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Abstract: Packing irregular objects composed by generalized spheres is considered. A generalized
sphere is defined by an arbitrary norm. For three classes of packing problems, balance, homothetic
and sparse packing, the corresponding new (generalized) models are formulated. Non-overlapping
and containment conditions for irregular objects composed by generalized spheres are presented.
It is demonstrated that these formulations can be stated for any norm. Different geometrical shapes
can be treated in the same way by simply selecting a suitable norm. The approach is applied to
generalized spheres defined by Lp norms and their compositions. Numerical solutions of small
problem instances obtained by the global solver BARON are provided for two-dimensional objects
composed by spheres defined in Lp norms to demonstrate the potential of the approach for a wide
range of engineering optimization problems.

Keywords: packing; generalized spheres; composed objects; arbitrary norms; mathematical modeling;
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1. Introduction

Packing problems consist in arranging several geometrical objects in a larger object
referred to as a container. The objects must be allocated subject to placement conditions, i.e.,
without mutual overlapping (non-overlapping condition) and all objects completely inside
the container (containment condition). A certain criterion must be optimized, e.g., maxi-
mizing the number of objects allocated in a given container or minimizing the container’s
metrical characteristics for given objects [1,2].

One of the most frequently studied placement problems is packing spherical objects,
where a sphere is defined as the set of points whose distance from a center is bounded by a
positive radius.

The non-overlapping condition for spheres simply states that the distance between each
pair of the centers must be at least the sum of their radii. Correspondingly, the containment
condition ensures for any sphere that the distance between the center of the sphere and the
boundary of the container is larger than or equal to the sphere’s radius. Applications range
from planning radio-surgical treatment of tumors [3,4] to studying structure of nanomaterials
[5–7]; from spherical packing in coding theory [8,9] to modeling power bed fusion in additive
manufacturing [10,11]. See also [12–17] and the references therein.
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Packing spherical-like shapes having a certain symmetry can be found, e.g., in bi-
ology [18,19] and material sciences [20]. Super-ellipsoids are widely used to represent
various forms of particles in granular and soft matter issues, see, e.g., [21,22]. Correspond-
ing packing problems typically are solved by numerical simulation using discrete element
methods [23].

Packing irregular objects (nesting) is one of the most challenging problems in packing
issues. Special geometric tools are used for modeling irregular packing problems, such as
raster point, direct trigonometry, no-fit polygon and phi-functions, to mention a few [24–28].
Irregular n-dimensional (n ≥ 4) packing problems arising in multi-resource project manage-
ment can be found in [29]. Packing objects presented by unions of spheres form an important
class of irregular packing problems arising in studying multicomponent structures, e.g., in
medicine and nanotechnology, see [30,31] and the references therein. A closely related problem
is covering objects by spheres. This way, complex shapes can be represented approximately
by a union of simple basic objects [32,33].

In most publications on sphere packing, spheres are defined by the Euclidean norm.
However, many applied and theoretical packing problems, e.g., producing square, hexag-
onal or dodecagonal CMS sensors [34] or tiling non-overlapping distinct squares in a
square container [35], can be considered as sphere packing for spheres defined in a suitable
norm. To the best of our knowledge, using non-Euclidean norms to define distances in
sphere packing problems was first proposed in [36–38]. Packing circular-like objects (cir-
cles, ellipses, regular polygons) defined by different norms was considered for containers
approximated by a finite grid.

Irregular packing problems typically require special sophisticated modeling approaches
and techniques to represent placement (non-overlapping, containment) conditions (see,
e.g., [24] and the references therein). However, in many applications, the shapes involved
are not spherical and possess similar properties, e.g., have certain levels of central sym-
metry [34,35]. Our objective in this paper is to describe and investigate a class of irregular
packing problems where placement conditions can be stated as simple, as in sphere packing.

A new class of irregular packing problems referred to as Packing Objects Composed
by Generalized Spheres (PCGS) is introduced. It is demonstrated that various geometrical
shapes for objects/containers can be generated by simply choosing suitable norms, while
maintaining the simplicity of presenting placement conditions. Some classical formulations
are revisited, such as balance and/or sparse packing in a minimal spherical container, find-
ing the maximal number of spheres placed in a spherical container, and packing irregular
objects represented by unions of spheres. It is demonstrated that these formulations are
norm-independent, i.e., can be stated for any norm used. Thus, different geometrical shapes
can be treated in the same way by simply selecting a suitable norm.

