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Abstract: In this paper, we investigate the consensus control problem of Euler–Lagrange systems
which can be used to describe the motion of various mechanical systems such as manipulators
and quadcopters. We focus on consensus control strategies, which are important for achieving
coordinated behavior in multi-agent systems. The paper considers the key challenges posed by
random communication delays and packet losses that are increasingly common in networked control
systems. In addition, it is assumed that each system receives information from neighboring agents
intermittently. Addressing these challenges is critical to ensure the reliability and efficiency of such
systems in real-world applications. Communication delay is time-varying and can be very large,
but should be smaller than some bounded constant. To decrease the frequency of control input
updates, we implement an event-triggered scheme that regulates the controller’s updates for each
agent. Specifically, it does not update control inputs at traditional fixed intervals, but responds to
predefined conditions and introduces a dynamic consensus item to handle information irregularities
caused by communication delays and intermittent information exchange. The consensus can be
achieved if the communication graph of agents contains a spanning tree with the desired velocity
as the root node. That is, all Euler–Lagrange systems need to obtain the desired velocity, directly or
indirectly (via neighbors), to reach consensus. We establish that the Zeno behavior can be avoided,
ensuring a positive minimum duration between successive event-triggered instances. Finally, we
provide simulation results to show the performance of our proposed algorithm.

Keywords: event-triggered consensus control; communication delay; directed graph; Zeno behavior

MSC: 93D50

1. Introduction

Over the past decade, the rapid development of multi-agent systems has been evident.
Among various advancements, Euler–Lagrange dynamics have emerged as particularly
notable due to their potential applications. The consensus problem in a multi-agent system
refers to whether the state of the agents can reach a consensus state with or without a leader.
This process involves an information exchange among agents, modeled by a communication
graph that describes the connectivity of the agents. To address the issue of parametric
uncertainty and a dynamic leader, a fixed-time robust controller was introduced in [1]
through the application of the backstepping control technique to guarantee the consensus of
the Lagrange systems. Furthermore, an adaptive distributed output observer was designed
to circumvent the need for the leader’s full state in [2]. A novel fault-tolerant formation
controller for a multi-agent system was developed in [3] by considering the actuator failures.
For a class of uncertain strict-feedback nonlinear systems, an adaptive leaderless consensus
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solution was given to ensure the system’s performance in [4]. The key distinction between
leader–follower and leaderless systems lies in the presence of a leader in the former, who
informs the followers of the control target, whereas the latter relies on a distributed control
algorithm to guide all agents towards a common state [5].

It should be noted that the methods mentioned above do not account for the com-
munication problems among agents. These approaches require instantaneous message
transmission without delay, enabling agents to immediately receive messages from their
neighbors. However, in real-world scenarios, challenges such as sensor malfunctions,
network congestion, and unexpected environmental changes are common. To address
this issue, recent research has concentrated on communication delays in the information
exchange process. A robust sliding mode control consensus algorithm was proposed in [6]
that can handle the uncertain system nonlinearities in the presence of communication
delays. Assuming the communication graph among agents is directed, the time delay and
intermittent sampling were used to realize leader–follower consensus by using sufficient
past position information in [7]. Additionally, leveraging the theory of small gains, a novel
synchronization mechanism that can achieve position synchronization despite the presence
of communication delays and intermittent communications was developed in [8].

While the above consensus algorithm accounts for communication delays between
agents, the control input still operates within a time-triggered control framework. This
framework necessitates the continuous updating of the controller, regardless of whether
each agent needs an update to maintain the expected performance. Consequently, this may
result in increased resource consumption and communication burden, posing challenges
in light of practical energy and bandwidth limitations. Hence, it is essential to design an
event-triggered strategy to avoid continuous control input updates [9,10]. In [9], fixed
threshold, relative threshold, and switching threshold strategies were applied to design
event-triggered controllers. As mentioned in [11], the event-triggered strategy results in
better performance in balancing resource utilization and control effects. For leaderless
systems, a dynamic event-triggered control strategy was proposed to solve the consensus
problem of Euler–Lagrange systems in [12]. An optimal algorithm in the sense of minimum
global loss function was designed based on the event-triggered strategy in [13] to minimize
the communication burden further. For a general heterogeneous nonlinear multi-agent
system, the event-triggered control algorithm was proposed within the framework of the
prescribed performance control in [14]. To address unknown nonlinear dynamics and avoid
the need for prior global communication information, a distributed event-triggered method
based on the fuzzy approximation technique was provided in [15].

