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Abstract: This study focused on the efficacy of employing a pulsed fiber laser in the curved cutting of
thin, non-oriented electrical steel sheets. Experiments were conducted in paraffinic oil by adjusting
the input process parameters, including laser power, pulse frequency, cutting speed, and curvature
radius. The multiple output quality metrics included kerf width, inner and outer heat-affected
zones, and re-welded portions. Analyses of the Random Forest Method and Response Surface
Method indicated that laser pulse frequency was the most important variable affecting the cut
quality, followed by laser power, curvature radius, and cutting speed. To improve cut quality, an
innovative artificial intelligence (AI) approach incorporating a deep neural network (DNN) model
and a modified equilibrium optimizer (M-EO) was proposed. Initially, the DNN model established
correlations between input parameters and cut quality aspects, followed by M-EO pinpointing
optimal cut qualities. Such an approach successfully identified an optimal set of laser process
parameters, even beyond the specified process window from the initial experiments on curved cuts,
resulting in significant enhancements confirmed by validation experiments. A comparative analysis
showcased the developed models’ superior performance over prior studies. Notably, while the
models were initially developed based on the results from curved cuts, they proved adaptable and
capable of yielding comparable outcomes for straight cuts as well.

Keywords: laser cutting; thin electrical steel sheet; curved cut; deep neural network; modified
equilibrium optimizer

MSC: 65K05; 65K10; 90C29; 90C59

1. Introduction

Due to their exceptional magnetic characteristics, non-oriented electrical steels are
widely utilized as core materials in small transformers, medium generators, and electric
motors. The increasing global emphasis on reducing fossil fuel consumption has led to a
growing popularity of electric motors in electric vehicles. The role of non-oriented electrical
steel sheets becomes more and more important due to their contributions to improving
the efficiency of the electrical motors, including reduction of temperature, energy loss,
and cost. The low-electricity-consuming electrical motors can be provided by applying
a thin-gauge non-oriented electrical steel sheet for use in rotors and stators. Utilizing
thin-gauge non-oriented electrical steel sheets, typically ranging from 0.1 to 0.35 mm in
thickness, enhances the efficiency of electrical motors [1].

In the production of electrical machinery, electrical steel sheets are molded and layered
to construct the rotor and/or stator components. In the process, cutting results in the
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largest deterioration of magnetic properties in all the steps [2]. For mass production of
electrical steel sheets, mechanical cutting is the most advantageous method due to its low
cost and good repeatability. However, mechanical cutting is usually performed on thick
metal sheets, which are generally thicker than 0.35 mm due to their tendency to bend
under shear force. The laser process has emerged as a favorable option for cutting thin non-
oriented electrical steel sheets. Its non-contact method eradicates vibrations and machine
noises. Moreover, laser cutting offers several benefits, including the capability to produce
intricately shaped parts with exceptional precision, adaptability to design modifications,
and cost-effectiveness in fixture and tool preparation. Unlike mechanical cutting, laser
cutting prevents plastic deformation near the cutting edge. Furthermore, laser cutting
surpasses mechanical cutting in terms of magnetic performance when used for electrical
steel sheets [3]. However, magnetic deterioration after laser cutting has been reported in
various studies [3,4]. Heat-affected zone (HAZ) is a region in a material, typically metal,
that has experienced changes in its microstructure and properties due to exposure to high-
temperature thermal cutting processes. These changes occur adjacent to the heat source and
can include alterations in material properties. Magnetic deterioration is more pronounced
in laminated cores with a wider HAZ [3,4]. Furthermore, laminates with a wider kerf result
in a larger core loss [3]. In addition, the recast layers may rejoin during laser cutting, closing
the kerf and causing re-welding [5,6].

The efforts to optimize cut quality in electrical steel sheets, including HAZ, kerf width,
and re-welded portion, have been conducted in several studies [4,5,7–9]. Nguyen et al. [4]
and Rohman et al. [7] minimized the HAZ and kerf width, respectively, by optimizing
the laser process parameters for straight cuts of non-oriented electrical steel sheets. By
controlling the working temperature during laser cutting, Nguyen et al. [8] reduced the
kerf width and HAZ of straight cuts of electrical steel sheets. A laser process parameter
optimization technique based on image processing was used to eliminate re-welded cuts in
the circular cutting of electrical steel sheets [5].

The heat energy and transport phenomena during laser cutting are influenced by the
interaction between the material, the incident laser beam, and the environment, which
vary based on the laser process parameters. It includes, for example, light absorption,
heat conduction, melting, vaporization, plasma formation, energy loss by conduction,
and convection and radiation and, consequently, affects the cut quality. The mechanism
underlying laser cutting is fundamentally complicated, and the intricate, nonlinear rela-
tionships between its parameters make it challenging for researchers to model the process
accurately [10].

Artificial intelligence (AI) models, including adaptive neuro-fuzzy inference system
(ANFIS), artificial neural network (ANN), and generalized regression neural network
(GRNN), have been utilized to solve and anticipate numerous intricate engineering issues.
Such AI-based models are employed to predict cut qualities (outputs) by considering laser
process parameters (inputs). Several investigations employed ANN to predict cut qualities
in laser cutting of PMMA and electrical steel sheets [7,11,12]. Ding et al. [13] utilized GRNN
to anticipate surface roughness and kerf width in the laser cutting of 304L plates. The use
of ANFIS was reported by Rajamani et al. [14] on laser cutting of Hastelloy C276 sheets.
Deep neural networks (DNNs) have become popular due to their superiority over shallow
neural networks (SNNs) and other machine learning algorithms [7,11]. However, using an
inappropriate number of hidden layers in a DNN may result in lower prediction accuracy
compared to SNN and other machine learning algorithms.

