is shown in Table 7. For the CICIoT2023 dataset,
we curated pertinent features through the mutual information. The final set of features
used is shown in Table 8.

• Data transformation and encoding. Both datasets were normalized or standardized
numerical features and encoded categorical features to transform the data into input
acceptable for the model.

In addition, the scale of the dataset impacts the training time and computational resources
required for the model. For the AWID dataset, we randomly sampled 10% of the normal
class samples from the training set and combined them with the other three types of attacks
to form a new training set. Similarly, due to the immense size of the CICIoT2023 dataset
and constraints related to computational resources and time, we opted for its reduced
version, consisting of 933,730 samples. The reduced dataset still adheres to the distribution
of the original data and is divided into training and testing sets in an 80%:20% ratio.

Table 6. NSL-KDD Features.

Feature Type # Feature Type

0 duration int64 21 is_guest_login int64
1 protocol_type object 22 count int64
2 service object 23 srv_count int64
3 flag object 24 serror_rate float64
4 src_bytes int64 25 srv_serror_rate float64
5 dst_bytes int64 26 rerror_rate float64
6 land_f int64 27 srv_rerror_rate float64
7 wrong_fragment int64 28 same_srv_rate float64
8 urgent int64 29 diff_srv_rate float64
9 hot int64 30 srv_diff_host_rate float64

10 num_failed_logins int64 31 dst_host_count int64
11 logged_in int64 32 dst_host_srv_count int64
12 num_compromised int64 33 dst_host_same_srv_rate float64
13 root_shell int64 34 dst_host_diff_srv_rate float64

Mathematics 2024, 12, 948 15 of 24

Table 6. Cont.

Feature Type # Feature Type

14 su_attempted int64 35 dst_host_same_src_port_rate float64
15 num_root int64 36 dst_host_srv_diff_host_rate float64
16 num_file_creations int64 37 dst_host_serror_rate float64
17 num_shells int64 38 dst_host_srv_serror_rate float64
18 num_access_files int64 39 dst_host_rerror_rate float64
19 num_outbound_cmds int64 40 dst_host_srv_rerror_rate float64
20 is_host_login int64 41 labels object

Table 7. AWID Features.

Feature Type

0 frame.time_epoch float64
1 frame.time_delta object
2 frame.time_relative object
3 frame.len object
4 radiotap.mactime int64
5 radiotap.datarate int64
6 radiotap.channel.freq int64
7 radiotap.channel.type.cck float64
8 radiotap.channel.type.ofdm float64
9 radiotap.dbm_antsignal int64

10 wlan.fc.type_subtype int64
11 wlan.fc.type float64
12 wlan.fc.subtype float64
13 wlan.fc.ds int64
14 wlan.fc.frag int64
15 wlan.fc.retry float64
16 wlan.fc.pwrmgt float64
17 wlan.fc.moredata float64
18 wlan.fc.protected float64
19 wlan.qos.priority int64
20 wlan.qos.bit4 float64
21 class float64

Table 8. CICIoT2023 Features.

Feature Type

0 IAT float64
1 Tot size float64
2 Magnitue float64
3 Max float64
4 AVG float64
5 Tot sum float64
6 Min float64
7 Header_Length float64
8 Number float64
9 Weight float64

10 flow_duration float64
11 Duration float64
12 Std float64
13 Radius float64
14 Covariance float64

Mathematics 2024, 12, 948 16 of 24

Table 8. Cont.

