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Abstract: Directed and weighted graphs can be used for many real-world applications to model
and analyse the quality and structure of communication within the system, the distribution and
flow of information, and various resources, dependencies, resilience, etc. On social media platforms,
for example, highly networked members, so-called influencers, disseminate information, opinions
and trends to their followers, who in turn increase the popularity of the influencers through likes
and comments. Both types of interaction have a major influence on discussions and activities in the
social network. To identify the nodes with the highest integration and interconnectivity within the
neighbourhood subnetwork, we introduce the Directed Semi-Local Integration (DSLI ) centrality
measure for directed and weighted graphs. This centrality measure evaluates the integration of nodes
assessed by the presence of connection, the strength of links, the organisation and optimisation of
inbound and outbound interconnectivity, and the redundancy in the local subnetwork, and provides
a stronger differentiation of the importance of nodes than standard centrality measures. Thus, DSLI
has the potential to be used for analysing the degree of integration for the uptake and dissemination
of resources in complex networks in many different contexts.
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1. Introduction

Centrality measures in graph theory estimate the significance or impact of particular
nodes in a given network. The concept of node centrality is not uniformly defined [1].
Depending on the context, there are different definition criteria that provide different
perspectives on the importance of nodes within a network. Centrality measures are a kind
of selection tool or a suitable ranking mechanism to recognise which nodes are of particular
importance in a variety of applications, such as identifying the most influential people in
social networks, locating the key connecting nodes in transport networks, understanding
the spread of diseases in populations, etc.

Among a variety of centrality measures, some of the most common are degree cen-
trality, weighted degree (also called strength), betweenness centrality, closeness centrality,
eigenvector centrality, PageRank, etc. [1–3]. Several elements related to the structure of the
network, such as its size, density, and connectivity, can influence which centrality measure
is most expressive. For example, in a sparse network with few connections, degree centrality
may not adequately capture the importance of a node, while betweenness centrality may be
more informative. Furthermore, for specific applications with different circumstances or
needs, different centrality measures will be most appropriate for the relevant network prop-
erties in a given context [4,5]. For instance, in traffic networks, betweenness centrality [6]
may reveal important intersections, while in citation networks, PageRank centrality [7] can
highlight the most influential articles.

Computationally, the relevance of a node in a network can be evaluated using a local,
semi-local, or global methodology. Some of the best-known representatives of the local
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approach are measures such as degree and strength. Since such measures only consider
local network properties, their main drawback is that they do not capture information about
the entire network structure. Consequently, such centrality measures are not a good stand-
alone tool to determine which nodes are the most central or play the most important role in
the entire network. Conversely, global centrality measures such as PageRank, betweenness,
or the harmonic centrality [8] reflect the overall influence of a node in the network. Globally
defined centrality measures also have certain limitations. The algorithms for such centrality
measures, which require global information to calculate the importance of each node in a
network, often have high computational complexity. Other drawbacks include sensitivity
to the size and/or density of the network, inability to capture contextual information,
etc. Clearly, to obtain a more comprehensive knowledge of the node importance within
the network, local measures should be used in addition to the global centrality analysis.
For these reasons, especially for complex networks with many nodes and an intricate
structure, the semi-local approach to centrality assessment [9–15], which focuses on smaller
subnetworks can provide the best of both worlds.

The semi-local importance assignment still allows for the exploration of numerous
approaches to node centrality, but is geared towards importance assessment in a clustered
subnetwork. The various system attributes considered in the literature include efficiency,
connectedness, shortest paths, influence, robustness, etc.; however, they do not primarily tar-
get a high degree of node integration and interconnectivity between nodes in the subnetwork.

To evaluate these particular properties, in this paper, we propose a semi-local centrality
measure for directed and weighted graphs, the Directed Semi-Local Integration Measure
(DSLI), which evaluates the property of integration of nodes in the clustered neighbour-
hood of directed complex networks through (directed) interconnectivity between clustered
nodes. The parametric nature of the measure allows for finer tuning and a stronger focus
on the role of a node’s inbound or outbound connectivity in the graph, a property that
further improves its suitability for the application at hand.

In addition to the conceptual contribution, we have also written and published the
Python function that implements the DSLI measure and made it available in a GitHub
repository [16] (details can also be found in Supplementary Materials).

The rest of the paper is organised as follows. We define the DSLI centrality measure in
Section 2 and discuss its special cases and their properties with respect to other centralities
in Section 3. Related work is discussed in Section 4. We conclude with Section 5 with
potential future research directions.