Metaheuristic optimization methods, such as grey wolf optimization (GWO), genetic
algorithm (GA), particle swarm optimization (PSO), and equilibrium optimizer (EO), have
been applied to optimize output quality, by finding the optimal processing parameters. In
various studies, GWO, GA, and PSO methods were successfully used to optimize laser
cutting processes and other engineering problems using AI-based models as objective
functions. Rohman et al. [11] employed a combination of a DNN and GWO to optimize
five cut-quality characteristics during laser cutting of electrical steel sheets under varying
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environmental conditions. DNN models and GA were applied to reduce roundness and
kerf width during the laser cutting of electrical steel sheets [7]. Sibalija et al. [15] utilized
one-hidden-layer ANN and PSO to optimize seven characteristics of cut quality for laser
cutting of Nimonic 263 alloy sheets. Guo et al. [16] used support vector regression (SVR)
and GA to optimize initial residual stress for ultra-precision machining of thin-walled pure
copper. In addition, the GA, GWO, and EO have been successfully applied to determining
the hyperparameters of various AI-based models [7,11,17].

Based on the available literature, there is still a lack of studies that minimize HAZ,
kerf width, and re-welded portions simultaneously for laser cutting of thin non-oriented
electrical steel sheets with curved paths. Simultaneously optimizing the HAZ, kerf width,
and re-welded portions during laser cutting is essential to determine the optimal laser
process parameters that lead to minimizing these aspects. A study on laser cutting of
thin non-oriented electrical steel sheets with curved paths is necessary since the curvature
radius plays a key role in determining the cut quality [18]. Accordingly, this study focused
on the use of AI-based approaches to predicting and enhancing the cut quality in the curved
laser cutting of non-oriented electrical steel sheets. SNN, DNN, GRNN, and ANFIS were
first developed and compared for their performance in predicting multiple characteristics
of cut quality. To develop the AI-based models, a full factorial experimental design was
conducted considering curvature radius (R), laser power (P), laser pulse frequency (f ), and
cutting speed (v) as input parameters. Kerf width, inner HAZ, outer HAZ, and re-welded
portion were measured and considered as output quality characteristics. The experiments
were performed in a paraffinic oil environment, as it demonstrated superiority over air and
alcohol environments [11]. A novel modified EO (M-EO) was devised to determine the
laser process parameters that yield the optimal cut quality. In order to improve the ability
to reach equilibrium, M-EO procedures were proposed based on particle memory saving
and equilibrium pool updating strategies. The robustness of the M-EO algorithm and
the superior AI-based model in obtaining the optimal process parameters was confirmed
via validation experiments. This study reports a new method to improve the multiple
characteristics of cut quality that greatly influence the magnetic properties in curved laser
cutting of thin non-oriented electrical steel sheets, which can be applied in industrial
practice. Furthermore, the technique suggested in this study has the potential to be applied
to thin sheets with a wide range of applications.

2. Experimental Procedures
2.1. Material and Experimental Setup

All experiments took place in paraffinic oil, using a laser configuration consisting of
a 20 W pulsed fiber laser system, a laser beam expander, a scanner, and a focusing lens.
The laser functioned at a wavelength of 1064 nm, with a pulse frequency varying from
20 to 80 kHz, and a pulse duration of 100 ns. It was focused on a spot measuring 50 µm
in diameter on its focal plane. Information regarding the laser system and experimental
arrangement was given elsewhere [11]. Thin non-oriented silicon steel sheets, 0.1 mm thick
(ST-100, Nikkin Denji Kogyo Co., Ltd., Saitama, Japan), were employed in the study. The
experiment involved cutting a 90-degree arc path with radii of 1 mm, 3 mm, and 5 mm
using different combinations of laser process parameters. Figure 1 depicts the schematic
diagram illustrating the arrangement of the workpiece and environment for laser cutting.

2.2. Design of Experiment

A full factorial experimental design incorporating four factors and three levels was
utilized to explore the impact of various process parameters on cut quality. Preliminary
experiments were conducted to ascertain the suitable levels for each parameter, ensuring
that all trials could achieve a complete cut in the material with a single pass. Table 1
presents the selected levels for the laser process parameters.
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Figure 1. Schematic of the experimental setup for curved laser cutting of thin non-oriented silicon
steel sheets.

Table 1. Laser process parameters and their levels used in the experiment.

Parameter Level 1 Level 2 Level 3

Curvature radius, R (mm) 1 3 5
Laser power, P (W) 12 14 16

Laser pulse frequency, f (kHz) 20 26 32
Cutting speed, v (mm/s) 0.10 0.15 0.20

2.3. Quality Characteristics

Four indices were used to evaluate cut quality, namely, kerf width (Kw), inner HAZ
(HAZin), outer HAZ (HAZout), and re-welded portion (Rp). The dimensions of Kw, HAZin,
and HAZout are defined and schematically shown in Figure 2a. The dimensions of Kw,
HAZin, and HAZout were measured for each sample at 5 locations as illustrated in Figure 2a,
and their averages were used as the resulting cut qualities for each sample. The description
of Rp is schematically shown in Figure 2b. Note that Rp = α◦/90◦, where α◦ is schemat-
ically defined in Figure 2b. The Kw, HAZin, and HAZout were identified through visual
examination, employing a method identical to that utilized in [4], which was subsequently
verified through microstructural analysis.