Feature Type

15 rst_count float64
16 Variance float64
17 urg_count float64
18 Srate float64
19 Rate float64
20 TCP float64
21 label int64

4.3.2. RL Setting

Due to the inconsistent features and attack categories present in different datasets, it is
necessary to configure different reinforcement learning parameters for each dataset. These
parameters encompass both the reinforcement learning environment and the RL agent.
The reinforcement learning environment parameters include episode number, max step,
and reward. In this study, the specific reinforcement learning environment parameters
utilized are displayed in Table 9. The maximum number of steps per episode during
the training phase is set to 100. This signifies that within each episode, the agent will
handle 100 samples from the dataset and classify them accordingly. In order to evaluate
the capability of the designed reinforcement learning agent to effectively handle intrusion
detection tasks, particularly in the case of limited training data, we set the episode number
during training to 500. This means that the agent will receive a total of 50,000 samples for
training throughout the entire training phase. As for testing, multiple iterations of episodes
are not required. Therefore, the episode number for testing is set to 1, which means that it
only needs to traverse through the testing dataset once, with the maximum number of steps
dependent on the size of the testing dataset. Regarding the reward computation, since we
are performing a classification task for intrusion detection, there is no delayed reward. We
set the reward calculation to ±1, where a correct prediction is rewarded with +1 and an
incorrect prediction is rewarded with −1. Although this may seem straightforward, its
effectiveness is proven in the experiments.

Table 9. Reinforcement Learning Environment Parameters.

Parameter Values

max step 100 steps (training phase)
length of test dataset (testing phase)

episode number 500 (training phase)
1 (testing phase)

reward +1 (correct predict)
−1 (incorrect predict)

Our model is an improvement of the DQN; thus, the parameters of the RL agent
include the discount factor gamma, the exploration rate epsilon of the epsilon-greedy
policy, the minimum value of the exploration rate epsilon min, the decay factor of the
exploration rate epsilon decay, the batch size used for training the network, and the
size of the experience replay buffer (including the second one proposed in this paper).
Additionally, the network architecture varies for different datasets, including the number of
hidden layers, the number of neurons in each hidden layer, the optimizer used for training
the network, and its learning rate. The specific values of these RL agent parameters are
shown in Table 10.

Mathematics 2024, 12, 948 17 of 24

Table 10. RL Agent Parameters.

Parameter Values

gamma 0.001
epsilon 0.8

epsilon min 0.01
epsilon decay 0.99

batch size 256
primary replay buffer size 1000

secondary replay buffer size 500
hidden layers 2

hidden units 2 × 100 (NSL-KDD)
2 × 50 (AWID and CICIoT2023)

optimizer Adam (NSL-KDD and AWID)
Adagrad (CICIoT2023)

learning rate 0.001 (NSL-KDD and AWID)
0.1 (CICIoT2023)

4.4. Results

Based on the data preprocessing and environment setup, we conducted experiments
on three datasets, NSL-KDD, AWID, and CICIoT2023, to evaluate the proposed model. Fur-
thermore, the experimental results were compared with other models, including Support
Vector Machine (SVM), random forest, AdaBoost, and various other machine learning (ML)
models, as well as the Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and
other reinforcement learning (RL) models.

4.4.1. NSL-KDD Result

The cumulative rewards for each episode during training using our proposed models
on the KDDTrain+ dataset are shown in Figure 4a. It is evident that with each iteration,
our reinforcement learning agent effectively learns the attack patterns present in the data
samples. From an initial accumulation of negative rewards to a trajectory towards 100
(where positive rewards are obtained almost at every step), the agent gradually transitions
from selecting actions through random exploration to selecting optimal actions (i.e., correct
classification) based on the observation (i.e., sample’s features) it receives. Furthermore,
from the graph, we can also observe the cumulative reward curves of two other reinforce-
ment learning models, DQN and DDQN. Although they also learned some attack patterns
from the samples, it is evident that their final cumulative rewards did not reach the level of
our proposed model.

(a) (b)
Figure 4. (a) Cumulative rewards per training phase (NSL-KDD); (b) confusion matrix of test set
results (NSL-KDD).