In this work, we design a new consensus algorithm for Euler–Lagrange systems that
can tolerate delays or packet loss after information transmission. In these systems, each
agent communicates with its neighbors at irregular discrete time intervals. Our algorithm
utilizes an event-triggered mechanism for each agent. We demonstrate that this algorithm
effectively avoids the Zeno phenomenon by guaranteeing a minimum time interval between
events. The distinguishing feature of our proposed event-triggered scheme, compared to
existing solutions, is its ability to decrease the controller’s update frequency in an aperiodic
and irregular manner. This results in energy conservation and reduced communication
bandwidth requirements despite the presence of delays and intermittent communication
among agents.

The rest of this paper is organized as follows. Section 2 provides preliminary knowl-
edge of graph theory and elaborates on problem formulation. Section 3 introduces the
consensus scheme and stability analysis. Section 4 presents simulation results for six
Euler–Lagrange systems. Finally, Section 5 concludes the paper and states future work.

Notations: For a vector y, ∥y∥ represents the two-norm of y. The norms ∥y(t)∥z and
∥y(t)∥∞ are defined as ∥y(t)∥z = (

∫ ∞
0 |y(ω)|zdω)

1
z for z ∈ [1, ∞) and ∥y(t)∥∞ = max

t≥0
|y(t)|,

respectively. y ∈ Lz if ∥y(t)∥z exists and is finite and y ∈ L∞ if ∥y(t)∥∞ < ∞. λmax(A) is the
maximum eigenvalue of matrix A and λmin(A) is the minimum eigenvalue of matrix A.
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2. Preliminaries
2.1. Graph Theory

The information exchange among the agents is described by directed graph G = (N , E)
that consists of nodes in N (N = {1, . . . , N}) and edges in E (E = {(i, j), i, j ∈ E}). The
element aij of the adjacency matrix A = [aij]N×N is defined as one if node j can receive
information from node i. Otherwise, aij is defined as zero. If at least one node can reach all
other nodes in the graph through a directed path, we say that this graph has a spanning
tree. The Laplacian matrix L = [lij]N×N of G satisfies

lij =


− aij if j ̸= i,

∑
j∈N

aij if j = i.

which plays an important role in the following control design and stability analysis.
There is s a strictly increasing and unbounded sequence of time instants tk = kT with
k ∈ Z+ = {0, 1, . . . } and T > 0 is a fixed sampling period common for all agents such that
each agent is allowed to send its information to all or some of its neighbors at instants tk.
Furthermore, for each pair (j, i) ∈ E , there exist a sequence of communication delays τ

(j,i)
k .

2.2. System Model

We consider a multi-agent system comprising N Euler–Lagrange systems where the
dynamic model of the ith agent can be expressed as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = ui, i ∈ N (1)

where qi ∈ Rl represents the generalized coordinate vector, Mi(qi) ∈ Rl×l denotes the
symmetric positive-definite inertial matrix, Ci(qi, q̇i) ∈ Rl×l is the Coriolis and centrifugal
torque matrix, gi(qi) ∈ Rl is the gravitational force vector, and ui ∈ Rl is the control input
vector. We consider a scenario where a constant desired velocity vd ∈ Rl is accessible only
to a subset of agents, L ⊂ N , designated as leaders. The remaining agents, belonging to
the complementary subset F = N \ L, are identified as followers.