Figure 2. Diagram illustrating the (a) curved cut profile and the locations for measuring Kw, HAZin,
and HAZout (left), explanation of Kw, HAZin, and HAZout (right) and (b) definition of Rp and α◦.
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All dimensional measurements were conducted employing a computer vision setup,
comprising a camera (Cyclops SU1000-8, AISYS Vision Co., Taipei, Taiwan), a lens (Optem
MVZL 34-11-10, Optem Inc., Medina, OH, USA), and an LED light source (white light).
Measurement via computer vision was carried out using custom-developed software
utilizing Python 3.9 (Python Software Foundation, Wilmington, DE, USA) and OpenCV
(Open Source Computer Vision Library). The main operation procedures are described
as follows:

1. Before measuring the object, perform camera calibration with a metal stage micrometer
(OBMM 1/100, OLYMPUS, Tokyo, Japan). This procedure determined the measure-
ment resolution (2.09 µm/pixel).

2. Draw lines for the dimensions of Kw, HAZin, HAZout, and Rp. Different colors were
used to distinguish Kw, HAZin, HAZout, and Rp.

3. Perform image segmentation using the HSV color space.
4. Determine the length of each line for each color. Firstly, convert the image to grayscale

and then convert the grayscale image to black and white. The step continued by
measuring the length in units of pixels. Finally, to determine the dimensions in
the metric unit, multiply the dimensions in pixels by the measurement resolution
(µm/pixel) as determined in Step (1).

The measurement results and the corresponding laser process parameters are given in
Table S1 of Supplementary Materials. A gray relational analysis (GRA) [19] approach was
utilized to quantify and sort the value of cut quality. The best, the average, and the worst
cut qualities were found in Experiment Nos. 34, 44, and 18, respectively. Figure 3 shows
the cut-quality images of Experiment Nos. 34, 44, and 18. Figure 4 shows the interval
plots for HAZin and HAZout of the 81 sets of experiments, which were analyzed using the
MINITAB 18 software (Minitab, Inc., State College, PA, USA). As shown in Figure 4, HAZin
is significantly larger than HAZout. During laser cutting, the kerf absorbed the laser energy
and transferred it through heat conduction to the material [20]. HAZin was larger than
HAZout because of lower heat conduction into the material from the inner side of the curved
cut and a greater accumulation of heat energy.

Figure 3. Images of (a) the best cut quality, (b) the average cut quality, and (c) the worst cut quality.
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Figure 4. Interval plots for HAZin and HAZout.

3. Effects of Laser Process Parameters on Cut Quality

The relative importance of each input parameter in correlation with cut quality was
determined using a Random Forest Method (RFM) [21]. The Random Forest Regressor
model from the Scikit-learn module in Python 3.9 was specifically used for this task.
Figure 5 displays the results. The cut quality was quantified using the normalized cut
quality (NCQ), which was computed using the following formula:

NCQ =
1
4

Kw
Kwmax +

1
4

HAZin
HAZmax

in
+

1
4

HAZout

HAZmax
out

+
1
4

Rp
Rpmax (1)

where Kwmax, HAZmax
in , HAZmax

out , and Rpmax represent the maximum values observed in the
experimental data for Kw, HAZin, HAZout, and Rp, respectively. Consequently, a lower
NCQ value signifies superior cut quality.

Figure 5. Percentage of variable importance calculated by RFM.

The normalization process in Equation (1) divides each metric by its maximum value
to ensure that all cut quality indices are on an equal scale for fair comparison. This
normalization is essential to accurately evaluate cut quality because each index varies in
range, and it is crucial to ensure that they are all evaluated on the same scale. The motivation
behind this normalization is to prevent any individual metric from dominating the NCQ
calculation due to differences in their original scales. Without normalization, metrics with
larger numerical values would inherently carry more weight in the calculation of NCQ,
potentially skewing the results and leading to inaccurate interpretations of cut quality.
The weights in Equation (1) were equal, indicating that each quality metric was given
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an equal value. This decision was made to ensure fairness and balance in evaluating cut
quality [7,22,23]. According to Figure 5, the cut quality is most significantly influenced by
the laser pulse frequency, followed by the laser power, curvature radius, and cutting speed.

The MINITAB 18 software was utilized to construct Response Surface Method (RSM)
models, aiming to investigate the impacts of individual laser process parameters on cut
quality. Validation of the RSM models was performed through analysis of variance, demon-
strating significant p-values below 0.05. The RSM results are illustrated in Figure 6.

Figure 6. Response surface plots of NCQ for various pairs of variables: (a) R and P, (b) R and f, (c) R
and v, (d) P and f, (e) P and v, and (f) f and v.

