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Abstract: The hippocampus is a crucial brain structure involved in memory formation, spatial
navigation, emotional regulation, and learning. An accurate MRI image segmentation of the human
hippocampus plays an important role in multiple neuro-imaging research and clinical practice, such
as diagnosing neurological diseases and guiding surgical interventions. While most hippocampus
segmentation studies focus on using T1-weighted or T2-weighted MRI scans, we explore the use of
diffusion-weighted MRI (dMRI), which offers unique insights into the microstructural properties of
the hippocampus. Particularly, we utilize various anisotropy measures derived from diffusion MRI
(dMRI), including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, for a
multi-contrast deep learning approach to hippocampus segmentation. To exploit the unique benefits
offered by various contrasts in dMRI images for accurate hippocampus segmentation, we introduce
an innovative multimodal deep learning architecture integrating cross-attention mechanisms. Our
proposed framework comprises a multi-head encoder designed to transform each contrast of dMRI
images into distinct latent spaces, generating separate image feature maps. Subsequently, we employ
a gated cross-attention unit following the encoder, which facilitates the creation of attention maps
between every pair of image contrasts. These attention maps serve to enrich the feature maps,
thereby enhancing their effectiveness for the segmentation task. In the final stage, a decoder is
employed to produce segmentation predictions utilizing the attention-enhanced feature maps. The
experimental outcomes demonstrate the efficacy of our framework in hippocampus segmentation
and highlight the benefits of using multi-contrast images over single-contrast images in diffusion
MRI image segmentation.

Keywords: hippocampus; segmentation; multi-contrast data; anisotropy; diffusion MRI
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1. Introduction

The hippocampus, nestled within the human brain’s temporal lobe, is a vital structure
central to neuroscience and clinical research. Its seahorse-shaped form plays a crucial role
in cognitive functions like memory formation and spatial navigation [1]. The landmark
case of patient H.M. underscored its importance, revealing memory’s dependency on the
hippocampus [2]. Furthermore, the discovery of ‘place cells’ elucidated its role in spatial
orientation [3]. Neuro-imaging techniques such as magnetic resonance imaging (MRI) have
deepened our understanding, revealing its vulnerability in neurodegenerative disorders
[4] and activation patterns during memory tasks [5]. The hippocampus remains a focal
point in neuroscience, with ongoing studies unraveling its complexities and implications in
various disorders [6–9].
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MRI hippocampus segmentation is crucial in neuro-imaging and clinical practice due
to the hippocampus’s pivotal role in cognitive functions and susceptibility to neurode-
generative diseases. It involves delineating the hippocampus from other brain structures,
enabling precise analysis of size, shape, and volume. This accuracy is essential for vari-
ous reasons:

• Diagnosis and Disease Monitoring: Accurate segmentation aids in diagnosing and
monitoring neurodegenerative diseases like Alzheimer’s [10,11], epilepsy, and demen-
tia. It helps quantify hippocampal atrophy, a key biomarker in Alzheimer’s disease.

• Surgical Intervention and Therapy Planning: In epilepsy surgery, precise segmenta-
tion ensures minimal impact on healthy brain tissue [12]. During radiation therapy,
protecting the hippocampus from exposure minimizes cognitive impairment risks [13].

• Cognitive Neuroscience Research: Segmentation supports research on memory and spatial
navigation, deepening understanding of neural mechanisms underlying cognition [14].

• Personalized Medicine: Variations in hippocampal structure impact disease suscep-
tibility and treatment responses. Accurate segmentation enables tailored treatment
plans based on individual neuroanatomy [15].