Figure 4b showcases the confusion matrix of the proposed approach on the KDDTest+
dataset, while Table 11 displays the classification precision of different models in predicting
each class on the same dataset. Given that there are 38 types of attacks in the KDDTest+
dataset, compared with the 23 types in the KDDTrain+ dataset, it presents a significant

Mathematics 2024, 12, 948 18 of 24

challenge for intrusion detection models. There are 21 attack types shared between the
training and testing sets, with 2 unique attack types present in the training set and a
staggering 17 attack types in the testing set that were not encountered during training.
Consequently, accurately assigning an unseen attack pattern to a specific class proves to
be a formidable task for classification models. However, our model tackles this challenge
by leveraging an additional experience replay buffer, enabling extra learning on attack
class with limited samples and higher difficulty. As a result, unlike other approaches
that heavily lean towards the majority class, our model demonstrates a more balanced
classification performance.

Table 11. Classification precision of different models on each class of KDDTest+ dataset.

Model Normal DoS Probe R2L U2R

SVM 0.9282 0.7485 0.6171 0.000 0.0000
Random Forest 0.6300 0.9510 0.7360 0.7320 0.0000

KNN 0.9278 0.8225 0.5940 0.0356 0.0350
DQN 0.7860 0.9012 0.5011 0.8826 0.0777

DDQN 0.7838 0.9278 0.6948 0.7792 0.0391
AE-RL [19] 0.8603 0.8183 0.4976 0.7930 0.0914

AEDNN [48] 0.9338 0.8121 0.7138 0.2763 0.1584
Proposed Model 0.8278 0.8937 0.7396 0.8016 0.3744

The overall performance and classification metrics of the proposed model and other
detection models on the KDDTest+ dataset are shown in Figure 5. It can be observed
that our model achieves the best performance in almost all metrics. Even in an extremely
imbalanced dataset, our model can still achieve a classification accuracy of 82.03%.

Figure 5. Comparison of detection results with other models (NSL-KDD).

4.4.2. AWID Result

The plot in Figure 6a depicts the cumulative reward curve of the proposed model and
two reinforcement learning models, DQN and DDQN, on the training set AWID-CLS-R-Trn.
During the training phase, the differences among these three reinforcement learning models
are relatively small, and they can effectively learn different attack types. However, due to
the significant imbalance between normal and attack samples in the AWID dataset, with
a ratio as high as 10:1, the cumulative reward curves of the three models appear to be
good, mainly because the input majority consists of normal samples. Table 12 compares
the precision of different models on different types of samples in the AWID-CLS-R-Tst
test set. As mentioned above, all models perform exceptionally well in classifying normal
samples. However, there is a significant difference between the models’ performance
on attack samples, especially for impersonation and flooding attacks. Due to their low
proportion in the dataset and the complexity of their attack patterns, most models struggle
to classify these samples accurately. Combining this with the confusion matrix depicted

Mathematics 2024, 12, 948 19 of 24

in Figure 6b, it is evident that our proposed model demonstrates better performance in
detecting minority classes.

(a) (b)
Figure 6. (a) Cumulative rewards per training phase (AWID); (b) confusion matrix of test set results (AWID).

Table 12. Classification precision of different models on each class of AWID-CLS-R-Tst dataset.

Model Normal Injection Impersonation Flooding

Naive Bayes 0.9825 0.7982 0.3950 0.0260
AdaBoost 0.9950 0.9875 0.3640 0.1700

QDA 1.000 0.9980 0.5400 0.1200
DQN 0.9499 0.9042 0.0365 0.0574

DDQN 0.9823 0.2776 0.8000 0.2642
Proposed Model 0.9912 0.9267 0.5402 0.3463

Figure 7 presents the overall performance of the proposed model compared with
different models such as Policy Gradient [20], Actor Critic [20], and IG-CH [49], etc., on
the AWID-CLS-R-Tst test set. Our proposed model demonstrates balanced performance
across all metrics while outperforming other models in terms of precision and F1-Score.
This indicates that our model is capable of accurately identifying intrusions in intrusion
detection, which is crucial as mislabeling normal activities as intrusions can lead to un-
necessary alarms and interference. Additionally, our model maintains high recall while
also achieving high precision, implying that it can capture more true intrusion events and
minimize false negatives. As a result, our approach effectively balances both precision and
recall.