Figure 6a–c demonstrate that as the curvature radius is raised to a critical level, there
is a decrease in NCQ. However, NCQ starts to increase again once the curvature radius
surpasses this critical value. Cutting with a small curvature radius generates a larger
accumulation of heat energy at the kerf due to a smaller area of heat conduction into the
material [20]. Consequently, there is an increase in the quantity of molten material, leading
to higher kerf width, HAZ, and the formation of a recast layer. A higher value of NCQ for
a larger curvature radius greater than the critical one can be attributed to the exothermic
reaction with a higher amount of dissolved oxygen in the oil during laser cutting. A
larger surface area covered during laser cutting implies a higher concentration of oxygen
dissolved in the oil [24]. The presence of dissolved oxygen in the oil triggers exothermic
reactions at elevated temperatures within the cutting region, leading to excessive heat
generation during the cutting process [25,26].
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As depicted in Figure 6a,d,e, raising the laser power typically leads to an increase in
NCQ. Employing lower laser power results in less energy being transferred to the kerf,
which decreases the amount of molten material [27], consequently reducing kerf width,
HAZ, and the volume of the recast layer. Conversely, Figure 6b,d,f demonstrate that
increasing the pulse frequency generally lowers the NCQ. Increasing the pulse frequency
(f ) of laser irradiation results in a decrease in the laser peak power (Pp). It should be
noted that Pp = Pave/tf, where Pave represents the average power and t represents the pulse
duration [27]. As a result, increasing the pulse frequency led to a reduction in the kerf
width, HAZ, and thickness of the recast layer.

Figure 6c,e,f demonstrate a positive correlation between increasing the cutting speed
and the overall rise in NCQ. Due to the absorption of laser energy by the kerf and its
subsequent transfer to the substrate through heat conduction [20], a higher cutting speed
minimizes energy loss through heat conduction and maximizes the amount of material
that melts. Consequently, the outcome was an increased kerf width, a wider HAZ, and a
greater quantity of recast layer.

In summary, both RFM and RSM analyses demonstrate the significant impact of all
controlled laser process parameters on cut quality. Therefore, it is affirmed that R, P, f,
and v were the suitable input parameters chosen for the AI-based models to predict cut
quality. The results of investigating the influence of process parameters on cutting quality
can be effectively used to improve the laser cutting process in the industry. This involves
adjusting these parameters to their optimal values to minimize the HAZ, kerf width, and
re-welded portions.

4. AI-Based Modeling and Optimization

This work involved the development of four AI-based models, specifically SNN, DNN,
GRNN, and ANFIS, for the purpose of predicting cut quality. These models utilized laser
process characteristics as inputs. The main goals of creating these four models were to
assess their effectiveness and determine the most suitable model for accurate predictions
of cut characteristics in the given laser processes. A comparative analysis was conducted
to establish the optimal model performance. The most superior model was subsequently
employed as the objective function in M-EO optimization to acquire the ideal process
parameters that result in the highest grade of cut. Figure 7 illustrates the overall process of
using AI-based modeling to predict and optimize the quality of the cut. Specifics of each
stage are detailed below. The SNN, DNN, GRNN, ANFIS, and M-EO models were created
using Python 3.9 code.

Figure 7. General workflow in AI-based modeling.
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4.1. Dataset Pre-Processing

To account for the potential absence of the ideal combination of process parameters
inside the process window of the 81 experimental runs, the lower and upper limits of
each process parameter were expanded beyond the specified levels for the purpose of
normalization. The input and output variables were initially standardized to a range of 0
to 1.

4.2. Shallow Neural Network and Deep Neural Network

An SNN refers to a type of ANN that has a feed-forward structure with only one
hidden layer [28]. On the other hand, a DNN, which is also a feed-forward ANN, has
several hidden layers [28,29]. Figure 8 provides a schematic representation of the overall
architecture of SNN and DNN, which are both built using the Keras framework. The input
variables included R, P, f, and v, whilst the output variables encompassed Kw, HAZin,
HAZout, and Cp. Here, Cp denotes the clean-cut portion, which is determined using the
formula Cp = 1-Rp. The hidden neurons utilized the rectified linear unit (ReLU) activation
function, while the output neurons employed the sigmoid activation function. ReLU is
preferred for hidden neurons due to its simplicity and effectiveness. It addresses the
vanishing gradient problem, leading to faster convergence during training. By setting
negative input values to zero, ReLU introduces non-linearity, facilitating efficient learning
of complex patterns in hidden layers [30]. Using the Sigmoid activation function for
output neurons in this application scales the output values between 0 and 1, suitable for
representing probabilities or proportions. Sigmoid ensures the output values are bounded
within this range, facilitating their interpretation. Additionally, Sigmoid’s differentiability
supports optimization techniques like back-propagation, aiding in the efficient adjustment
of weights and biases during the learning phase [31]. Such choice enhances convergence
and training stability in both the SNN and DNN architectures described. The AI-based
models were constructed by randomly dividing the datasets into training, validation, and
testing sets. The back-propagation algorithm was used to make adjustments to weights
and biases during the learning phase, following the Adam optimizer technique.

Figure 8. Schematic of (a) an SNN model and (b) a DNN model.

The training of SNN and DNN consists of two processes. Firstly, a pre-trained model
was developed using the EO algorithm [32] by determining the number of neurons, the
dropout rate in each hidden layer, and the random seed number. The significant effects
of the dropout rate and random seed number on the accuracy of the model have been
reported in the literature [33,34]. Secondly, the pre-trained models were then re-trained
(fine-tuned) to improve their accuracy.