2. Semi-Local Integration Measure for Directed and Weighted Graphs

A directed graph, also called a digraph, is a type of graph in which the edges connect-
ing the nodes have a specific direction. In other words, in a directed graph, each edge is
represented by an ordered pair of nodes indicating a one-way interaction or connection
between the nodes [17]. A directed and weighted graph is a type of graph in which each
edge is associated with a numerical value, the weight of the edge, which represents a
specific quantitative measure of the relation or interaction between the nodes connected by
the edge.

Formally, a directed and weighted graph G is defined as a tuple (V, E, w), where V is
a set of nodes (vertices) and E is a set of directed edges between pairs of nodes in the graph
G in which each directed edge (u, v) = euv ∈ E connects node u to node v. Furthermore,
w : E → R is a function that assigns a numerical value to each edge e ∈ E in the graph, a
weight w(e).

Directed and weighted graphs can represent a variety of real-world phenomena
with directed relations, i.e., interactions. Typical applications of this kind include the
flow of information in communication networks in which graphs model data transfer,
bandwidth capacities, signal strengths, communication costs, latency, etc. [18–20]. Similarly,
dependency relationships in project management represent priorities in tasks that need
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to be completed before other tasks can begin; while in social networks, the frequency of
interactions between people on social media platforms, etc., is typically modelled.

In this work, we deal with weighted simple directed graphs, i.e., graphs without edges
from a node to itself (loops) and without multiple edges of the same direction between pairs
of nodes. This simplifies the model and is very common in network analysis, especially in
the real-world applications we want to represent, where such entities do not occur.

The proposed DSLI node centrality measure takes into account the direction of the
edges containing the node, the edge weight, and the number of (directed) cycles that
include a particular node. These elements serve as indicators of interconnectedness, inter-
dependence, and/or integration. For example, nodes in cycles are part of a well-connected
subnetwork and belong to a cohesive local community. The edge weight represents the
quality of the connection, while the direction of the edge indicates the qualitative connec-
tion in terms of the influence of a node to and from another node. Therefore, nodes that are
strongly connected within a cluster of nodes can be considered more significant in terms
of high integration within the network cluster. The more cycles a node goes through, the
higher the DSLI value of the node.

Figure 1 shows an example of a directed and weighted graph G. It contains some
important relations that may occur when simulating a real situation: some leaves are more
strongly connected than others, with both directions occurring, to and from peripheral
nodes; some edges do not participate in cycles, while others do; and some edges participate
in multiple cycles (such edges are represented by multicoloured arrows, where the colours
that appear in the arrow indicate to which cycle the respective edge belongs). For example,
the edge ev4v3 is part of two cycles, namely (v1, v4, v3) and (v40, v4, v3). The following cycles
occur in the directed graph G:

(v1, v2), (v1, v4, v3), (v1, v4, v2), (v1, v5, v52, v6, v60, v2),
(v1, v6, v60, v2), (v52, v6, v5), (v40, v4, v3), (v7, v73).

Figure 1. An example of a simple weighted and directed graph. (Multi-coloured arrows represent
edges that participate in multiple cycles, which is indicated by the colour).
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When evaluating the quality or strength of the interconnection between the nodes,
the edge weight indicates the relatedness of the endpoint nodes. For example, it can
be considered that the node v1 influences v2 more strongly (the associated weight is 3),
than vice versa (the edge from v2 to v1 has a weight of 0.8). In the visualisation of this
graph feature, the thickness of the arrows indicates the weight of the edges between the
nodes, with thin arrows representing weak connections, while thick arrows indicate more
extensive connections between the nodes.

Networks in the real world often have a considerate proportion of reciprocal edges,
i.e., for a pair of nodes, there are edges in the graph in both directions. The example graph
shown in Figure 1 also contains various types of connections: some edges are reciprocal,
i.e., represent connection with the same weight for both directions, e.g., (v7, v73) and
(v73, v7) both have weight 1; some nodes have a reciprocal connection but the weight of the
connection is different for different directions, e.g., in the case of (v1, v2) and (v2, v1) with
weights of 3 and 1, respectively; and many non-reciprocal connections between pairs of
nodes appear in the graph, e.g., (v4, v41) ∈ E, but (v41, v4) ̸∈ E, etc. With such an example,
we want to cover various common scenarios in network architecture and provide a clear
and understandable illustration of the measure based on the many provided features of
the graph.