Figure 7. Comparison of detection results with other models (AWID).

4.4.3. CICIoT2023 Result

Figure 8a and Figure 8b, respectively, show the comparison of cumulative rewards for
our proposed model and two other reinforcement learning models, as well as the confusion

Mathematics 2024, 12, 948 20 of 24

matrices evaluated on the test set. Unlike the two datasets mentioned earlier, none of the
three reinforcement learning models achieved a cumulative reward of 100. This is due to
the vast size of the CICIoT2023 dataset and the significant disparity between the majority
and minority classes. After we used a downscaled version of the dataset, the minority
samples available for learning became even fewer. Despite not perfectly learning all attacks,
our proposed method can still achieve a cumulative reward of around 75, which is slightly
higher than both DQN and DDQN.

(a) (b)
Figure 8. (a) Cumulative rewards per training phase (CICIoT2023); (b) confusion matrix of test set
results (CICIoT2023).

The precision of different models for classifying different classes of attacks on the
test set is shown in Table 13. We can observe that for categories such as DDoS and Mirai,
most models have good precision. However, the classification performance for Web-based
and Brute Force attacks is noticeably lower. As previously mentioned, there are very few
minority class samples available for learning. However, even in such extreme circumstances,
our proposed model maintains a more balanced precision for most classes compared with
other models. For Web-based attacks, our method did not effectively detect them. We
speculate that this is due to the reduced version of the training set having too few samples
in this class, causing the secondary experience buffer to be unable to collect enough samples
for the agent. Additionally, a comparison of the overall performance of different models
shown in Figure 9 reveals that our proposed method still maintains the best performance
on different metrics. Our method, while maintaining leading accuracy, also maintains
better F1-Score. This suggests that our model is more adept at dealing with the imbalance
between different attack classes, while also maintaining higher accuracy.

Table 13. Classification precision of different models on each class of CICIoT2023 dataset.

Model Normal DDoS DoS Mirai Recon Spoofing Web Brute Force

DT 0.6222 0.9072 0.2679 0.9831 0.3045 0.3939 0.0729 0.0800
LR 0.6310 0.8052 0.4755 0.9848 0.4167 0.5312 0.0000 0.3705

GBM 0.6313 0.8203 0.9575 1.0000 0.3616 0.2032 0.0659 0.2308
DQN 0.3609 0.8593 0.6892 0.9502 0.3733 0.3353 0.0116 0.0000

DDQN 0.6172 0.8525 0.7356 0.8973 0.0885 0.1613 0.0079 0.0033
Proposed Model 0.6945 0.8321 0.8385 0.9985 0.7376 0.6921 0.0000 0.7500

Mathematics 2024, 12, 948 21 of 24

Figure 9. Comparison of detection results with other models (CICIoT2023).

4.4.4. Result Summary

We conducted experiments on the intrusion detection datasets, NSL-KDD, AWID, and
CICIoT2023, widely used in the field of network security and covering modern intrusion
attempts. Both datasets suffer from the issue of imbalance sample distribution; as in real-
world networks, the number of normal traffic samples far exceeds that of intrusion samples.
Therefore, our experimental goal is not only to pursue higher overall detection accuracy but
also to emphasize the detection performance for each class, particularly for the minority
classes. We employed a series of evaluation metrics, including accuracy, precision, recall,
and F1-Score, to comprehensively assess the performance of our model when confronted
with imbalanced data distribution in intrusion detection tasks. Through experimentation
and analysis, our model demonstrates excellent performance on different datasets and
effectively handles imbalanced data samples, particularly excelling in detecting attacks
from minority classes. But due to limited computational resources and time, our experiment
had to use a downscaled version of the dataset when dealing with large-scale datasets.
However, as the scale of the dataset became smaller, the minority samples available for
learning decreased, leading to less than ideal detection results for some minority class
attacks. So, the proposed method still has room for improvement. In the next step, we
will improve the current method based on the aspects of the design of the reward function,
the improved reinforcement learning algorithm, and the design of classify indicators and
analysis indicators that can better reflect the minority class samples.