During the development of the pre-trained model, 60%, 20%, and 20% of the
81 datasets were allocated for training, validation, and testing, respectively. To assess
the performance of the SNN and DNN models in generating prediction data, a 5-fold
cross-validation (CV) technique was employed during fine-tuning. In this fine-tuning
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phase, 83% of the 81 datasets were utilized for training and validation within the 5-fold CV,
while the remaining 17% were reserved for testing purposes. The utilization of CV offers
several advantages, as previously discussed in [35,36].

4.3. Generalized Regression Neural Network

GRNN is a neural network that utilizes radial basis function (RBF) and has a non-linear
relationship between input and output variables. The construction of a GRNN consists of
four layers: an input layer, a pattern layer, a summation layer, and an output layer. The
GRNN in this study follows a similar structure to that described in Reference [13], featuring
a single output neuron. The training process of the GRNN is significantly influenced by
a smoothing factor (σ). The comprehensive methodology of the GRNN was provided in
Reference [13]. The pyGRNN package was utilized to construct the GRNN structure in
this investigation. The σ parameter and the random seed number were optimized using a
GridSearchCV technique with a 5-fold CV.

4.4. Adaptive Neuro-Fuzzy Inference System

ANFIS combines the principles of ANN and fuzzy logic systems to establish the
mathematical connection between input and output variables. Its structure comprises an
input layer, a fuzzification layer, a product layer, a normalized layer, a defuzzification
layer, and an output layer. The ANFIS structure adopted in this study closely resembles
that described in Reference [14]. The detailed procedure for implementing ANFIS was
described in Reference [37]. In this study, the ANFIS structure was created using the anfis
library. A GridSearchCV technique with a 5-fold CV was also used to optimize the random
seed number, the membership functions (gaussian, gbellmf, and sigmoid), and the number
of epochs.

4.5. Performance Evaluation of the Developed AI-Based Models

Statistical indicators, specifically the mean absolute percentage error (MAPE) and the
absolute fraction of variation (R2), were utilized to evaluate the effectiveness of the AI-based
models [11,38]. When the MAPE value is close to zero and the R2 value is close to one,
the performance of a model is regarded to be superior. The following Equations (2) and (3)
were utilized to arrive at these values,

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ai − pi
ai

∣∣∣∣·100% (2)

R2 = 1 −


n
∑

i=1
(ai − pi)

2

n
∑

i=1
p2

i

 (3)

where ai is the expected value, pi is the predicted value, and n is the number of data. In
this study, ai stands for the ith dataset for parameters Kw, HAZin, HAZout, and Rp acquired
from experimental observations, while pi denotes the ith dataset for the same parameters
Kw, HAZin, HAZout, and Rp, respectively, predicted by the SNN, DNN, GRNN, and ANFIS
models. The variable n represents the quantity of data utilized for calculations. The process
for calculating MAPE values to evaluate model performance involves the following steps:

1. Calculate the absolute error for each data point by finding the absolute difference
between the predicted value (pi) and the actual value (ai).

2. Determine the relative error for each data point by dividing the absolute error by the
actual value (ai).

3. Sum up all the relative errors.
4. Divide the total sum of relative errors by the total number of data points (n).
5. Multiply the result by 100% to express it as a percentage.
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An SNN and DNNs consisting of 2–6 hidden layers were created as previously ex-
plained. The rankings of the SNN’s and DNNs’ performance after fine-tuning were deter-
mined based on their scores, which were computed using the following formula [11]:

Score =
1
3

fe-training +
1
3

fe-validation +
1
3

fe-testing (4)

where fe-training, fe-validation, and fe-testing represent the normalized MAPE values for the train-
ing, validation, and testing sets, respectively. They were determined as follows:

fel =
MAPEmax−MAPEl

MAPEmax − MAPEmin
(5)

where fel represents the normalized MAPE of an SNN or DNN with l hidden layers,
MAPEmin and MAPEmax denote the minimum and maximum MAPE values, respectively,
and MAPEl signifies the MAPE of the SNN or DNN with l hidden layers.

Figure 9 displays the scores of the SNN and DNNs with 2–6 hidden layers. Figure 9
demonstrates that the DNN model with 5 hidden layers achieves the highest score com-
pared to the SNN and other established DNNs. Therefore, the DNN model with 5 hidden
layers was used to predict the cut characteristics. The architecture of the DNN consisted
of 5 hidden layers with the following number of neurons in each layer: 4-(101-101-113-
132-127)-4. It should be noted that the quantity of nodes in each hidden layer is denoted
by the numbers included in parentheses in a specific order. The number of nodes in the
input layer is shown by the value preceding the parenthesis, whereas the number of nodes
in the output layer is indicated by the value after the parenthesis. Table 2 displays the
results of the SNN, 5-hidden-layer DNN, GRNN, and ANFIS models’ performance. Table 2
demonstrates that the 5-hidden-layer DNN outperforms SNN, GRNN, and ANFIS, as
evidenced by its lowest MAPE value and highest R2 value in training, validation, and
testing. The 5-hidden-layer DNN is capable of accurately predicting the cut quality in the
curved laser cutting process of thin non-oriented electrical steel sheets. As shown in Table 2,
the predictive accuracy of Kw, HAZin, HAZout, and Cp is demonstrated by remarkably
low MAPE values across their respective training, validation, and testing datasets, with
0.32%, 0.52%, and 0.87% for Kw; 0.23%, 0.38%, and 0.49% for HAZin; 0.25%, 0.35%, and
0.38% for HAZout; and 0.23%, 0.34%, and 0.23% for Cp, respectively. Following that, the
5-hidden-layer DNN model was chosen as the objective function in M-EO optimization to
identify the optimal process parameters for achieving the highest quality of cut.