The dynamics given in (1) are assumed to satisfy the following properties [16]:

P1. There exist positive constants kmin and kmax such that 0 < kmin In ≤ Mi(qi) ≤ kmax In.
P2. There exists a positive constant kC such that ∥Ci(qi, q̇i)∥ ≤ kC∥q̇i∥.
P3. Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric, i.e., xT [Ṁi(qi)− 2Ci(qi, q̇i)]x = 0 with x ∈ Rl .
P4. ∥gi(qi)∥ ≤ kg, where kg is a positive constant.
P5. Mi(qi)X + Ci(qi, q̇i)Y + gi(qi) = Yi(qi, q̇i, X , Y)Θi for all vectors X , Y ∈ Rl , where

Yi(qi, q̇i, X , Y) is the regressor matrix and Θi is an unknown but constant parameter
vector associated with the ith agent.

Assumption 1. Each element of matrices Mi, Ci and vector gi is globally Lipschitz, and the
derivative of Yi(t) is bounded.

Lemma 1 ([17]). If a continuous function y(t) satisfies y, ẏ ∈ L∞, and y ∈ Lz with z ∈ [1, ∞),
then y(t) → 0 as t → ∞.

2.3. Problem Statement

Our control objective is to design a new distributed event-triggered control scheme for
Euler–Lagrange System (1) such that qi(t)− qj(t) → 0, q̇i(t) → vd as t → ∞ for all i, j ∈ N
in the presence of communication delays and intermittent communication.

We suppose there exists a strictly increasing and unbounded sequence of time instants
tk = kT ∈ R+, k ∈ Z+ = 0, 1, . . ., where T > 0 is a fixed sampling period common for all
agents such that each agent is allowed to send its information to all or some of its neighbors
at instants tk. Furthermore, there exists a sequence of communication delays τ

(j,i)
k , such
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that the information sent by agent j at instant tk can be available to agent i starting from
instant tk + τ

(j,i)
k .

Assumption 2 ([8]). The leader set L is nonempty and the directed graph G is rooted at s ∈ L. For
each (j, i) ∈ E , there are numbers m ∈ N and h ≥ 0 satisfying (i) k(j,i)

0 ≤ m and k(j,i)
ℓ+1 − k(j,i)

ℓ ≤ m

for all ℓ ∈ {0, 1, . . . } and (ii) τ
(i,j)
k ≤ h for each k ∈ Kj,i, where Kj,i = {k(j,i)

0 , k(j,i)
1 , . . . } ⊂

{0, 1, . . . }.

3. Proposed Solution

Firstly, we introduce velocity tracking error

ei(t) = q̇i(t)− vri (t) (2)

where reference velocity vri (t) can be designed as [8]

vri (t) = ηi(t) + v̄di
(t) (3)

where v̄di
(t) is an estimate of the desired velocity of the ith agent and ηi(t) is a term

designed for consensus purpose. v̄di
and ηi are designed in detail below.

The most recent information of agent j that transmits to agent i successfully is at kij(t)
defined as

kij(t) = max{k ∈ Z+ : kT + τ
(i,j)
k ≤ t} (4)

where T is sample period and τ
(i,j)
k is the delay that agent j sent information at instant kT,

k ∈ Z+ and the information is received by agent i after τ
(i,j)
k . Hence, the information is

available to agent i at instant kT + τ
(i,j)
k .

The desired velocity vd is only available to leader (L ∈ N ), and the other agents
(F ∈ N excludes L) can only estimate the velocity with respect to their neighbors through
the following discrete time algorithm for σ ∈ Z+,

v̂di
(σ) = vd, i ∈ L (5)

v̂di
(σ + 1) =

1
|Ni(σ)| ∑

j∈Ni(σ)

v̂dij
(σ), i ∈ F (6)

v̂dij
(σ) =

{
v̂di

(kij(σT)) if j ̸= i,

v̂di
(σ) if j = i

(7)

where the consensus algorithm updates at instants σT with σ ∈ Z+. vd ∈ Rl is the desired
velocity and each leader can obtain it directly. Ni(σ) = {i} ∪ Nij(σ), Nij(σ) =j: (j, i),
kij(σT) > kij((σ − 1)T) is the set of the neighbors of the ith followers. We let

v̄di
= vd, i ∈ L (8)