The main contributions of this paper are

1. The problem of Packing Objects Composed by Generalized Spheres (PCGS) is formu-
lated for objects and containers represented by spheres in arbitrary norms.

2. Non-overlapping and containment conditions considering allowable distances for
irregular objects composed by generalized spheres are introduced. By means of a new
composition condition, rotations and reflections of the irregular objects are enabled.

3. The generalized balance, homothetic and sparse packing problems for objects com-
posed by the generalized spheres are stated for various norms.

The rest of the paper is organized as follows. Section 2 presents basic definitions and
introduces the PCGS problem. Section 3 considers generalized balance, homothetic and
sparse packing problems for various Lp and composite norms. Numerical experiments
for spheres defined by various norms are presented in Section 4. Some final remarks are
provided in Section 5.



Mathematics 2024, 12, 935 3 of 17

2. Mathematical Modeling

In this section a continuous optimization model for the PCGS problem is introduced
based on an arbitrary norm ∥ · ∥: Rn → [0, ∞] . It provides a unifying framework for
various packing problems.

2.1. The Main Definitions

Let the set of generalized spheres, each with a fixed radius ri > 0 and a variable center
ξi ∈ Rn be defined as follows:

Si(ξi) := {x ∈ Rn|∥x − ξi∥ ≤ ri}, i ∈ I := {1, . . . , m}.

The term generalized spheres is used to highlight that by choosing suitable norms, a
spectrum of spatial shapes can be generated in Rn. A family of the composed objects
{Ak ⊂ Rn|k ∈ J}, J := {1, . . . , K} is defined as follows. Each object Ak is a union of spheres
Si(ξi) (i ∈ Ik) Ik ⊂ I such that

• I1, . . . , IKis a partition of I, i.e., Ik1 ∩ Ik2 = ∅ for all (k1, k2) ∈ J × J with
k1 ̸= k2 and ∪

k∈J
Ik = I;

• Ak = ∪
i∈Ik

Si(ξi);

• ∥ξi − ξj∥ = aij for all (i, j) ∈ ℑk := {(i, j) ∈ Ik × Ik|i < j} for k ∈ J,

(1)

where aij are given nonnegative numbers. Each set ℑk contains indices of all pairs of
spheres from the composed object Ak.

The last condition (1) ensures that all pairwise distances between centers of the spheres
remain constant under all changes of the coordinates of the centers. This condition guar-
antees shape preservation for the composed object under translation and rotation, and
is referred to as the composition condition. Irregular objects composed by five generalized
spheres defined in Lp norms (p = 1, p = 2, p = ∞) are illustrated in Figure 1.
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Figure 1. Composed object A =
5
∪

i=1
Si(ξi): (a) p = 1, (b) p = 2, (c) p = ∞.

Packing Objects Composed by Generalized Spheres (PCGS) aims to pack a family of objects
Ak, k ∈ J composed by spheres Si(ξi), i ∈ Ik in a larger sphere S0 = {x ∈ Rn|∥ x − ξ0 ∥≤ R}
(referred to as a container) to optimize a certain objective subject to appropriate place-
ment conditions.

The following basic placement conditions are used in the PCGS problem:

(a) a containment condition ensures that all composed objects are completely in the container,
(b) a non-overlapping condition states that there is no overlapping between any pair of the

composed objects.

To formulate conditions (a,b) the following notations are used. Let be a collection of all
pairs (k, l) of objects with k < l. Note that a pair of spheres in a single object Ak may overlap,
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depending on the given values of aij for (i, j) ∈ ℑk and ri for i ∈ Ik. The following set, denoted by
K, will be used to state the pairwise non-overlapping for the composed objects:

K := {(k, l) ∈ J × J|k < l}.