Figure 9. Scores obtained by the SNN and DNNs with varying numbers of hidden layers following
fine-tuning.
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Table 2. Prediction performance of SNN, 5-hidden-layer DNN, GRNN, and ANFIS.

Quality
Index

AI-Based
Models

MAPE (%) R2

Training Validation Testing Training Validation Testing

Kw

SNN 2.14 4.21 3.29 0.9986 0.9962 0.9979
5-hidden-layer DNN 0.32 0.52 0.87 1.0000 0.9999 0.9999

GRNN 2.36 3.34 4.09 0.9976 0.9948 0.9921
ANFIS 0.38 3.83 4.87 0.9996 0.9924 0.9896

HAZin

SNN 1.76 2.51 1.80 0.9990 0.9985 0.9995
5-hidden-layer DNN 0.23 0.38 0.49 1.0000 1.0000 1.0000

GRNN 0.95 2.84 4.16 0.9997 0.9973 0.9950
ANFIS 0.23 0.66 3.66 1.0000 0.9998 0.9955

HAZout

SNN 1.14 2.10 2.23 0.9997 0.9993 0.9992
5-hidden-layer DNN 0.25 0.35 0.38 1.0000 1.0000 1.0000

GRNN 2.45 4.39 3.86 0.9984 0.9943 0.9951
ANFIS 1.03 4.12 3.10 0.9992 0.9939 0.9966

Cp

SNN 1.83 2.39 0.89 0.9993 0.9989 0.9998
5-hidden-layer DNN 0.23 0.34 0.23 1.0000 1.0000 1.0000

GRNN 0.04 3.47 3.14 1.0000 0.9960 0.9979
ANFIS 1.05 3.73 5.32 0.9993 0.9970 0.9942

4.6. Cut Quality Optimization Using Modified Equilibrium Optimizer (M-EO)

EO is a metaheuristic optimization technique inspired by the dynamic mass bal-
ance within a control volume [32]. The adjustment of particle concentration in EO pri-

marily involves factors such as an equilibrium pool (
→
Ceq,pool), an exponential term (F),

and a generation rate (G). A detailed explanation of the EO algorithm can be found in
Reference [32]. In EO, implementing memory-saving techniques for particles aids in
achieving an equilibrium state. This mechanism bears resemblance to PSO’s Pbest con-
cept, where each particle’s fitness value in the current iteration is evaluated against that
of the previous iteration, and if it yields a better fit, it replaces the previous value. In
this research, the memory-saving strategy was executed through the following proce-
dure. Firstly, all particles of the previous iteration and the current iteration were com-
bined. The combined particles were then sorted according to their fitness values. Next,
the best particles were selected as the best-so-far ones. Furthermore, the top four of

the best-so-far particles were then used as
→
Ceq(1),

→
Ceq(2),

→
Ceq(3), and

→
Ceq(4), respectively,

in the updated equilibrium pool
→
Ceq,pool =

{→
Ceq(1),

→
Ceq(2),

→
Ceq(3),

→
Ceq(4),

→
Ceq(ave)

}
, where

→
Ceq(ave) =

(→
Ceq(1) +

→
Ceq(2) +

→
Ceq(3) +

→
Ceq(4)

)
/4.

In the optimization process for enhancing cut quality, the population comprised
200 particles, with a maximum number of iterations of 500. The variables including R,
P, f, and v were confined within specific ranges: 0.5–6 mm, 11–18.6 W, 20–40 kHz, and
0.05–0.3 mm/s, respectively. Each particle’s fitness was determined using the NCQ formula
(Equation (1)). Subsequently, the 5-hidden-layer DNN was integrated with the M-EO to
identify the optimal process parameters. Figure 10 illustrates the optimal and average
fitness levels of all particles throughout each iteration. The evolution of fitness depicted in
Figure 10 indicates that M-EO outperforms EO in attaining the equilibrium state, and the
solutions obtained through M-EO are superior to those of EO. These outcomes underscore
the enhancements achieved by the developed M-EO.
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Figure 10. The best fitness and average fitness obtained by M-EO and EO.

The resulting optimal values for curvature radius, laser power, pulse frequency, and
cutting speed were determined as 2.9 mm, 11.29 W, 26.04 kHz, and 0.27 mm/s, respectively.
It is noteworthy that the optimal laser power (11.29 W) was lower than the lowest laser
power used in the initial experiment (12 W), while the optimal cutting speed (0.27 mm/s)
exceeded the highest cutting speed employed in the initial experiment (0.20 mm/s). This
indicates that the optimal combination of laser process parameters fell outside the range
explored in the initial laser cutting trials. The predicted optimal cut qualities corresponding
to these parameters were 46.60 µm, 62.58 µm, 55.85 µm, and 0.021 for Kw, HAZin, HAZout,
and Rp, respectively.