¨̄vdi
= −kd

i ˙̄vdi
− kp

i (v̄di
− v̂di

(⌊t/T⌋)), i ∈ F (9)

where ⌊x⌋ represents the integer part of x, and kp
i and kd

i are positive gains.
The consensus term ηi is updated by

η̇i = −kη
i ηi − λi(qi − ψi)

ψ̇i = −ψi + v̄di
+

1
κ i

∑
j∈Ni(σ)

aijq
(i)
j (t) (10)

q(i)j (t) = qj(kij(t)T) + v̂dj
(kij(t))(t − kij(t)T) (11)
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where κi =
n
∑

j=1
aij, kη

i and kλ
i are positive gains, and vector q(i)j (t) is the current position of

the jth agent which is obtained by the ith agent at the most recent instant, t.
Now, we design an event-triggered scheme for control input ui(t) such that velocity

error ei(t) converges to zero asymptotically. Usually, control input vector ui(t) for (1) is
chosen as

ui(t) = −Kiei(t) + Yi(t)Θ̂i(t) (12)

˙̂Θi(t) = −ΛiYT
i (t)ei(t) (13)

where ei is defined in (2), Λi ∈ Rl×l and Ki ∈ Rl×l are symmetric positive definite matrices,
and Yi is defined in Property P5. Inspired by [18], to decrease the controller’s update
frequency, we consider the following event-triggered form of (12):

ui(t) = −Kiei(ti
k) + Yi(ti

k)Θ̂i(ti
k), t ∈ [ti

k, ti
k+1) (14)

˙̂Θi(t) = −ΛiYT
i (t

i
k)ei(ti

k). (15)

According to Property P6 and by using (14) and (15), Dynamic Model (1) can be rewritten as

Mi(qi)ėi(t) + Ci(qi, q̇i)et(t) =− Kiei(ti
k) + Yi(ti

k)Θ̂i(ti
k)− Yi(t)Θi. (16)

We let Ψi(t) and Ξi(t) represent the error caused by the event-triggered scheme:

Ψi(t) = ei(ti
k)− ei(t)

Ξi(t) = Yi(ti
k)Θ̂i(ti

k)− Yi(t)Θ̂i(t).
(17)

Then, the event-triggered strategy is designed as

ti
k+1 = inf{t ≥ ti

k :∥Ξi(t)∥+ λmax(Ki)∥Ψi(t)∥ ≥ γi
2

λmin(Ki)∥ei(t)∥+ µi(t)} (18)

where γi is a positive constant less than one, and µi(t) = ϱi

√
λmin(Ki)

e−ϵit with ϱi > 0 and
0 < ϵi < 1.

Theorem 1. Consider the multi-agent system described in (1). Suppose Assumption 1 and 2
hold. Then, the control objective can be achieved, that is, qi(t)− qj(t) → 0 and vi(t) → vd as
t → ∞ under the proposed Event-Triggered Controller (14). In addition, the Zeno phenomenon
can be avoided.

Proof. We consider the Lyapunov function as

V =
1
2

N

∑
i=1

eT
i Mi(qi)ei +

1
2

N

∑
i=1

Θ̃T
i Λ−1

i Θ̃i (19)

where Θ̃ = Θi − Θ̂i denotes the estimation error. Then, the derivative of (19) is

V̇ =
1
2

N

∑
i=1

eT
i Ṁi(qi)ei +

N

∑
i=1

eT
i Mi(qi)ėi +

N

∑
i=1

Θ̃T
i Λ−1

i
˙̃Θi. (20)

Substituting (16) into (20), we obtain

V̇ =
N

∑
i=1

eT
i (

1
2

Ṁi(qi)− Ci(qi, q̇i))ei −
N

∑
i=1

eT
i Kiei(ti

k)

+
N

∑
i=1

eT
i Yi(ti

k)Θ̂i(ti
k)−

N

∑
i=1

eT
i Yi(t)Θi −

N

∑
i=1

Θ̃T
i Λ−1

i
˙̂Θi.