2.1. Definition of Directed Semi-Local Integration Measure (DSLI )

With DSLI centrality, we want to evaluate the degree of integration of a node in a
cluster of a directed and weighted complex network, hence we want to measure how well a
node is connected or central to its neighbourhood subnetwork structure. Before presenting
a formal definition of the DSLI measure, we introduce the necessary notation relating to a
directed and weighted graph G = (V, E, w), namely,

degw(a)—weighted degree of the node a ∈ V;
degw

in(a)—weighted indegree (strength) of the node a ∈ V;
degw

out(a)—weighted outdegree (strength) of the node a ∈ V;
eab—directed edge e ∈ E from the node a to the node b, a, b ∈ V;
Ein(a)—set of all directed edges of E with an ending node a;
Eout(a)—set of all directed edges of E with a starting node a;
w(eab)—weight of the edge eab ∈ E,
q(eab)—number of local simple directed cycles that include the edge eab.
Several auxiliary terms used in the definition of the DSLI measure are additionally defined:
µ(eab)—edge cycle factor of the directed edge eab ∈ E;
J(a)—node importance of the node a ∈ V;
J(eab)—edge importance of the edge eab ∈ E.

The auxiliary factor, edge cycle factor, evaluates the participation of an edge in simple
directed cycles. The presence of (directed) cycles in a graph is an important indicator of its
integration. Such features improve the connectivity of a graph by providing alternative
paths between nodes. For example, cycles and redundant paths can increase resilience
to failures and improve the overall robustness of the network. Therefore, the number of
directed cycles in a graph containing a particular edge usually indicates the degree of
integration of this node within the connected neighbourhood.

The edge cycle factor of a directed edge eab ∈ E, µ(eab), is defined as

µ(eab) = q(eab) + 1, a, b ∈ V, (1)

where q(eab) is a number of directed simple cycles that include the edge eab. A simple
directed cycle is a closed path that starts and ends at the same node and in which the
nodes occur only once, with the exception of the start and end nodes. Note that the edge
cycle factor is greater than or equal to 1, and is only equal to 1 if the directed edge eab
does not participate in any directed cycle in the graph G. Thus, since the concept of cycle
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reinforces the integration factor of the edge in the graph, this factor is used to emphasise
the importance of the directed cycles containing a particular edge.

The direction of the edges indicates the flow or communication between the nodes,
so we pay special attention to the weighted indegree and the weighted outdegree of a node,
noting that the following holds:

degw(a) = degw
in(a) + degw

out(a), a ∈ V,

where the weighted indegree, degw
in(a), is the sum of weights of incoming edges incident to

the node a and degw
out(a) is its weighted outdegree, the sum of weights of outgoing edges

incident to the node a,

degw
in(a) = ∑

e∈Ein(a)
w(e), degw

out(a) = ∑
e∈Eout(a)

w(e).

When evaluating integration centrality, both weighted indegree and weighted outdegree
can contribute to the overall connectivity and cohesion of the subnetwork. Nodes with a bal-
anced weighted indegree and weighted outdegree can facilitate bidirectional communication,
collaboration and resource sharing, indicating stronger integration within the subnetwork.
Nodes with a higher weighted indegree are crucial for the coordination and integration of
the different aspects within the graph, as well as for its overall functionality and coherence.
At the same time, a high weighted outdegree in a directed graph also contributes to the
integration of the graph by facilitating the dissemination of information, distributed control,
etc. Since nodes with high values of these measures typically contribute to a denser and
more interconnected network, we emphasise their importance for the integration properties
of the network.

In the DSLI calculation, both the weighted indegree and the weighted outdegree of a
node and the weights of the incident edges are considered, but we tune the participation
of each direction using two parameters, α and β, α, β ∈ {0, 1}. With respect to these
parameters, we consider three cases:

• α = β = 1; evaluating both weighted indegree and outdegree importance;
• α = 1, β = 0; evaluating weighted indegree importance;
• α = 0, β = 1; evaluating weighted outdegree importance.