The predicted HAZout of 55.85 µm for the optimal cut quality slightly exceeded that of
the most favorable cut quality sample (Experiment No. 34) from the initial trials, which mea-
sured 55.80 µm. Nevertheless, when the laser process parameters from Experiment No. 34
were applied, the predicted HAZout calculated by the 5-hidden-layer DNN model was
55.87 µm, suggesting that the predicted HAZout for Experiment No. 34 was less desirable
compared to the optimal outcome. Conversely, while the optimal HAZin value (62.58 µm)
surpassed that of Experiment No. 34 (62.12 µm) and the prediction for Experiment No. 34
(62.26 µm), the overall fitness of the optimal cut quality (0.4524) was lower than that of the
specified Experiment No. 34 (0.4552). Therefore, the developed M-EO algorithm effectively
identifies the optimal laser process parameters necessary to achieve the best cut quality.

4.7. Experimental Validation

Five validation experiments were repeatedly conducted for the optimal process pa-
rameters. The experimental validation results and comparisons with those in the initial
Experiment No. 34 are summarized in Table 3. The comparisons show that an average
improvement of 8.89%, 2.14%, 9.49%, and 83.08% was observed for Kw, HAZin, HAZout,
and Rp, respectively, using the proposed optimization method. The average improvement
for the jth quality index, as depicted in Table 3, is determined using the following formula:

Average Improvementj =
IEj-AVEj

IEj
·100% (6)

where IEj represents the value of Initial Experiment No. 34 for the jth quality index, and
AVEj denotes the average value derived from five experimental validations for the same
quality index.
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Table 3. Experimental validation test results.

Quality Index
Validation Experiment No. Prediction of

Optimal Value
Initial Experiment

No. 34
Average

Improvement (%)

1 2 3 4 5

Kw (µm) 42.21 42.42 45.01 41.56 41.77 46.60 46.75 8.89
HAZin (µm) 60.91 60.92 60.51 61.08 60.52 62.58 62.12 2.14
HAZout (µm) 47.49 49.58 55.09 52.85 47.51 55.85 55.80 9.49

Rp 0.007 0.006 0 0 0.009 0.021 0.026 83.08

The proposed optimization method led to consistent improvements in Kw, HAZin,
HAZout, and Rp, which were observed during validation experiments conducted with
optimal laser process parameters. Specifically, for Kw, the validation experiments resulted
in an average of 42.59 µm, representing an average improvement of 8.89% compared
to initial experiment No. 34. Regarding HAZin, the validation experiments showed an
average of 60.79 µm, reflecting an average improvement of 2.14% compared to the initial
experiment. Similarly, for HAZout, the validation experiments yielded an average value of
50.50 µm, indicating an average improvement of 9.49% compared to the initial experiments.
Lastly, for Rp, the validation experiments produced an average value of 0.004, indicating
an average improvement of 83.08% compared to the initial experiment.

Furthermore, the straight cut was performed using the ideal laser power, pulse fre-
quency, and cutting speed, which were identical to those used for the curved cut with a
curvature radius of 2.9 mm. Both cuts had a length of 4.55 mm. The straight cut was made
five times in a series of studies. Table 4 displays the measurements for kerf width (Kw), left
side heat-affected zone (HAZleft), right side heat-affected zone (HAZright), and re-welded
portion (Rp). Table 4 demonstrates that the majority of experimental outcomes for straight
cuts do not involve any re-welded portion, and these outcomes are comparable to those
seen for curved cuts (Table 3).

Table 4. Results of straight cut using the optimal laser power, pulse frequency, and cutting speed.

Quality Index
Straight-Cut Experiment No.

1 2 3 4 5

Kw (µm) 41.77 40.44 40.55 41.74 41.39
HAZleft (µm) 60.74 58.38 57.85 58.96 61.19

HAZright (µm) 58.26 57.51 56.20 59.75 56.86
Rp 0 0.013 0 0 0

Figure 11 illustrates the comparisons of kerf width (Kw) and HAZ between curved
cuts and straight cuts, utilizing the optimal process settings. Figure 11a demonstrates that
the average Kw of the straight cut was somewhat less compared to the curved cut. The
interval plots of the curved cut in Figure 11b clearly demonstrate that HAZin is considerably
greater than HAZout. This aligns with the information presented in Figure 4. However, the
interval plots in Figure 11b indicate that there are no notable distinctions between HAZleft
and HAZright. The difference in HAZ between straight and curved cuts can be attributed
to specific effects of beam trajectory in curved laser cutting. These effects include uneven
distribution of beam energy, concentrated bulk heating of the material, as well as heat
conduction converging near the center of rotation and diverging away from it [39].

The outcomes from the validation experiments for both the curved and straight cuts
demonstrated the effectiveness and reliability of the combined 5-hidden-layer DNN and M-
EO models. These models successfully identified an optimal set of laser process parameters,
even beyond the specified process window from the initial experiments, resulting in
significant enhancements. Notably, while the models were initially developed based on
the results from curved cuts, they proved adaptable and capable of yielding comparable
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outcomes for straight cuts as well. Consequently, the methodologies introduced in this
study offer a reliable approach for predicting the optimal laser process parameters and
subsequently achieving the optimal cut quality in the laser cutting of thin non-oriented
electrical steel sheets.

Figure 11. Interval plots illustrating (a) Kw and (b) HAZ for curved and straight cuts in laser cutting
employing the optimal process parameters.