(21)
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From Property P3, we can conclude that
N
∑

i=1
eT

i (
1
2 Ṁi(qi) − Ci(qi, q̇i))ei = 0. After

substituting (15) and (17) into (21), we have

V̇ =−
N

∑
i=1

eT
i Kiei −

N

∑
i=1

eT
i KiΨi +

N

∑
i=1

eT
i Ξi(t)

≤−
N

∑
i=1

λmin(Ki)∥ei(t)∥2 +
N

∑
i=1

λmax(Ki)∥ei(t)∥∥Ψi(t)∥

+
N

∑
i=1

∥ei(t)∥∥Ξi(t)∥.

(22)

Form Event-Triggered Strategy (18), we have

V̇ ≤−
N

∑
i=1

λmin(Ki)∥ei(t)∥2 +
N

∑
i=1

γi
2

λmin(Ki)∥ei(t)∥2 +
N

∑
i=1

∥ei(t)∥µi(t). (23)

It is easy to verify that√
λmin(k)∥ei(t)∥ϱie−ϵit ≤ γi

2
λmin(k)∥ei(t)∥2 +

1
2γi

ϱ2
i e−2ϵit. (24)

Hence, (23) can be rewritten as

V̇ ≤
N

∑
i=1

(γi − 1)λmin(Ki)∥ei(t)∥2 +
N

∑
i=1

ϱ2
i

2γi
e−2ϵit. (25)

It can be inferred from (25)

V(t) +
∫ t

0

N

∑
i=1

(1 − γi)λmin(Ki)∥ei(ω)∥2dω ≤ V(0) +
N

∑
i=1

ϱ2
i

4γiϵi
(1 − e−2ϵit). (26)

We can know from (26) that V(t) is bounded. Hence, we can conclude that ei, Θ̃i ∈ L∞. We
can determine from [8] that q̇ri and q̈ri are bounded. From System Model (1) and definition
of P6, we have

∥YiΘi∥ ≤ ∥Mi∥∥q̈ri∥+ ∥Ci∥∥q̇ri∥+ ∥gi∥. (27)

Combining with properties P1, P2, and P4, we can deduce that ∥Yi∥ is upper-bounded by
a positive constant. Then, we can infer from (16) that ėi(t) is bounded. From (26), we can
further conclude that

∫ t
0 ∥ei(ω)∥2dω is bounded and thus ei ∈ L2. According to Lemma 1

and ei, ėi ∈ L∞, ei ∈ L2, we have ei → 0 as t → 0. If ei(t) → 0 as t → ∞ and by Theorem 1
in [8], we can conclude that qi(t)− qj(t) → 0, q̇i(t) → vd as t → ∞ for all i, j ∈ N.

Zeno Behavior

The solution exhibits Zeno behavior if an infinite number of controller updates occur
in a finite time period. Zeno behavior presents a significant challenge for the practical
implementation of real-time systems, as it effectively requires the controller to process an
infinite number of updates in a finite time period. To circumvent this issue, Event-Triggered
Condition (18) is employed. In this subsection, we show that the Zeno phenomenon can
be excluded by our proposed method, i.e., there exists a positive instant Tk(k = 1, 2, . . . )
satisfying ti

k+1 − ti
k ≥ Tk. We can determine from the event-triggered mechanism (18) that

∥Ξi(t)∥+ λmax(Ki)∥Ψi(t)∥ ≤
∫ t

ti
k

∥Ξ̇i(ω)∥+ λmax(Ki)∥Ψ̇i(ω)∥dω. (28)
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Recalling from the definition of Ψ(t) and Ξ(t), we have

∥Ψ̇i(t)∥ ≤ ∥Ẏi(t)Θ̂i(t) + Yi(t)
˙̂Θi(t)∥

∥Ξ̇i(t)∥ ≤ ∥ėi(t)∥.
(29)