5. Conclusions

The present study proposes a novel intrusion detection method based on adaptive
sample distribution dual-experience replay reinforcement learning, aiming to address the
issue of imbalanced distribution in intrusion detection data samples. By introducing a sec-
ondary experience buffer in DQN specifically designed to store less, yet more challenging,
minority class samples, the model effectively prevents the minority class samples from
being overwhelmed by the majority class samples. Additionally, an adaptive dynamic
update mechanism is employed, allowing for the flexible adjustment of the distribution of
samples in the experience buffer, thus enabling the model to focus on the samples that are
deemed difficult in the current stage, resulting in improved learning performance for the
minority class. This innovative design enhances the generality and robustness of the model,
allowing it to adapt to varying intrusion detection scenarios and better reflect the true
distribution of the data. Experimental evaluation is conducted on three highly imbalanced

Mathematics 2024, 12, 948 22 of 24

intrusion detection datasets, and the proposed model achieves an accuracy of 82.03% on
NSL-KDD, 93.88% on AWID, and 84.39% on CICIoT2023, outperforming other models
in terms of precision, especially for the minority class. Therefore, the method proposed
in this paper serves as an effective approach to address the significant data distribution
disparities in intrusion detection tasks. However, there is still room for improvement in the
overall accuracy of our model, as well as its detection of minority class intrusion behaviors.
Moving forward, we will continue enhancing the algorithm and RL environment to achieve
better intrusion detection performance.

In this work, we provide feedback to the agent based on the true labels in the dataset
and the agent’s prediction; these labels are typically manually marked by network engineers
or researchers. As a foundational work, this paper validates the feasibility and effectiveness
of our method based on a labeled dataset, offers a promising intrusion detection paradigm,
and lays the foundation for constructing an agent with good initial optimization space.

Our subsequent work will not rely on labeled datasets but will focus on self-collected
traffic or log data, which are closer to actual application scenarios. Under these conditions,
the feedback received by the agent originates from the positive and negative impacts of
its behavior on the network environment. The calculation of these impacts depends on a
predefined rule engine and pretrained machine learning model, generating feedback in an
automated way. Ultimately, combined with the pretraining samples and initialized crucial
parameters generated from the work in this paper, we will achieve adaptive learning and
adjustment of the optimal detection strategy in a dynamic environment using reinforce-
ment learning methods. Meanwhile, we respect the current state of the cyber security
field. As one of the key areas, the combination of AI and manual methods is currently
feasible and more easily accepted by the industry, but gradual development towards more
comprehensive automation requires more effort.

Author Contributions: Methodology, H.T. and L.W.; Validation, H.T., D.Z. and J.D.; Formal analysis,
H.T., D.Z. and J.D.; Investigation, H.T., D.Z. and J.D.; Resources, L.W.; Writing—original draft,
H.T.; Writing—review & editing, H.T. and L.W.; Visualization, H.T.; Supervision, L.W.; Project
administration, L.W.; Funding acquisition, L.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by Guangdong Basic and Applied Basic Research Foundation
(2023A1515011698), Guangdong High-level University Foundation Program (SL2022A03J00918),
Major Key Project of PCL (PCL2022A03), and National Natural Science Foundation of China
(Grant No.62372137).

Data Availability Statement: The data will be made available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart

homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [CrossRef]
2. Bhatti, G.; Mohan, H.; Singh, R.R. Towards the future of smart electric vehicles: Digital twin technology. Renew. Sustain.