Correspondingly, the containment and non-overlapping conditions can be written in
the form

∥ ξi − ξ0 ∥≤ R − ri, ∀i ∈ I, (2)

∥ ξi − ξj ∥≥ ri + rj, ∀(i, j) ∈ Ik × Il , (k, l) ∈ K. (3)

Constraint (2) states that each sphere Si(ξi)(i ∈ I) lies completely in the container S0.
Constraint (3) guarantees that any two spheres from different composed objects do not
overlap. More specifically, the interiors of these two spheres do not intersect, while they
may touch each other.

The basic placement conditions can be modified to represent specific packing situations.
The distance condition for containment states that if the distance between the object

Ak (k ∈ J) and the boundary of the container S0 is at least ρk ≥ 0, i.e.,

∥ ξi − ξ0 ∥≤ R − ri + ρk ∀i ∈ Ik, k ∈ J. (4)

If ρk = 0 for all k ∈ J, then (4) coincides with the containment constraint (2).
The distance condition for non-overlapping ensures that the distance between two

objects Ak and Al is at least ρkl ≥ 0, i.e.,

∥ ξi − ξj ∥≥ ri + rj + ρkl∀(i, j) ∈ Ik × Il , (k, l) ∈ K. (5)

If all these ρkl vanish, then (5) coincides with the non-overlapping condition (3).
A general mathematical model of the PCGS problem can now be presented as

min
(ξ,τ)

F(ξ, τ) subject to (ξ, τ) ∈ G, (6)

where ξ = (ξ0,ξi, i ∈ I) and τ is a vector of auxiliary variables (such as metrical charac-
teristics of the objects or the container). The feasible set G of (6) includes elements that
satisfy the placement constraints (1)–(3) or (1), (4), (5). Additional constraints, like balance
conditions, restrictions on the values of variables, prohibited spherical zones, etc., can be
formulated as well.

Three specific classes of the PCGS model (6) will be considered in Section 3.

2.2. Useful Norms and Transformations

As was mentioned above, any norm can be used for the PCGS model. Below, several
norms used in this study are listed, and some helpful transformations of the corresponding
expressions are presented.

Lp norms. One of the widely known families of norms is the Lp norm that is defined as

∥x∥p = (∑
k
|xk|p)

1/p for p ∈ [1, ∞),

whereas for p = ∞
∥x∥∞ = max

k
|xk|

is the infinity norm.
For different p ∈ [1, ∞], Lp norms generate different convex shapes of spheres in

R2 and R3, e.g., diamonds (rhombuses), spheres (circles), objects with “round” angles,
and cubes (squares) [39]. Figure 2 illustrates some shapes of unit spheres in R2 for
p = 1, p = 1.5, p = 2, p = 3, p = 6 and p = ∞.
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Transforming the infinity norm ∥x∥∞. Most NLP (NonLinear Programming) solvers
do not permit the direct use of the expression max

i=1,...,n
{|xi|} in NLP models. Therefore, we

present the infinity norm
∥x∥∞ = max

i=1,...,n
{|xi|}

by a system of equations and inequalities.
Denote t = ∥x∥∞. By the definition of the maximum, we have

t ≥|xi|, i = 1, 2, . . . , n,

where t provides the minimal value among all t fulfilling the inequalities above.
Hence, calculating the norm is equivalent to the solution of the following optimization

problem
min{t : t ≥|xi|, i = 1, 2, . . . , n}.

For fixed xi, i = 1, . . . , n, this is a linear programming problem. The corresponding
dual problem has the form

max{ ∑
i=1,...,n

πi|xi| : ∑
i=1,...,n

πi = 1, πi ≥ 0, i = 1, . . . , n}.

By the duality theorem, a primal-dual pair (t, π) is optimal if it is primal-dual feasible,
and the objectives are equal, i.e.,

t = ∑
i=1,...,n

πi|xi| (7)

t ≥|xi|, i = 1, . . . , n (8)

∑
i=1,...,n

πi = 1, πi ≥ 0, i = 1, . . . , n. (9)

That is, if (t, π) satisfies the system (7)–(9), then t = max
i=1,...,n

{|xi|} and vice versa.