From Assumption 1, we know that Ẏi(t) is bounded. Θ̂i(t), Yi(t), and ėi(t) are bounded
as we can determine from the above analysis. Hence, we can infer from (13) that ˙̂Θi(t) is
bounded. Therefore, we can conclude that Ψi(t) and Ξi(t) are bounded. Defining Ψmax
and Ξmax as the upper bound of Ψi(t) and Ξi(t), we can obtain∫ t

ti
k

∥Ξ̇i(ω)∥+ λmax(Ki)∥Ψ̇i(ω)∥dω ≤ (t − ti
k)(Ψmax + Ξmax). (30)

Noting that ∥Ξi(t)∥+ λmax(Ki)∥Ψi(t)∥ ≥ γi
2 λmin(Ki)∥ei(t)∥+ µi(t), while satisfying

the trigger condition at the ti
k instant, we can conclude that

γi
2

λmin(Ki)∥ei(ti
k)∥+ µi(ti

k) ≥ (t − ti
k)(Ψmax + Ξmax). (31)

Hence, there exists a positive lower bound Tk =
γi
2 λmin(Ki)∥ei(ti

k)∥+µi(ti
k)

Ψmax+Ξmax
between two consecutive

executions of ui. As a result, the proposed controller avoids the Zeno phenomena successfully.

Remark 1. Detailed comparisons with the existing consensus controllers for Euler–Lagrange
systems are highlighted as follows: (1) In [19], a distributed consensus approach for a group of
Euler–Lagrange systems was proposed. However, this approach did not consider communication
delays among systems, and continuous information exchange was required. In contrast, our proposed
approach is versatile and can be applied to a wider range of communication scenarios. (2) In [8], a
synchronization method was developed for Euler–Lagrange systems with communication delays and
intermittent information exchange. However, the above results rely on the classic time-triggered
control paradigm, where the update of the control signal is periodic even when the system is
performing well. In our paper, we introduce an event-triggered approach that reduces the controller’s
update frequency.

Remark 2. This paper considers relaxed communication conditions, which can be intermittent
and subject to time-varying communication delays and information losses. Therefore, it can be
applied to ideal situations where information exchange is continuous and there is no communication
delay, such as in [19]. Intuitively, control performance may be improved under ideal communication
conditions. However, a rigorous analysis of this case requires further investigation.

4. Simulation

We perform a simulation to verify the effectiveness of our developed algorithm.
Specifically, we consider a multi-agent system comprising six Euler–Lagrange systems.
The dynamic model for each agent is in the form of (1) with l = 2, qi = [qi1 , qi2 ]

T , and
q̇i = [q̇i1 , q̇i2 ]

T . The inertial matrix Mi(qi), the Coriolis and centrifugal torque matrix
Ci(qi, q̇i), and the vector of gravitational force gi(qi) are given as

Mi(qi) =

[
ζ1 + 2ζ2 cos(qi2) ζ3 + ζ2 cos(qi2)
ζ3 + ζ2 cos(qi2) ζ3

]
Ci(qi, q̇i) =

[
−ζ2 sin (qi2)q̇i2 −ζ2 sin (qi2)(q̇i1 + q̇i2)
ζ2 sin (qi2)q̇i1 0

]
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where

ζ1 = m1l2
c1
+ m2(l2

1 + l2
c2
) + I1 + I2,

ζ2 = m2l1lc2 , ζ3 = m2l2
c2
+ I2,

ζ4 = m2lc2 , ζ5 = m1lc1 + m2l1

with m1 = m2 = 1.5 kg, l1 = l2 = 0.3 m, lc1 = lc2 = 0.4 m, I1 = I2 = 0.2 kg/m2.

gi(qi) =

[
gζ5 cos (qi1) + gζ4 cos (qi1 + qi2)

gζ4 cos (qi1 + qi2)