Energy Rev. 2021, 141, 110801. [CrossRef]
3. Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future trends and current state of smart city concepts: A survey. IEEE Access

2020, 8, 86448–86467. [CrossRef]
4. Kaur, J.; Ramkumar, K. The recent trends in cyber security: A review. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5766–5781.

[CrossRef]
5. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of

machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]
6. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 20. [CrossRef]
7. Abdelkhalek, A.; Mashaly, M. Addressing the class imbalance problem in network intrusion detection systems using data

resampling and deep learning. J. Supercomput. 2023, 79, 10611–10644. [CrossRef]

http://doi.org/10.1016/j.rser.2021.110755
http://dx.doi.org/10.1016/j.rser.2021.110801
http://dx.doi.org/10.1109/ACCESS.2020.2992441
http://dx.doi.org/10.1016/j.jksuci.2021.01.018
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1007/s11227-023-0507t3-x

Mathematics 2024, 12, 948 23 of 24

8. Gonzalez-Cuautle, D.; Hernandez-Suarez, A.; Sanchez-Perez, G.; Toscano-Medina, L.K.; Portillo-Portillo, J.; Olivares-Mercado, J.;
Perez-Meana, H.M.; Sandoval-Orozco, A.L. Synthetic minority oversampling technique for optimizing classification tasks in
botnet and intrusion-detection-system datasets. Appl. Sci. 2020, 10, 794. [CrossRef]

9. Tama, B.A.; Lim, S. Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark
evaluation. Comput. Sci. Rev. 2021, 39, 100357. [CrossRef]

10. Fitni, Q.R.S.; Ramli, K. Implementation of ensemble learning and feature selection for performance improvements in anomaly-
based intrusion detection systems. In Proceedings of the 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence,
and Communications Technology (IAICT), Bali, Indonesia, 7–8 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 118–124.

11. Lee, J.; Park, K. GAN-based imbalanced data intrusion detection system. Pers. Ubiquitous Comput. 2021, 25, 121–128. [CrossRef]
12. Andresini, G.; Appice, A.; De Rose, L.; Malerba, D. GAN augmentation to deal with imbalance in imaging-based intrusion

detection. Future Gener. Comput. Syst. 2021, 123, 108–127. [CrossRef]
13. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.
15. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
16. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4909–4926. [CrossRef]
17. Wu, T.; Zhou, P.; Liu, K.; Yuan, Y.; Wang, X.; Huang, H.; Wu, D.O. Multi-agent deep reinforcement learning for urban traffic light

control in vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 8243–8256. [CrossRef]
18. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-robot path planning method using reinforcement learning. Appl. Sci. 2019, 9, 3057.

[CrossRef]
19. Caminero, G.; Lopez-Martin, M.; Carro, B. Adversarial environment reinforcement learning algorithm for intrusion detection.

Comput. Netw. 2019, 159, 96–109. [CrossRef]
20. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for

supervised problems. Expert Syst. Appl. 2020, 141, 112963. [CrossRef]
21. Idrissi, M.J.; Alami, H.; El Mahdaouy, A.; El Mekki, A.; Oualil, S.; Yartaoui, Z.; Berrada, I. Fed-anids: Federated learning for

anomaly-based network intrusion detection systems. Expert Syst. Appl. 2023, 234, 121000. [CrossRef]
22. Asif, M.; Abbas, S.; Khan, M.; Fatima, A.; Khan, M.A.; Lee, S.W. MapReduce based intelligent model for intrusion detection using

machine learning technique. J. King Saud-Univ.-Comput. Inf. Sci. 2022, 34, 9723–9731. [CrossRef]
23. Zhang, Z.; Wang, L.; Chen, G.; Gu, Z.; Tian, Z.; Du, X.; Guizani, M. STG2P: A two-stage pipeline model for intrusion detection

based on improved LightGBM and K-means. Simul. Model. Pract. Theory 2022, 120, 102614. [CrossRef]
24. Bagui, S.; Li, K. Resampling imbalanced data for network intrusion detection datasets. J. Big Data 2021, 8, 6. [CrossRef]
25. Cao, B.; Li, C.; Song, Y.; Qin, Y.; Chen, C. Network intrusion detection model based on CNN and GRU. Appl. Sci. 2022, 12, 4184.