For each node a ∈ V, the node importance of a with respect to the parameters α, β,
Jαβ(a), is calculated as:

Jαβ(a) = α ·
(

degw
in(a) + ∑

e∈Ein(a)
J(e)

)
+ β ·

(
degw

out(a) + ∑
e∈Eout(a)

J(e)
)

, (2)

where J(eab) is the importance of the directed edge eab, defined as:

J(eab) = µ(eab)

(
degw(a) + degw(b)− 2w(eab)

)
· w(eab) · degw(a)

degw(a) + degw(b)
. (3)

The factor
w(eab) · degw(a)

degw(a) + degw(b)

from (3) reflects the contribution of the edge’s weight and the imbalance in the sum of
the weighted indegrees and outdegrees of its endpoints to the integration measure. This
factor depends on the direction of the respective edge. More precisely, if the edges between
two nodes exist in both directions, eab, eba ∈ E, with w(eab) ̸= w(eba) and degw(a) ̸=
w(eab), then the importance of these reciprocal edges may be different, J(eab) ̸= J(eba).
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Note that for the node importance J11(a), the weighted degree of the node is increased
by the importance contribution of all its incident edges:

J11(a) =
(

degw
in(a) + ∑

e∈Ein(a)
J(e)

)
+

(
degw

out(a) + ∑
e∈Eout(a)

J(e)
)

,

= degw
in(a) + degw

out(a) + ∑
e∈Ein(a)

J(e) + ∑
e∈Eout(a)

J(e),

= degw(a) + ∑
e∈E(a)

J(e).

Similarly, for J10(a) and J01(a), the weighted indegree and the weighted outdegree are
increased by the importance of the incoming and outgoing edges, respectively. The higher
the (incoming/outgoing) degree of the node, the weights of incident edges, and the number
of cycles through the node, the higher the node importance.

Finally, we normalise the importance of the node a ∈ V to represent the percentage or
share of importance of the node in the graph G. More precisely,

DSLI αβ(a) =
Jαβ(a)

∑
v∈V

Jαβ(v)
· 100, a ∈ V. (4)

Note that the proposed DSLI measure is zero only for unconnected nodes, i.e., nodes
a with degw(a) = degw

in(a) = degw
out(a) = 0. Note also that we obtain three different

centrality indicators for the three cases with respect to the parameters α and β:

• DSLI := DSLI 11—directed semi-local integration importance;
• DSLI in := DSLI 10—incoming directed semi-local integration importance;
• DSLI out := DSLI 01—outgoing directed semi-local integration importance.

2.2. DSLI Algorithm

In a computational framework, given a graph G = (V, E) with the associated edge
weights and the weighted degree scores of its nodes, the computation of the DSLI measure
is executed through the following procedure, which is presented below in a simplified and
intuitive way:

1. Find q(e) for all directed edges e ∈ E;
2. Find µ(e) for all directed edges e ∈ E according to (1);
3. Calculate the edge importance Jαβ(e) for each edge e ∈ E using (3);
4. Calculate the node importance J(a) for each node a ∈ V according to (2);
5. Calculate DSLI αβ(a) for all nodes a ∈ V and for the selected parameters α and β,

according to (4).

The Python programme that implements the above procedure, i.e., the DSLI measure
algorithm, is available in a GitHub repository [16].

To demonstrate the intended properties of DSLI -centrality, we use this algorithm to
compare the DSLI value with some known centrality measures for the example graph G
shown in Figure 1. The resulting values are listed in Table 1. In the next section, we will
also look at other versions of the measure that consider only one direction, namely, only
the incoming or the outgoing case.

The node with the highest degree of integration is v1, with DSLI (v1) = 39.096,
which corresponds to almost 40% of the total node importance within the graph G. This
dominance is due to the significant connectivity of the node v1, which is reflected in several
edges of both directions going from (i.e., edges ev1v2 , ev1v4 , ev1v5 , ev1v6 , ev1v7 ) and to the node
v1 (i.e., edges ev2v1 , ev3v1). In addition, the DSLI measure of the node is increased if it is
part of directed cycles. The fact that edges that have v1 as a starting or an ending point
participate in numerous cycles in the graph G significantly increases the integration rank
of the node v1. For example, the edge ev2v1 participates in four different directed cycles,
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ev1v4 in two different directed cycles, ev1v6 in one, etc. The fact that v1 is about 2.8 times
more integrated than node v2 is also due to the fact that the edges incident to node v1
have a higher weight than the edges incident to node v2. Although node v7 would have
a high significance in other contexts, e.g., as an important bridge node, in the case of
rating integration it only has a share of 4.351% of the total node importance within the
graph G. The node v7 is only part of one directed cycle, (v7, v73), and most edges in the
neighbourhood do not have a high weight. Note that the nodes v731 and v733 are both
leaves with the same value of weighted indegree, and, therefore, have the same rank in the
integration. Furthermore, none of the DSLI values of the nodes in G is zero, since each
of the nodes has at least one incident edge either pointing to it or leading away from it.
This general case of the DSLI measure (2) corresponds to the choice of the parameters
α = β = 1.