Most of recent hippocampus segmentation studies focus on utilizing T1-weighted
(T1w) or T2-weighted (T2w) MRI scans due to the convenience of data collection and acqui-
sition [16–20]. For example, [16] compared different segmentation methods by utilizing
T1w and T2w multispectral MRI data, which highlighted the complexities of hippocampal
structure and the benefits of using high-resolution T2w images for better contrast prop-
erties in subfield delineation. It also examined the reliability of different MRI sequences
and their combinations for accurate hippocampal segmentation. Manjón et al. [17] intro-
duced a novel deep learning-based hippocampus subfield segmentation method, which
utilized a variant of the U-NET architecture [21], combining both T1w and T2w images
to improve the performance of hippocampus segmentation. However, very few studies
focus on utilizing diffusion-weighted MRI (dMRI) on hippocampus segmentation, which
provides unique insights offered by dMRI into the microstructural properties of brain tissue.
Firstly, dMRI offers insights into the microstructural environment of the hippocampus,
which includes the orientation and integrity of white matter tracts and can reveal subtle
changes in hippocampal tissue not visible on conventional MRI [22]. Secondly, dMRI
performs well in detecting early microstructural changes in the hippocampus associated
with neurodegenerative diseases like Alzheimer’s [23]. Thirdly, the hippocampus is a hub
in the brain’s memory network, and its connections to other regions are crucial for its
function. Hippocampus segmentation on dMRI scans will facilitate the assessment of these
connections through techniques such as tractography, providing a more comprehensive
view of hippocampal connectivity and its alterations in various conditions [24]. Achieving
a mesoscale resolution for diffusion MRI and tractography further improves the delineation
of hippocampal substructures and uncovers more detailed level of intra-regional grey
matter connectivity [25,26]. Additionally, dMRI can offer a few insights into the functional
aspects of the hippocampus, linking its structural properties to cognitive functions such
as memory and learning. This is particularly relevant in understanding how structural
changes impact function in diseases affecting the hippocampus [27–29].

In dMRI studies, several key metrics are utilized to quantify the diffusion of water
molecules in brain tissue, each reflecting different aspects of tissue microstructure, and
thereby can be utilized to derive multimodal dMRI images. The most important and widely
utilized metrics are Fractional Anisotropy (FA), Mean Diffusivity (MD), Axia Diffusivity
(AD) and Radial Diffusivity (RD). FA measures the degree of directional anisotropy of
water diffusion in tissue. FA values tend to be high in areas where water diffusion is
directionally restricted or oriented (e.g., white matter tracts), while they tend to be low
in areas where diffusion is more isotropic (e.g., gray matter or cerebrospinal fluid). MD
measures the average rate of water diffusion within a tissue and is derived from the
diffusion coefficients along all measured directions. It reflects the overall mobility of
water molecules, with higher values indicating more unrestricted diffusion. In brain
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tissue, increased MD can be a sign of tissue degeneration or loss, as it suggests a greater
ease of water movement, potentially due to loss of barriers like cell membranes. AD
measures the rate of water diffusion along the primary axis of white matter fibers reflecting
axonal integrity. Low AD values potentially indicate axonal injury or degeneration. RD
measures the rate of water diffusion perpendicular to the primary axis of white matter
fibers, which is particularly sensitive to changes in the myelin sheath that surrounds
axons. All these metrics are important for an accurate hippocampus segmentations as they
provide insights into the integrity and microstructure of brain tissues, which highlights the
significance of multimodal hippocampus segmentation studies. Particularly, each metric
provides insights into different aspects of the hippocampal microstructure. For example,
AD and RD can provide information about axonal integrity and myelination, respectively.
Compared to segment on each single modal scan, combining different metrics can lead
to more accurate segmentation of the hippocampus, since these multimodal dMRI scans
can provide complementary information (e.g., provide sufficient contrast information) to
distinguish different semantic features [30].

The integration of deep learning methods in multi-contrast MRI image segmenta-
tion has been a significant advancement in neuro-imaging studies. These methods have
harnessed the power of artificial intelligence to analyze complex datasets, offering more
accurate and detailed insights into the structures of human brain or brain subregions (e.g.,
the hippocampus). One of the most pivotal developments in this field is the development
of convolutional neural networks (CNNs), which have become a cornerstone in medical
image analysis [31–34]. CNNs are particularly well suited for image data due to their
ability to automatically and adaptively learn spatial hierarchies of features from images.
In multi-contrast MRI segmentation, CNNs have been used to combine information from
different MRI contrast methods (e.g., T1w, or T2w or diffusion MRI scans), to improve
the segmentation performance, which is crucial as the different image contrasts provide
complementary information about the anatomy of brain [35]. The U-Net, a CNN based ar-
chitecture, has shown remarkable effectiveness in medical image segmentation tasks [21]. It
can effectively captures contextual information while enabling precise localization, making
it suitable for complex segmentation tasks, such as segmentation tasks related to regional
brain substructures. However, U-Net is designed for single-modal tasks, which might limit
its effectiveness to learn relationships across different contrasts of data when applying
to the multi-contrast segmentation tasks. Therefore, we propose to address this issue
via cross-attention mechanisms, which guides the deep learning framework to focus on
the most relevant parts of an image to improve the segmentation performance in multi-
contrast dMRI hippocampus segmentation tasks. Cross-attention extends the concept of
self-attention [36] to interactions between at least two types of data obtained from different
contrasts [37]. It has strong ability to model contextual relationships, and to combine
the effective information across multi-contrast MRI images to perform the hippocampus
segmentation tasks.