[CrossRef]
26. Shafieian, S.; Zulkernine, M. Multi-layer stacking ensemble learners for low footprint network intrusion detection. Complex

Intell. Syst. 2023, 9, 3787–3799. [CrossRef]
27. Thakkar, A.; Lohiya, R. Attack classification of imbalanced intrusion data for IoT network using ensemble learning-based deep

neural network. IEEE Internet Things J. 2023, 10, 11888–11895. [CrossRef]
28. Ren, H.; Tang, Y.; Dong, W.; Ren, S.; Jiang, L. DUEN: Dynamic ensemble handling class imbalance in network intrusion detection.

Expert Syst. Appl. 2023, 229, 120420. [CrossRef]
29. Chui, K.T.; Gupta, B.B.; Chaurasia, P.; Arya, V.; Almomani, A.; Alhalabi, W. Three-stage data generation algorithm for multiclass

network intrusion detection with highly imbalanced dataset. Int. J. Intell. Netw. 2023, 4, 202–210. [CrossRef]
30. Dina, A.S.; Siddique, A.; Manivannan, D. Effect of balancing data using synthetic data on the performance of machine learning

classifiers for intrusion detection in computer networks. IEEE Access 2022, 10, 96731–96747. [CrossRef]
31. Gaggero, G.B.; Caviglia, R.; Armellin, A.; Rossi, M.; Girdinio, P.; Marchese, M. Detecting cyberattacks on electrical storage systems

through neural network based anomaly detection algorithm. Sensors 2022, 22, 3933. [CrossRef]
32. Al-Abassi, A.; Sakhnini, J.; Karimipour, H. Unsupervised stacked autoencoders for anomaly detection on smart cyber-physical

grids. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada,
11–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3123–3129.

33. Fausto, A.; Gaggero, G.B.; Patrone, F.; Girdinio, P.; Marchese, M. Toward the integration of cyber and physical security monitoring
systems for critical infrastructures. Sensors 2021, 21, 6970. [CrossRef] [PubMed]

34. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Deep Q-learning based reinforcement learning approach for network intrusion
detection. Computers 2022, 11, 41. [CrossRef]

35. Benaddi, H.; Ibrahimi, K.; Benslimane, A.; Jouhari, M.; Qadir, J. Robust enhancement of intrusion detection systems using deep
reinforcement learning and stochastic game. IEEE Trans. Veh. Technol. 2022, 71, 11089–11102. [CrossRef]

36. Mohamed, S.; Ejbali, R. Deep SARSA-based reinforcement learning approach for anomaly network intrusion detection system.
Int. J. Inf. Secur. 2023, 22, 235–247. [CrossRef]

http://dx.doi.org/10.3390/app10030794
http://dx.doi.org/10.1016/j.cosrev.2020.100357
http://dx.doi.org/10.1007/s00779-019-01332-y
http://dx.doi.org/10.1016/j.future.2021.04.017
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TITS.2021.3054625
http://dx.doi.org/10.1109/TVT.2020.2997896
http://dx.doi.org/10.3390/app9153057
http://dx.doi.org/10.1016/j.comnet.2019.05.013
http://dx.doi.org/10.1016/j.eswa.2019.112963
http://dx.doi.org/10.1016/j.eswa.2023.121000
http://dx.doi.org/10.1016/j.jksuci.2021.12.008
http://dx.doi.org/10.1016/j.simpat.2022.102614
http://dx.doi.org/10.1186/s40537-020-00390-x
http://dx.doi.org/10.3390/app12094184
http://dx.doi.org/10.1007/s40747-022-00809-3
http://dx.doi.org/10.1109/JIOT.2023.3244810
http://dx.doi.org/10.1016/j.eswa.2023.120420
http://dx.doi.org/10.1016/j.ijin.2023.08.001
http://dx.doi.org/10.1109/ACCESS.2022.3205337
http://dx.doi.org/10.3390/s22103933
http://dx.doi.org/10.3390/s21216970
http://www.ncbi.nlm.nih.gov/pubmed/34770277
http://dx.doi.org/10.3390/computers11030041
http://dx.doi.org/10.1109/TVT.2022.3186834
http://dx.doi.org/10.1007/s10207-022-00634-2