Comment 1. For binary πi ∈ {0, 1} the system (7)–(9) obviously defines the infinity norm.
Constraint (8) follows from the definition of maximum, while constraints (7), (9) ensure that at least
one inequality in (8) is fulfilled as equality. However, as shown above, the integrality of πi is not
necessary.

Comment 2. Since |x| = max{x,−x} for any number x, with the same arguments as above, |x|
can be represented by a system of equations and inequalities.



Mathematics 2024, 12, 935 6 of 17

Composition of norms. The maximum of a finite number of norms is also a norm [39]. In
particular, for α, β ∈ [1, ∞],

∥x∥comp = max
{
∥x∥α, ∥x∥β

}
,

defines a norm.
Consider the example

∥x∥comp = max{∥x∥∞, γ∥x∥1}= max{|x1|, |x2|, . . . |xn|, γ(|x1|+ |x2|+ . . . |xn|)},

where the first n terms correspond to ∥x∥∞, while the second term with γ > 0 corresponds
to a weighted sum norm ∥x∥1.

For example, for x ∈ R2 and 0.5 < γ < 1, the unit sphere ∥x∥comp ≤ 1 has an octagonal

shape, an intersection of a square and a rhombus (diamond). Especially for γ = 1/
√

2, the
regular octagon is obtained (Figure 3).
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3. Some Cases of PCGS Problems

In this section, the following three variants of the PCGS problem are considered for
∥x∥p and ∥x∥∞: balance, homothetic, and sparse packing for a general case, x ∈ Rn, and a
particular case, x ∈ R2.

3.1. Generalized Balance Packing Problems (GBPP)

In GBPP, a family of the composed spherical objects must be placed inside a minimal
spherical container subject to a given minimal allowable distance between each pair of
objects as well as between each object and the boundary of the container. Moreover, a
certain correspondence between the gravity centers of the objects and the container must
be ensured.

Let minimal allowable distances ρkl between each pair of objects Ak and Al , k ∈ J,
l ∈ J, k < l, as well as minimal allowable distances ρk between each object Ak, k ∈ J, and
the boundary of the container S0 be given, i.e.,

dist(Ak(ξk), Al(ξl)) ≥ ρkl ⇔ dist(Si(ξi), Sj(ξj)) ≥ ρkl for (i, j) ∈ Ik × Il , (k, l) ∈ K,

dist(Ak(ξk), S∗
0) ≥ ρk ⇔ dist(Si(ξi), S∗

0) ≥ ρk for i ∈ Ik,k ∈ J. Here S∗
0 = Rn\intS0.

General model for ∥x∥p. GBPP is formulated as a nonlinear programming problem in
the form

minR
(ξ,R)

(10)

subject to
∥ξi − ξ0∥ ≤ R − ri − ρk for i ∈ Ik, k ∈ J, (11)

∥ξi − ξj∥ ≥ ri + rj + ρkl for (i, j) ∈ Ik × Il , (k, l) ∈ K, (12)

∥ξi − ξj∥ = aij for (i, j) ∈ Ik × Il , (k, l) ∈ K, (13)
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m

∑
i

wiξi = ξ0, (14)

where ξ0 is fixed.
In problems (10)–(14), constraints (11)–(12) define the minimal allowable distances

between objects as well as between each object and the boundary of the container, (13)
presents the composition condition, while (14) is a balance condition. The latter guarantees
that the gravity center of the system of spheres Si(ξi), i ∈ I coincides with the center of the
container S0. In (14), wi is the weight of Si(ξi), i ∈ I.

Mathematical Models of GBPP for two-dimensional spheres defined by the infinity norm.
Then, the model (10)–(14) can be written as

minR
(x,y,R)

subject to
max{|xi − x0|, |yi − y0|} ≤ R − ri − ρkfori ∈ Ik, k ∈ J,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} ≥ ri + rj + ρkl for (i, j) ∈ Ik × Il , (k, l) ∈ K,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} = aij for (i, j) ∈ Ik × Il , (k, l) ∈ K,

m

∑
i

wixi = x0,
m

∑
i

wiyi = y0,

x = (xi, i ∈ I), y = (yi, i ∈ I),

where (x0, y0) is fixed.
According to the results for transforming the infinity norm in Section 2, the above