]
where g = 9.8 m/s2. The regressor matrix Yi(qi, q̇i,X ,Y) ∈ R2×5 is given as

Yi(qi, q̇i,X ,Y) =

[
Yi11 Yi12 Yi13 Yi14 Yi15
Yi21 Yi22 Yi23 Yi24 Yi25

]
where Yi11 = Ẋi1 , Yi12 = cos (qi2)(2Ẋi1 + Ẋi2)− sin (qi2)(Xi1 q̇i2 +Xi2(q̇i1 + q̇i2)), Yi13 = Ẋi2 ,
Yi14 = g cos (qi1 + qi2), Yi15 = g cos (qi1), Yi21 = 0, Yi22 = Ẋi1 cos (qi2) + Xi1 q̇i1 sin (qi2),
Yi23 = Ẋi1 + Ẋi2 , Yi24 = g cos (qi1 + qi2), and Yi25 = 0.

The communication among agents is represented by a directed graph that contains a
spanning tree, as shown in Figure 1. We define L = {1}, which indicates that only Agent 1
has direct access to the desired velocity of vd = [0.2, 0.3]T m/s. As shown in Figure 1, the
remaining agents can also obtain vd indirectly through Agent 1. Sampling period T is set
as 0.1 s, i.e., agent j can send information to agent i at the 0.1k (k = 0, 1, . . . ) instant, and
the message is received by agent i after a delay of τ (τ ∈ [0.1, 0.25]) s. The control gains
of observer (9) can be arbitrary positive numbers and are chosen as kd

i = 2.4 and kp
i = 1.7

in this simulation. kη
i and λi in (10) are set as 19 and 8.72, respectively. The parameters in

Event-Triggered Strategy (18) are chosen as γi = 0.7, ϱi = 4, and ϵi = 0.4.
The initial states of the six agents are chosen as

[qi1 , qi2 ]
T = [0.5, 0, 0.5, 0,−1.3,−0.3,−0.9, 0.1, 0, 1.5,−0.5, 0.1]T

[q̇i1 , q̇i2 ]
T = [0.8,−0.4,−0.7,−0.35,−0.6,−0.3,−0.5,−0.2,−0.3, 0.1, 0.3, 0.1]T .

Other variable initial states are set to 0. The simulation of Event-Triggered Strategy (14)
applied to (1) over the time interval of 0–20 s is performed in MATLAB (solver: dde23).
Figures 2 and 3 illustrate that the consensus of positions and velocities of all agents can be
achieved using our developed event-triggered input ui, despite the delayed communication
and intermittent exchange of information between agents. Figure 4 shows that the algorithm
effectively reduces the number of controller updates while maintaining system performance.
The trigger times for ui are significantly reduced, as shown in Figure 5. The trigger times
for the six agents are reduced from 238990 to 12454, 13053, 13492, 13196, 12408, and 12994,
respectively. These results confirm that our event-triggered control method achieves
consensus, significantly reducing the number of control signal updates and conserving
computational and communication resources.

4

21

3

5 6

Figure 1. Directed communication graph.
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(a) (b)

Figure 2. Profiles of agent positions under our proposed algorithm. (a) Profiles of agent positions qi1 .
(b) Profiles of agent positions qi2 .

(a) (b)

Figure 3. Profiles of agent velocities under our proposed algorithm. (a) Profiles of agent velocities vi1 .
(b) Profiles of the agent velocities vi2 .

(a) (b)

Figure 4. Profiles of control inputs ui of the agents under our proposed algorithm. (a) Profiles of the
control inputs ui1 . (b) Profiles of control inputs ui2 .
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Figure 5. The time of inter-event trigger events.

5. Conclusions

In this work, we presented an event-triggered strategy algorithm to achieve consensus
among multiple Euler–Lagrange systems, even in the presence of communication delays
and intermittent information exchange. Our proposed algorithm effectively avoids the
Zeno phenomenon by ensuring a positive minimum time lower bound between inter-event
triggers. We verified the effectiveness of this algorithm through numerical simulations. In
our future work, we aim to apply this control algorithm to quadrotor swarms and further
validate its practical applicability through experimental testing.
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