To sum up, our contributions in this work can be summarized as follows: (1). We used
mesoscale diffusion MRI data to calculate multiple contrast images to segment the human
hippocampus from its surrounding temporal lobe structures. (2). We build up a multimodal
deep learning framework with the cross-attention mechanism to improve the performance
of hippocampus segmentation. (3). We compared the segmentation performance of each
single-contrast diffusion image with different combinations of multi-contrast images.

2. Related Works
2.1. Semantic Segmentation on Hippocampus

The accurate segmentation of the hippocampus is a vital image-processing step to
assist the study of the hippocampus and related neurological disorders caused by the
impairment of the hippocampus. The early techniques of hippocampus segmentation
primarily involved manual delineation, which is time consuming and prone to inter-rater
variability [38–40]. The complexity of the shape of hippocampus and its variable appear-
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ance across individuals posed additional challenges. To address these limitations, a few
semi-automated segmentation methods were developed, which typically involved user
intervention for initialization or correction of segmentation results, striking a balance be-
tween automation and accuracy [41–43]. Advancements led to fully automated techniques,
which were essential for handling large datasets in studies like Alzheimer’s disease re-
search. These methods utilized various computational strategies, such as region-growing
algorithms, atlas-based approaches and machine learning algorithms [44,45]. The develop-
ment of machine learning and deep learning marked a significant leap in hippocampus
segmentation, where Convolutional Neural Networks (CNNs) as well as CNN-based seg-
mentation architectures (e.g., U-Net) have demonstrated high accuracy and efficiency in
segmenting the hippocampus from MRI scans [17,20,21,46–50]. These methods have the
ability to learn complex patterns from diverse datasets which yields robust segmentation
results. Beyond 2D segmentation studies, [51] introduced a 3D convolution model named
DeepHipp, which integrates dense block and attention mechanisms for T1w hippocampus
segmentation. This model is designed to improve the efficiency of feature usage by reusing
features of each layer learned by the network, which allows the model to focus on the
segmentation target and suppress irrelevant regions of the input image, enhancing the
accuracy of hippocampus segmentation.

2.2. Deep Neural Networks for Multimodal MRI Hippocampus Segmentation

The field of deep learning for multimodal hippocampus MRI image segmentation
has seen notable advancements, where a variety of approaches have been explored to
improve the accuracy and efficiency of segmentation processes. Manjón et al. [17] proposed
a variant of the of the U-Net architecture, which incorporates multiple resolution levels and
a deep supervision approach to capture detailed hippocampal structures from T1w and T2w
MRI scans [17]. Additionally, deep CNNs have been employed in the segmentation and
classification of the hippocampus in Alzheimer’s disease, which offers promising results
in automating the segmentation process and potentially aiding in the early diagnosis of
Alzheimer’s [20]. Most of the deep learning methods for multimodal MRI hippocampus
segmentation are based on the T1w and T2w neuro-imaging data [52,53].

3. Methodology
3.1. Proposed Segmentation Framework

The proposed segmentation framework (see Figure 1) integrates cross-attention mech-
anisms to improve the MRI image segmentation by utilizing multi-contrast MRI data.
We will delve into the details of proposed multi-contrast segmentation framework in
this section.

3.1.1. Framework Overview

As shown in Figure 1, the proposed segmentation framework consists of a multi-
contrast encoder including K different branches to embed K different contrast maps, and
a shared decoder to reconstruct the segmentation predictions from the latent space. A K2

gated cross-attention unit is inserted between the encoder and the decoder to capture the
cross relationships among different contrast maps. We adopt the encoder and decoder
setting of the U-Net [21] architecture to serve as the segmentation backbone of our segmen-
tation framework, where we duplicate K different encoder branches to embed K different
contrast maps. Each encoder branch takes an contrast map X as input and generate the
latent image feature maps F layer by layer. After K feature maps (i.e., F1, F2, . . . , FK) are
generated, the K2 gate cross-attention unit is utilized to generate the gated cross-attention
matrix (i.e., Ag) based on these feature maps. Finally, the K feature maps are weighted by
the gated cross-attention matrix as an attention-enhanced feature map (i.e., Fa1 , Fa2 , . . . , FaK ).
The attention-enhanced feature map will be forwarded to the next encoder layer or the
same decoder layer for segmentation predictions.
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Figure 1. Diagram of the proposed multi-contrast segmentation framework with gated cross-
attention unit.