model can be equivalently transformed to the following optimization problem

minR
(x,y,v,u,π,R)

subject to
vi = πx

i |xi − x0|+ π
y
i |yi − y0| for i ∈ I

vi ≤ R − ri − ρk for i ∈ Ik, k ∈ J

vi ≥ |xi − x0|, vi ≥ |yi − y0| for i ∈ I

πx
i + π

y
i = 1, πx

i ≥ 0, π
y
i ≥ 0 for i ∈ I

uij = πx
ij
∣∣xi − xj

∣∣+ π
y
ij

∣∣yi − yj
∣∣ for (i, j) ∈ Ik × Il , (k, l) ∈ K,

uij ≥
∣∣xi − xj

∣∣, uij ≥
∣∣yi − yj

∣∣, uij ≥ ri + rj + ρkl
for (i, j) ∈ Ik × Il , (k, l) ∈ K,

πx
ij + π

y
ij = 1, πx

ij ≥ 0, π
y
ij ≥ 0 for (i, j) ∈ Ik × Il , (k, l) ∈ K,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} = aij for (i, j) ∈ Ik × Il , (k, l) ∈ K,

m

∑
i

wixi = x0,
m

∑
i

wiyi = y0,

where
x = (xi, i ∈ I), y = (yi, i ∈ I),

v = (vi, i ∈ I), u = (uij, (i, j) ∈ Ik × Il , (k, l) ∈ K),

π = (πx
i , π

y
i , i ∈ I, πx

ij, π
y
ij, (i, j) ∈ Ik × Il , (k, l) ∈ K).
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Mathematical model of GBPP for a composite norm. Assume for simplicity that each object
consists of one sphere. Then, the model (10)–(14) for the composite norm

∥x∥comp = max{|x|, |y|, γ(|x|+ |y|)}

becomes
minR
(x,y,R)

subject to

max{|xi − x0|, |yi − y0|, γ(|xi − x0|+ |yi − y0|)} ≤ R − ri for i ∈ I,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣, γ(

∣∣xi − xj
∣∣+ ∣∣yi − yj

∣∣) ≥ ri + rj for (i, j) ∈ I × I, i < j,

m

∑
i

wixi = x0,
m

∑
i

wiyi = y0,

x = (xi, i ∈ I), y = (yi, i ∈ I).

This model can be further adjusted for the case when objects are composed by multiple
spheres.

3.2. Generalized Homothetic Packing Problems (GHPP)

This problem is aimed to pack a family of scaled objects inside a spherical container of
a given radius maximizing the scaling parameter.

Consider a family of objects composed by a union of scaled spheres

Si(λ,ξi) = {x ∈ Rn : ∥x − ξi)∥ ≤ λri},

where 0 ≤ λ ≤ 1.
General model for ∥x∥p. GHPP is formulated as a nonlinear programming problem in

the form
maxλ
(ξ,λ)

(15)

subject to
∥ξi − ξ0∥ ≤ R − λri for all i ∈ I, (16)

∥ξi − ξj∥ ≥ λ(ri + rj) for all (i, j) ∈ Ik × Il , (k, l) ∈ K, (17)

∥ξi − ξj∥ = λaij for all (i, j) ∈ Ik × Il , (k, l) ∈ K, (18)

0 ≤ λ ≤ 1, (19)

where ξ0 is fixed.
The inequality (16) describes the containment condition Si(λ,ξi) ⊂ S0, while (17)

ensures non-overlapping of Si(λ,ξi) and Sj(λ,ξj). By (18), the composition condition is
included, while (19) describes the restriction on the homothetic coefficient λ.

Mathematical models of GHPP for two-dimensional spheres defined by the infinity
norm. The model (15)–(19) for the infinity norm ∥x∥∞ takes the form

maxλ
(x,y,λ)

subject to
max{|xi − x0|, |yi − y0|} ≤ R − λri for i ∈ I,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} ≥ λ(ri + rj) for (i, j) ∈ Ik × Il , (k, l) ∈ K,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} = λaij. for (i, j) ∈ Ik × Il , (k, l) ∈ K,

0 ≤ λ ≤ 1,
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x = (xi, i ∈ I), y = (yi, i ∈ I).