Table 1. Comparison of different centrality measures of nodes in graph G illustrated in Figure 1.

Node DSLI Weighted
Indegree

Weighted
Outdegree Betweenness PageRank

v1 39.069 2.55 10.9 0.239 0.074
v2 14.378 6.7 2.3 0.167 0.088
v4 11.376 4.9 2.55 0.098 0.064
v6 10.564 2.9 4.7 0.077 0.055
v5 6.061 3.5 2.2 0.050 0.041
v3 6.029 2.4 3.25 0.106 0.068
v7 4.351 2.2 3.4 0.087 0.059
v73 2.107 2 1.5 0.032 0.053
v60 1.874 1.2 1.5 0.052 0.026
v40 0.816 0.5 1.5 0.004 0.023
v20 0.779 2.3 0 0.0 0.057
v52 0.567 1 0.4 0.022 0.030
v70 0.439 2 0 0.0 0.044
v23 0.197 0 1 0.0 0.013
v31 0.182 1 0 0.0 0.032
v21 0.142 0 0.8 0.0 0.013
v51 0.134 0.8 0 0.0 0.027
v71 0.134 0.0 0.8 0.0 0.013
v41 0.127 0.75 0 0.0 0.030
v22 0.117 0.7 0 0.0 0.037
v30 0.090 0 0.6 0.0 0.013
v61 0.071 0.5 0 0.0 0.019
v731 0.066 0 0.5 0.0 0.013
v732 0.066 0.5 0 0.0 0.029
v733 0.066 0 0.5 0.0 0.013
v42 0.052 0 0.4 0.0 0.013
v32 0.051 0 0.4 0.0 0.013
v50 0.051 0.4 0 0.0 0.020
v72 0.051 0.4 0 0.0 0.019

The obtained values clearly show that the DSLI importance distribution effectively
indicates the importance of nodes by polarising their values more than other centralities.
It is also easy to see that the order of importance varies greatly between the different
centralities, which underlines the special properties of the DSLI centrality measure. For
example, the most important node in terms of Weighted indegree and PageRank, the node
v2, is the second most important in the ranking according to the DSLI measure. Apart
from isolated nodes with zero weighted indegree and weighted outdegree, the value of
the DSLI measure is never zero. This property is particularly valuable for comparing
nodes with similar values and emphasises its usefulness in distinguishing the correlation
between all nodes. For this particular graph, if a node u is not part of a directed cycle and



Mathematics 2024, 12, 1087 8 of 17

DSLI (u) ∈ ⟨0, 1⟩, we conclude that u is most likely a leaf node whose degree of integration
is low.

3. Versions of Directed Semi-Local Integration Measure

The (weighted) indegree and the (weighted) outdegree are important integration mea-
sures, as they reflect different aspects of a node’s connectedness and influence in the
network. Nodes with a higher indegree are more integrated due to their centrality and
receptivity to incoming connections, while nodes with a higher outdegree play an important
role in disseminating information and promoting connectivity in the network, favouring
integration at both local and global levels. Both measures affect the values of the general
version of DSLI , DSLI 11, which considers both directions proportionally (and depending
on the number of incoming and outgoing edges).

One of the valuable properties of the proposed DSLI measure is that it can be relatively
easily adapted to the context to be modelled, where it might be better to consider only
one direction, the weighted indegree or the weighted outdegree. Precisely for this reason, the
proposed measure is parametric and allows the most appropriate choice of the parameters
α, β ∈ {0, 1} in the formula of DSLI (2).

3.1. Incoming Directed Semi-Local Integration Importance—DSLI in

In the integration analysis, nodes with a higher indegree receive more information,
resources, or support from other nodes. These nodes serve as hubs or key points where
many influences converge and help maintain the overall cohesion and interconnectedness
of the network. In addition, nodes with a higher level of integration are more central and
influential in the network, as other nodes often turn to them for interactions or transactions.
If the context requires to evaluate and identify such highly integrated nodes in terms of
incoming information, the DSLI measure with the parameters α = 1 and β = 0 is the
appropriate centrality. With these parameters, the ‘balanced’ DSLI measure (2) is offset to
emphasise the importance of the weighted indegree measure (over the weighted outdegree
measure). In this case, the Formula (2) becomes:

J10(a) = degw
in(a) + ∑

e∈Ein(a)
J(e), a ∈ V. (5)

The importance of the incoming nodes DSLI in is calculated using the same Formula (4),
but only takes into account the edges that lead to the respective node.