3.1.2. K2 Gated Cross-Attention Unit

Assume that the dimension of the generated feature map is F ∈ RH×W×C, where H
and W are the size of the feature map and C is the channel number. We first reshape the
feature map F to a new feature matrix H ∈ RN×C, where N = H × W. A linear layer
is then utilized on H to adjust the channel number to ĤN×c. As shown in Figure 2, Ĥ is
utilized by the gated cross-attention unit to compute the gated cross-attention matrix. Let
Ĥk be the k-th feature matrix, where i = 1, 2, . . . , K. The cross-attention matrix between the
i-th and j-th feature matrix can be computed by:

Ai,j = Ĥi × ĤT
j , (1)

where i and j are in range of [1, 2, . . . , K] and the Ai,j ∈ RN×N . Obviously, there are K2

cross-attention matrix (When i = j, the cross-attention matrix is degraded into the self-
attention matrix.). Based on this cross-attention matrix, the gated cross-attention matrix
can be computed by:

Ag = σ(A1,1 ⊗ A1,2⊗, . . . ,⊗A1,K ⊗ A2,1 ⊗ A2,2⊗, . . . ,⊗A2,K⊗, . . . , AK,1 ⊗ AK,2⊗, . . . ,⊗AK,K), (2)

where ⊗ denotes the element-wise multiplication operation and σ is a nonlinear activation
function (i.e., softmax). After the gated cross-attention matrix is generate, we compute the
attention-enhanced feature matrices by:

Ĥai = Ag × Ĥi × W, (3)
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where i = 1, 2, . . . , K. W is trainable parameters of a linear layer to adjust the feature
dimension back to the original dimension (i.e., from c to C). We then reshape these
attention-enhanced feature matrices (i.e., Ĥai ∈ RN×C) back to the attention-enhanced
feature maps (i.e., Fai ∈ RH×W×C) and feed-forward them to the following encoder layer.
Meanwhile, we combine these attention-enhanced feature maps by Fa = ∑K

k=1 Fak and
feed-forward Fa to the segmentation decoder.

Figure 2. The computation within the gated cross-attention unit.

3.2. Hippocampus Segmentation with the Proposed Framework

In this study, we utilize four different contrast maps (i.e., K = 4) obtained from
diffusion MRI images for hippocampus segmentation. For the U-Net based segmentation
backbone, we adopt all default configurations used in the official implementations (https:
//github.com/milesial/Pytorch-UNet accessed on 15 March 2024) except for replacing the
transposed convolution with the bi-linear interpolation in the decoder side. We deploy the
gated cross-attention unit in third and fourth layer of encoder where the feature maps have
1/8 and 1/16 sizes of the original input images, respectively. The segmentation loss Lseg is
the sum of the binary cross-entropy (BCE) loss and Dice loss, shown as follows:

Lseg(ŷ, y) = λℓBCE + (1 − λ)ℓDice, (4)

where ŷ and y are the output segmentation and the segmentation groundtruth, respectively.
λ is the weight parameter.

4. Experiments
4.1. Datasets

Collection and use of human temporal lobes was approved by the Committee for Over-
sight of Research and Clinical Training Involving Decedents (CORID No.1063). Tempo-
ral lobes were obtained post-mortem from subjects who died of issues unrelated to the
brain (e.g., septic shock or pancreatic ductal adenocarcinoma). The mean age was (males
mean = 58 years, range 45–75 years; females mean = 50 years, range 21–72). The time to
fixation after death was <42 hrs.Whole temporal lobes were immersed into 10% buffered
formalin (CH2O equivalent to 4% formaldehyde) for 4 weeks at 4 ◦C prior to transfer to PBS
for 4 weeks.

Diffusion MR images were acquired on 9.4.7T/30 cm Bruker AV3 HD microimaging
scanner equipped with a B-GA12S HP gradient set capable of 660 mT/m maximum gradient
strength and a 40 mm quadrature resonator running Paravision 6.0.1 (Bruker Biospin,
Billerica, MA, USA).