The above model can be equivalently written as

maxλ
(x,y,v,u,π,λ)

subject to
vi = πx

i |xi − x0|+ π
y
i |yi − y0| for i ∈ I

vi ≤ R − λri, vi ≥ |xi − x0|, vi ≥ |yi − y0| for i ∈ I

πx
i + π

y
i = 1, πx

i ≥ 0, π
y
i ≥ 0 for i ∈ I

uij = πx
ij
∣∣xi − xj

∣∣+ π
y
ij

∣∣yi − yj
∣∣, uij ≥ λ(ri + rj) for (i, j) ∈ Ik × Il , (k, l) ∈ K,

πx
ij + π

y
ij = 1, πx

ij ≥ 0, π
y
ij ≥ 0 for (i, j) ∈ Ik × Il , (k, l) ∈ K,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} = λaij for (i, j) ∈ Ik × Il , (k, l) ∈ K,

0 ≤ λ ≤ 1,

x = (xi, i ∈ I), y = (yi, i ∈ I), v = (vi, i ∈ I), u = (uij, (i, j) ∈ Ik × Il , (k, l) ∈ K),

π = (πx
i , π

y
i , i ∈ Ik, πx

ij, π
y
ij, (i, j) ∈ Ik × Il , (k, l) ∈ K),

where (x0, y0) is fixed.

Comment 3. This problem always has a global solution. If the above problem has a global solution
with the objective value λ∗ = 1, then this solution corresponds to a feasible arrangement of full-size
spheres Si(xi), i ∈ I, (with original radii ri, i ∈ I), inside S0. If the global solution has the objective
value λ∗ < 1, then it is possible to arrange all m spheres with reduced radii λ∗ri, i ∈ I inside S0.

3.3. Generalized Sparse Packing Problems (GSPP)

This problem is aimed to pack a family of objects inside a spherical container of a given
radius maximizing a minimal distance between each pair of objects as well as between each
object and the boundary of the container.

Mathematical model of GSPP with Lp norm. This model can be given as

maxρ
(ξ,ρ)

(20)

subject to
∥ξi − ξ0∥ ≤ R − ri − ρ for i ∈ I, (21)

∥ξi − ξj∥ ≥ (ri + rj + ρ) for (i, j) ∈ Ik × Il , (k, l) ∈ K, (22)

∥ξi − ξj∥ = aij for (i, j) ∈ Ik × Il , (k, l) ∈ K, (23)

ρ ≥ 0, (24)

where ξ0 is fixed.
Constraints in (21) present the distance condition between spheres and the boundary

of the container, while those in (22) guarantee the distance condition between spheres
belonging to different objects. The equations in (23) present the composition condition (1),
while the inequality (24) describes the restriction on the parameter ρ.

Mathematical model of GSPP for two-dimensional spheres defined by the infinity
norm. Then, the model (20)–(24) becomes

maxρ
(x,y,ρ)
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subject to
max{|xi − x0|, |yi − y0|} ≤ R − ri − ρ for i ∈ I,

max
{∣∣xi − xj

∣∣, ∣∣yi − yj
∣∣} ≥ ri + rj − ρ for (i, j) ∈ Ik × Il , (k, l) ∈ K,

max
{∣∣xi − xj

∣∣, ∣∣(yi − yj)
∣∣} = aij for (i, j) ∈ Ik × Il , (k, l) ∈ K,

0 ≤ ρ ≤ R − max
i∈I

ri,

x = (xi, i ∈ I), y = (yi, i ∈ I).