For comparison, the MAPE of prediction in various studies of laser cutting and
machining is presented in Table 5. In addition, the process optimization method and
the optimization constraints are also presented in Table 5 for some studies. The MAPE
results in this study, compared to those obtained in other research and presented in Table 5,
suggest the effectiveness of the proposed DNN-EO model in predicting cutting quality
and optimizing the process. In addition to the DNN-EO model’s capability to achieve
superior prediction accuracy compared to other models, as evidenced in Table 5, a primary
advantage of the models created in this study is their capacity to extend towards identifying
optimal parameters beyond the initial experimental phase. These represent key advantages
of the developed models.

Table 5. Comparison of MAPE of prediction and search space for optimization in various studies of
laser cutting and machining.

References Model MAPE (%) Optimization Method Optimization Constraints

Rajamani et al. [14] ANFIS-GA 1.01 WOA

Within the process window
given in the initial experiments

Ding et al. [13] GRNN 2.34 NSGA II
Chaki et al. [40] ANN 1.06 PSO

Vagheesan et al. [41] ANN 0.60 GA
Yang et al. [42] ANN <7.00 GA

Kechagias et al. [12] ANN 9.83 - -
Alajmi and Almeshal [43] ANFIS-QPSO 4.95 - -

This study DNN-EO 0.38 M-EO Beyond the process window
given in the initial experiments

The MAPE of this study shown in Table 5 is the average of training, validation, and
testing. Rajamani et al. [14] employed a hybrid ANFIS-GA approach to forecasting three
quality metrics during the laser cutting of Hastelloy C276 sheets. Additionally, in their
study, Rajamani et al. [14] employed a whale optimization algorithm (WOA) to determine
the optimal laser process parameters. In another investigation, a GRNN was employed
in conjunction with a non-dominated sorting GA (NSGA) II algorithm to both predict
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and optimize kerf width and surface roughness in the laser machining of 304L stainless
steel plates [13]. Other studies have utilized various optimization techniques such as PSO
and ANN [40] as well as GA and ANN [41] to enhance cut quality in the laser cutting of
aluminum alloy sheets.

Yang et al. [42] utilized ANN and GA to forecast and optimize surface roughness dur-
ing the machining of graphite/polymer composite. In a separate study,
Kechagias et al. [12] employed an ANN to predict four quality metrics in the laser-cutting
process of PMMA sheets. Alajmi and Almeshal [43] employed a quantum PSO (QPSO)
algorithm to identify the optimal ANFIS parameters for predicting surface roughness in the
machining of AISI 304. The performance of the DNN-EO model developed in this study
surpasses that of other comparative AI-based models in various studies, as indicated by the
MAPE values in Table 5. Furthermore, the focus of prior studies [12–14,40–43] was solely
on identifying the optimal laser process parameters within the provided experimental
conditions. In contrast, the models developed in this study can extend to identifying the op-
timal parameters beyond the initial experimental window. The comprehensive comparison
demonstrates the superiority of the models developed in this study over those in previous
research [12–14,40–43], highlighted by the smaller MAPE value and their capability to
identify optimal process parameters beyond the initially provided experimental range.

5. Conclusions

The curved laser cutting of thin non-oriented electrical steel sheets in an oil environ-
ment was investigated utilizing a pulsed fiber laser system. To predict and optimize various
aspects of cut quality, an efficient 5-hidden-layer DNN model and a modified EO algorithm
were created. The cut quality was characterized by four key indices: kerf width, inner HAZ,
outer HAZ, and re-welded portion. Insights drawn from the outcomes are summarized
as follows.

1. The significant effect of each controlled laser process parameter on cut quality was
validated using RFM and RSM. Thus, they were suitably used as inputs for the AI-
based models. The RFM results showed that laser pulse frequency was the most
important variable affecting cut quality, followed by laser power, curvature radius,
and cutting speed.

2. The 5-hidden-layer DNN emerged as the most accurate among the developed DNNs,
showcasing superior performance compared to the SNN, GRNN, and ANFIS models.
It demonstrated exceptional effectiveness with remarkably low MAPE values and
exceptionally high R2 values across the training, validation, and testing datasets.

3. The M-EO, in conjunction with the 5-hidden-layer DNN, was employed to determine
the most favorable laser process parameters for achieving the highest quality cut.
The advanced M-EO has the capability to identify the most effective laser process
settings in order to get a superior cut quality compared to the results obtained in the
initial experiments. Based on the fitness evolution, M-EO achieved equilibrium before
EO, and the solution obtained using M-EO was superior to that obtained using EO,
demonstrating the superiority of M-EO over EO.

4. The validation experiments for both curved and straight cuts confirmed the reliability
and robustness of the models created in this study. These models effectively produced
the best cut quality and demonstrated significant enhancements across all quality
indices. Thus, the methods proposed herein offer a reliable means of predicting the
optimal laser process parameters and achieving the resulting optimal cut quality for
the laser cutting of thin non-oriented electrical steel sheets.

5. The DNN and M-EO models developed in this study exhibit superior performance
compared to those in previous research, particularly in terms of MAPE value. The
proposed DNN model achieved a lower MAPE value, indicating its higher accuracy
in predicting cut quality. Additionally, the M-EO model demonstrated the capability
to identify optimal process parameters that extend beyond the predefined window of
initial experiments, resulting in the attainment of optimal cut quality.
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