Multi-shell diffusion MR images were acquired with a 3D diffusion-weighted multi-
shot spin-echo EPI sequence with the following parameters: TR = 500 ms, TE = 0.96 ms,
diffusion time = 14 ms, diffusion duration δ = 6.5 ms, diffusion spacing △ = 13 ms, EPI
segments = 30, with 1.2 partial Fourier acceleration in PE1, and a zero-filling acceleration
factor 1.2 in the read and PE2 dimensions for a final isotropic resolution of 0.250 mm. A
total of 94 images were collected with diffusion-weighted shells having b = 1000, 2000,
4000, 6000 s/mm2 and 20, 30, 40, 60 directions, respectively (∼68 h total scanning time), as
described in detail in [26], Image acquisition was performed at room temperature (21 ◦C)
to provide a high SNR, as well as good water diffusion [25]. Diffusion MR images were

https://github.com/milesial/Pytorch-UNet
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processed using DSI Studio (available at https://dsi-studio.labsolver.org/ accessed on
17 March 2024) [54]. Reconstruction of the diffusion tensor images (DTI) was achieved by
performing an eigenvector analysis on the calculated tensor [55,56]. Multi-shell diffusion
MRI scans were reconstructed using Generalized Q-sampling Imaging (GQI) [57], with a
diffusion sampling length ratio of 0.6 to yield image maps of mean diffusivity (MD), radial
diffusivity (RD), axial diffusivity (AD), as well as fractional anisotropy (FA) images [26].

4.2. Implementation Details

Since our dataset consists of 10 3D multi-contrast diffusion MRI scans, we take 2 dif-
ferent scans each time as our validation set and the other 8 scans are utilized for training.
We repeat this process 5 times to conduct five-fold cross-validations for all the experiments,
and report the mean performance as well as the standard deviation (std). After the data
partitions, we slice 3D diffusion MRI scans to 2D image slices along the Z-axis. In the
training phase, we first applied data augmentation techniques on the fly to reduce potential
overfitting, including random scaling (0.8 to 1.2), random rotation (±15◦), random intensity
shift of (±0.1), and intensity scaling of (0.9 to 1.1). Since the size of different image samples
are different, we cropped or padded each image to a size of 512 × 512. The training iter-
ations were set to 300 epochs with a linear warmup of the first 5 epochs. We trained the
model using the Adam optimizer with a batch size of 32 and synchronized batch normal-
ization. The initial learning rate was set to 1 × 10−3and decayed by (1 − current_epoch

max_epoch )0.9.

We also regularized the training with an l2 weight decay of 1 × 10−5.
In the inference phase, we only applied padding operations to the input image if its

size can not be divisible by the down-sample rate of the model. All experiments were
conducted based on Python 3.11.5 and PyTorch 1.7.1 and were deployed on a server with
2 NVIDIA A100 GPUs.

4.3. Baselines and Evaluation Metrics

We compared our approach with six segmentation baselines, i.e., U-Net [21], U2Net [58],
DeepLabv3+ [59], Attention U-Net [60], NNU-Net [61] and IVD-Net [62]. The U-Net model
is a convolutional neural network initially developed for biomedical image segmentation.
It features a distinctive architecture with a contracting path to capture context and a sym-
metric expanding path for precise localization, making it particularly effective for medical
image tasks. The U2Net model is a deep learning architecture that features a novel nested
U-structure that enhances the learning of local and global contextual information. The
Attention U-Net model is an advanced version of the traditional U-Net architecture used for
medical image segmentation, which incorporates attention gates to enhance the ability of
U-Net to focus on specific areas of interest. The DeepLabv3+ is an advanced semantic image
segmentation model that builds upon the previous DeepLab frameworks. It introduces an
encoder-decoder structure, utilizing atrous convolutions to efficiently capture multi-scale
contextual information, and an improved Atrous Spatial Pyramid Pooling module, allow-
ing it to effectively segment objects at multiple scales with enhanced boundary definition.
The IVD-Net is a variant of U-Net for multi-contrast MRI data segmentation.

We adopted three metrics to assess the performance of segmentation models, including
the mean intersection over union (mIoU), Dice similarity coefficient (DSC), Hausdorrf
distance (HD). Specifically, mIoU, and DSC are two overlap-based metrics, each ranging
from 0 to 1 and a larger value indicating better performance. HD is a shape distance-based
metric, which can be used to measure the dissimilarity between the surfaces/boundaries of
the segmentation result and the ground-truth. As for HD, a lower value indicates a better
segmentation result.