This model can be equivalently transformed to

maxρ
(x,y,v,u,π,ρ)

subject to
vi = πx

i |xi − x0|+ π
y
i |yi − y0| for i ∈ I

vi ≤ R − ri − ρ, vi ≥ |xi − x0|, vi ≥ |yi − y0| for i ∈ I

πx
i + π

y
i = 1, πx

i ≥ 0, π
y
i ≥ 0 for i ∈ I

uij = πx
ij
∣∣xi − xj

∣∣+ π
y
ij

∣∣yi − yj
∣∣,

uij ≥ ri + rj − ρ for (i, j) ∈ Ik × Il , (k, l) ∈ K,

max
{∣∣xi − xj

∣∣, ∣∣(yi − yj)
∣∣} = aij for (i, j) ∈ Ik × Il , (k, l) ∈ K,

πx
ij + π

y
ij = 1, πx

ij ≥ 0, π
y
ij ≥ 0 for (i, j) ∈ Ik × Il , (k, l) ∈ K,

where x = (xi, i ∈ I), y = (yi, i ∈ I), v = (vi, i ∈ I), u = (uij, (i, j) ∈ Ik × Il , (k, l) ∈ K),
π = (πx

i , π
y
i , i ∈ In, πx

ij, (i, j) ∈ Ik × Il , (k, l) ∈ K).

4. Computational Results

In this section, computational results for three classes of generalized packing problems
considered in Section 3 are provided for the 2D case and various Lp norms. Solutions of
NLP problems obtained by the solver BARON (Branch-And-Reduce Optimization Nav-
igator) [40–42] using the NEOS server and the AMPL (A Mathematical Programming
Language) platform [43] are reported and graphically presented. In what follows, we refer
to the solution as “global” if BARON is stopped by fulfilling the optimality criterion, i.e.,
upper and lower bounds for the objective value coincide. Otherwise, the best solution
obtained by BARON within a given time interval is presented.

4.1. Computational Results for Generalized Balance Packing Problem (GBPP)

Example 1. For this problem instance, the same input data as in [44] were used: m = 5, {ri, i = 1, . . . , 5} =
{0.1, 0.2, 0.3, 0.5, 0.8}, {wi, i = 1, . . . , 5} = {0.0785, 0.314, 0.7065, 1.9625, 5.024}. The global solu-
tions obtained by BARON for different values of p are presented in Figure 4.

Example 2. For this problem instance, m = 4 regular octagons and an octagonal container
were represented as spheres in the composite norm considered in Section 2.2 with γ = 0.7071.
Here, {ri, i = 1, . . . , 4} = {1, 2, 3, 4}, {wi, i = 1, . . . , 4} = {1, 2, 3, 4}. The global solution
obtained by BARON with R∗ = 6.99999 is shown in Figure 4f.
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Example 3. These problem instances present irregular objects composed by spheres defined in Lp
norms. The following three datasets were considered:

(a) K = 3, m = 4, A1 = S1 ∪ S2, A2 = S3, A3 = S4, {ri, i = 1, . . . , 4} = {3, 2, 1, 1};
(b) K = 2, m = 4, A1 = S1 ∪ S2, A2 = S3 ∪ S4, {ri, i = 1, . . . , 4} = {3, 2, 2, 3};
(c) K = 6, m = 9, A1 = S1 ∪ S2 ∪ S3 ∪ S4, A2 = S5, A3 = S6, A4 = S7, A5 = S8, A6 = S9,

{ri, i = 1, . . . , 9} = {4, 4, 4, 4, 2, 3, 3, 3, 3}.

Corresponding global solutions for different values of p obtained by BARON are presented in
Figures 5 and 6.
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Example 4. These problem instances present irregular objects composed by spheres defined in Lp
norms. The following two datasets were considered:

(a) K = 2, m = 5, A1 = S1 ∪ S2 ∪ S3, A2 = S4, A3 = S5, {ri, i = 1, . . . , 5} = {3, 2, 1, 3, 2)};
(b) K = 2, m = 6, A1 = S1 ∪ S2 ∪ S3, A2 = S4 ∪ S5 ∪ S6, {ri, i = 1, . . . , 6} = {4, 2, 1, 4, 2, 1)};

Corresponding best solutions for different values of p obtained by BARON within 600 s are
presented in Figures 7 and 8.
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4.2. Computational Results for Generalized Homothetic Packing Problem (GHPP)

Example 5. For this problem instance, R = 3, ri = 1, i = 1, . . . , m. If the optimal value of the
scaling parameter λ∗ = 1, then m unit spheres can be completely arranged in a spherical container
of the given radius. Corresponding global solutions obtained by BARON are presented for different
values of p in Figure 9.
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4.3. Computational Results for Generalized Sparse Packing Problem (GSPP)