Mathematics 2024, 12, 948 24 of 24

37. Yang, B.; Arshad, M.H.; Zhao, Q. Packet-Level and Flow-Level Network Intrusion Detection Based on Reinforcement Learning
and Adversarial Training. Algorithms 2022, 15, 453. [CrossRef]

38. Dake, D.K.; Gadze, J.D.; Klogo, G.S.; Nunoo-Mensah, H. Multi-agent reinforcement learning framework in sdn-iot for transient
load detection and prevention. Technologies 2021, 9, 44. [CrossRef]

39. Sethi, K.; Sai Rupesh, E.; Kumar, R.; Bera, P.; Venu Madhav, Y. A context-aware robust intrusion detection system: A reinforcement
learning-based approach. Int. J. Inf. Secur. 2020, 19, 657–678. [CrossRef]

40. García, S.; Luengo, J.; Herrera, F. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining.
Knowl.-Based Syst. 2016, 98, 1–29. [CrossRef]

41. Ramírez-Gallego, S.; Krawczyk, B.; García, S.; Woźniak, M.; Herrera, F. A survey on data preprocessing for data stream mining:
Current status and future directions. Neurocomputing 2017, 239, 39–57. [CrossRef]

42. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016, arXiv:1606.01540.
43. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602.
44. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 October 2009;
IEEE: Piscataway, NJ, USA, 2009; pp. 1–6.

45. KDD Cup 1999 Data. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 17 October
2023).

46. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion detection in 802.11 networks: Empirical evaluation of threats and
a public dataset. IEEE Commun. Surv. Tutor. 2015, 18, 184–208. [CrossRef]

47. Neto, E.C.P.; Dadkhah, S.; Ferreira, R.; Zohourian, A.; Lu, R.; Ghorbani, A.A. CICIoT2023: A real-time dataset and benchmark for
large-scale attacks in IoT environment. Sensors 2023, 23, 5941. [CrossRef] [PubMed]

48. Yang, H.; Zeng, R.; Xu, G.; Zhang, L. A network security situation assessment method based on adversarial deep learning. Appl.
Soft Comput. 2021, 102, 107096. [CrossRef]

49. Thanthrige, U.S.K.P.M.; Samarabandu, J.; Wang, X. Machine learning techniques for intrusion detection on public dataset. In
Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada,
15–18 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/a15120453
http://dx.doi.org/10.3390/technologies9030044
http://dx.doi.org/10.1007/s10207-019-00482-7
http://dx.doi.org/10.1016/j.knosys.2015.12.006
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.3390/s23135941
http://www.ncbi.nlm.nih.gov/pubmed/37447792
http://dx.doi.org/10.1016/j.asoc.2021.107096

	Introduction
	Related Works
	Proposed Method
	Overall Structure
	Reinforcement Learning Environment for Intrusion Detection
	Detection Model Based on Adaptive Sample Distribution Dual-Experience Replay RL

	Experiments and Results
	Datasets
	Performance Metrics
	Implementation
	Dataset Preparation
	RL Setting

	Results
	NSL-KDD Result
	AWID Result
	CICIoT2023 Result
	Result Summary

	Conclusions
	References