5. Results and Discussions
5.1. Comparative Experimental Results

Table 1 provides the performance of our framework and six competing baseline
methods, including U-Net [21], DeepLabv3+ [59], U2Net [58], Attention U-Net [60], NNU-

https://dsi-studio.labsolver.org/
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Net [61], and IVD-Net [62] on our multi-contrast diffusion MRI data for hippocampus
segmentation. Since some baseline methods (i.e., U-Net, DeepLabv3+, U2Net, Attention
U-Net and NNU-Net) are designed for the single contrast input, we train these models by
joint dataset including 4 contrasts of image slices. It shows that our framework outperforms
all competing methods substantially and consistently in terms of DSC and mIoU, indicating
the superiority of our model in hippocampus segmentation. Meanwhile, comparing to
the multi-contrast based method, i.e., IVD-Net, our model achieves superior segmenta-
tion results, which tends to show the strong ability of cross-attention for hippocampus
segmentation based on multi-contrast diffusion MRI images. We visualize the qualitative
segmentation results in Figure 3, where we present three multi-contrast image slices with
their segmentation ground-truth. Meanwhile, the visualized segmentation predictions
produced by our method and other two classic baselines (i.e., NNU-Net and U-Net) are
also provided in Figure 3.

Table 1. Quantitative results of different methods on Hippocampus dataset. The best results are
shown in bold. The DSC and mIoU are in percentage form. The HD is in mm.

Methods
Multi-Contrast Diffusion MRI of Hippocampus

DSC mIoU HD

U-Net [21] 81.55 ± 0.95 83.94 ± 1.06 16.56 ± 0.82
DeepLabv3+ [59] 83.32 ± 1.49 83.62 ± 1.79 14.29 ± 1.16

U2Net [58] 83.67 ± 0.75 85.25 ± 0.68 11.30 ± 0.95
Attention U-Net [60] 85.77 ± 2.24 87.24 ± 1.26 8.64 ± 1.80

IVD-Net [62] 84.75 ± 1.61 85.91 ± 1.77 9.79 ± 1.04
NNU-Net [61] 88.19 ± 1.43 91.06 ± 0.77 6.69 ± 0.85

Ours 89.74 ± 1.32 92.27 ± 0.97 6.26 ± 1.11

Figure 3. Visualization of the hippocampus segmentation results based on multi-contrast MRI images
produced by our model, as well as by NNU-Net and U-Net. GT represents ground-truth annotations.

5.2. Analytical Experimental Results

We conduct four different sets of analytical experiments. Firstly, we compare the
hippocampus segmentation results by utilizing single-contrast and multi-contrast MRI
scans to validate the importance of multi-contrast representations in the segmentation tasks.
Meanwhile, we compare the segmentation results of our framework with and without
cross-attention equipped to show the superiority of the attention mechanism. We also
show the segmentation results of 4 single contrasts of diffusion MRI images (i.e., FA, MD,
AD, RD) to compare the segmentation performance provided by each contrast of images.
Finally, we perform a grid search experiment on the loss weight parameter (i.e., λ).

5.2.1. Comparisons: Single-Contrast vs. Multi-Contrast

In this experiment, we adopt the U-Net architecture as a foundation for segmentation
tasks, utilizing fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and
radial diffusivity (RD) as individual input contrasts. Given U-Net’s absence of an attention
mechanism, we deploy our proposed framework without attention mechanisms, utilizing these
four contrasts as multi-contrast input. The comparison between segmentation results obtained
from these two experimental settings underscores the compelling advantages of multi-contrast
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images over single-contrast data. Table 2 serves as a testament to this, illustrating the notable
improvements in hippocampus segmentation achieved through the integration of multiple
contrasts. This enhancement is indicative of the complementary information offered by each
contrast, collectively enriching the feature representation and enhancing the segmentation
accuracy. Generally, the utilization of multi-contrast imaging holds significant promise in
neuro-imaging research and clinical applications [63–65]. By leveraging the diverse information
encapsulated within different contrasts, we can gain a more comprehensive understanding of
the underlying tissue microstructure and pathology [34].