Example 6. For this problem instance, R = 3, m = 4, ri = 1, i = 1, . . . , 4. Corresponding global
solutions obtained by BARON are presented for different values of p in Figure 10.
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Example 7. These problem instances present irregular objects composed by spheres defined in Lp
norms. The following dataset was considered: R = 12, K = 2, m = 6, A1 = S1 ∪ S2 ∪ S3, A2 =
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S4 ∪ S5 ∪ S6, {ri, i = 1, . . . , 6} = {4, 2, 1, 4, 2, 1}. The best solutions obtained by BARON
within 600 s. are presented for different values of p in Figure 11.
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5. Conclusions

A new class of packing problems for n-dimensional objects defined by spheres in
terms of an arbitrary norm is introduced and referred to as Packing Objects Composed by
Generalized Spheres (PCGS). The main advantage of PCGS is the simplicity of formulating
placement conditions for a wide range of regular and irregular shapes. However, in the
proposed modeling scheme, the shapes of the components used in the composed objects
must have a certain central symmetry. This approach may be considered as a reasonable
alternative to the known modeling techniques in irregular packing. For example, for the
irregular problem instances presented in Figures 5–8 and 11, the phi-function technique
(see [24,45] and the references therein) can also be used. However, to formulate placement
conditions by this technique, different phi-functions must be constructed for different
shapes used in the composed objects. In our approach, the placement conditions have the
same generic form for all shapes defined by generalized spheres. Studying similarities
and differences between the proposed modeling approach and known modeling tools for
irregular packing is an interesting area for future research.

In PCGS problems, the container and the spheres are assumed to have the same
shapes, i.e., they are defined by the same norm. This is the case, e.g., in clustering problems
where a number of similar objects are substituted by a single larger object having the same
shape. However, using the following correspondence between the values of different Lp
norms [39],

∥x∥p ≤ ∥x∥r ≤ n(1/r)−(1/p)∥x∥p for x ∈ Rn, 1 ≤ r < p

solutions obtained for a PCGS problem can be used to construct feasible solutions for
packing problems where the shapes for the container and spheres are different. This can be
useful, e.g., in constructing initial solutions in heuristic approaches.

The norm used in the composition condition (1) does not affect the shape of spheres
considered in a PCGS problem. So, different norms can be used in composition and layout
conditions. In computational experiments presented in the paper, the same norms were
used for both conditions. Considering different norms in composition and layout conditions
is an interesting area for future research.

In some packing problems, continuous rotations or reflections of the objects are not
allowed. In this case, (1) can be replaced by the condition

ξi − ξj = aij, ∀(i, j) ∈ ℑk, k ∈ J,

where aij are given vectors. This condition ensures the shape conservation for all objects
Ak (k ∈ J) only under translation. In this particular case, in addition to the length of vector
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aij, the direction of the vector is also taken into account. Correspondingly, condition (1)
may be defined as ∥ξi − ξj∥ = ∥aij∥, and different norms on the left and right sides of the
equation can be used.

Instead of “rigid” composed objects with fixed pairwise distances between centers of the
corresponding spheres, “soft” composed objects can be considered. In this case, the composition
condition (1) must be modified, allowing a limited variation of the pairwise distances.

In this paper, numerical experiments were presented for the two-dimensional case
of PCGS problems. Results for the 3D case are on the way. However, the models and
transformations proposed in the paper are also valid for objects defined in Rn, n ≥ 4.
It would be also interesting to test higher-dimensional problem instances arising, e.g., in
multi-resource project management [29].

Only small illustrative numerical examples solved by BARON were considered in the
paper. The objective was to demonstrate the ability of the proposed modeling approach
to handle different shapes in a unified way. However, to treat large problems with many
objects, special numerical techniques must be proposed. In particular, it can be checked
whether conventional exact and heuristic algorithms designed for packing Euclidean
spheres (see, e.g., [46–48] and the references therein) are or can be made norm independent.
Some results in this direction are on the way.
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