Table 2. Hippocampus segmentation results based on single contrast and multi-contrast diffusion
MRI. wo/Attention represents without the attention mechanism.The best results are shown in bold.

Methods Contrast Map
Evaluation Metrics

DSC mIoU HD

U-Net

FA 80.53 ± 1.20 82.21 ± 0.98 15.85 ± 1.79
MD 79.20 ± 1.38 79.96 ± 1.66 16.26 ± 2.09
AD 77.69 ± 2.62 79.55 ± 1.83 19.05 ± 1.13
RD 78.02 ± 1.03 79.01 ± 0.84 17.04 ± 0.85

Ours wo/
Attention All Modals 87.72 ± 1.29 90.05 ± 1.08 8.52 ± 1.06

5.2.2. Segmentation with Attention Mechanisms

To elucidate the significance of attention mechanisms, we conduct a comparative anal-
ysis between the conventional U-Net and a modified version incorporating self-attention
(U-Net + Self-attention) (The self-attention is deployed in the third and fourth layer of the
U-Net encoder). This comparison aims to highlight the impact of attention mechanisms on
segmentation performance. Simultaneously, we explore the efficacy of attention mechanisms
within the context of multi-contrast imaging. Employing our proposed framework, we con-
duct experiments comparing segmentation results obtained with and without cross-attention
mechanisms. The outcomes of these comparative experiments are provided in Figure 4a,
shedding light on the relative performance of attention-enabled frameworks. Our compre-
hensive analysis reveals a consistent trend across all comparative experiments: segmentation
backbones equipped with attention mechanisms consistently outperform those without. This
compelling evidence underscores the indispensable role of attention mechanisms in enhancing
segmentation accuracy and robustness [36]. These findings carry profound implications for
the field of medical image analysis, suggesting that attention mechanisms can serve as a
powerful tool for improving the efficacy of segmentation algorithms.
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Figure 4. (a). Result comparisons: with attention mechanism and without attention mechanism.
U-Net and U-Net with self-attention methods are compared based on four different data contrasts
including FA, MD, AD, and RD. Our proposed method is compared with its variant (i.e., the proposed
method without cross-attention) based on the multi-contrast data. wo/Attention and w/Attention
represent without and with the attention mechanisms, respectively. (b). Loss weight analysis.

5.2.3. Comparisons of Single Contrast of Diffusion MRI

We select three baseline methods including U-Net, DeepLabv3+ and Attention U-
Net to compare the segmentation results provided by each of four modals of diffusion
MRI in Figure 5. The results suggest that FA images consistently exhibit superiority
in hippocampus segmentation compared to other contrasts such as MD, AD, and RD.
However, it is important to acknowledge that the superiority of MD, AD, and RD cannot
be conclusively determined solely from our findings. This ambiguity arises from the
observation that the performance of these contrasts varies depending on the specific deep
learning framework employed. Therefore, the relative efficacy of MD, AD, and RD warrants
further investigation within different methodological contexts to ascertain their respective
strengths and limitations in hippocampus segmentation.

Figure 5. Result comparisons: four different contrasts deployed on U-Net, DeepLabv3+ and Attention
U-Net.
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5.2.4. Parameter Analysis

A grid search experiment is performed to determine the optimal value of the loss
weight, λ. Particularly, we set the search space of λ as {0, 0.2, 0.4, 0.6, 0.8, 1.0}. Figure 4b
shows that the best value of the loss weight is 0.4, and it shows that the segmentation
performance of our framework is consistent under different loss weights.

6. Conclusions

This paper presents a novel multimodal deep-learning framework incorporating
cross-attention mechanisms tailored specifically for the segmentation of the hippocampus.
Leveraging mesoscale diffusion MRI data, we harness its potential to compute a spectrum
of contrast images crucial for segmenting the human hippocampus from surrounding brain
structures. In our experimental evaluation, we assess the performance of our framework in
hippocampus segmentation, demonstrating its efficacy in this segmentation task. More-
over, our experimental findings provide compelling evidence supporting the superiority
of multi-contrast images over their single-contrast counterparts in diffusion MRI image
segmentation. Furthermore, our experimental results shed light on the advantages offered
by the fractional anisotropy (FA) contrast of dMRI images, where we observe that the FA
contrast consistently performs better than the other image contrasts (i.e., MD, AD and RD)
in the hippocampus segmentation task. This may potentially inform future developments
in diffusion MRI analysis for hippocampus segmentation.
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