The DSLI in values for the example graph G in Figure 1, which are given in Table 2,
illustrate the significant difference in the estimated importance in relation to the considered
choice of parameters, i.e., direction focus.

It is easy to see that the order of importance for the three versions differs significantly,
both in the order of importance and in the distribution of importance among the nodes.
The first five nodes are v2, v4, v5, v1, v3, while the first five nodes according to the DSLI
measure are v1, v2, v4, v6, v5. Note that the node v1 with the highest DSLI value is only
the fifth highest for the DSLI in value. The reason for this ranking is easy to recognise in
Figure 1. Nodes with a higher DSLI in ranking are characterised by high weighted indegree
values and are often elements of directed cycles within the graph.

Since the nodes v7, v20, v73 have similar weighted indegrees and are not involved in many
directed cycles in the graph G, they also have similar values for DSLI in. In cases where the
value of the weighted indegree of a node is zero, the DSLI in value of that node is also zero.
However, it is valuable to point out that DSLI in and weighted indegree measures are not
linearly dependent on each other, as there are some cases where DSLI in(u) < DSLI in(v),
but degin(u) > degin(v). Furthermore, note that the values of DSLI in do not match the
order and distribution of importance compared to PageRank, one of the best- known
centralities that emphasises the incoming direction.
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Table 2. Comparison of different centrality measures of nodes in graph G illustrated in Figure 1.

Node DSLI in DSLI out DSLI Weighted
Indegree

Weighted
Outdegree

Weighted
Degree

Katz −
Bonacich PageRank

v2 35.246 3.860 14.368 6.7 2.3 9 1.349 0.088
v4 14.322 3.775 11.376 4.9 2.55 7.45 1.352 0.064
v5 9.141 1.694 6.061 3.5 2.2 5.7 1.226 0.041
v1 8.994 66.042 39.069 2.55 10.9 13.45 2.492 0.074
v3 6.596 6.023 6.029 2.4 3.25 5.65 1.596 0.068
v6 4.539 10.543 10.564 2.9 4.7 7.6 1.528 0.055
v7 3.781 2.445 4.351 2.2 3.4 5.6 1.359 0.059
v20 3.487 0.0 0.779 2.3 0 2.3 1 0.057
v73 3.370 1.252 2.107 2 1.5 3.5 1.186 0.053
v60 1.978 0.911 1.874 1.2 1.5 2.7 1.202 0.026
v52 1.764 0.252 0.567 1 0.4 1.4 1.061 0.030
v70 1.449 0.0 0.439 2 0 2 1 0.044
v31 0.934 0.0 0.182 1 0 1 1 0.032
v51 0.795 0.0 0.134 0.8 0 0.8 1 0.027
v41 0.769 0.0 0.127 0.75 0 0.75 1 0.030
v22 0.726 0.0 0.117 0.7 0 0.7 1 0.037
v40 0.547 0.872 0.816 0.5 1.5 2 1.203 0.023
v61 0.447 0.0 0.071 0.5 0 0.5 1 0.019
v732 0.430 0.0 0.066 0.4 0 0.4 1 0.019
v50 0.349 0.0 0.051 0.4 0 0.4 1 0.020
v72 0.338 0.0 0.051 0.4 0 0.4 1 0.019
v21 0.0 0.381 0.142 0 0.8 0.8 1.108 0.013
v23 0.0 0.480 0.197 0 1 1 1.135 0.013
v30 0.0 0.294 0.090 0 0.6 0.6 1.096 0.013
v32 0.0 0.174 0.051 0 0.4 0.4 1.064 0.013
v42 0.0 0.170 0.052 0 0.4 0.4 1.054 0.013
v71 0.0 0.427 0.134 0 0.8 0.8 1.109 0.013
v731 0.0 0.201 0.066 0 0.5 0.5 1.059 0.013
v733 0.0 0.201 0.066 0 0.5 0.5 1.059 0.013

High integration guarantees effective communication in systems where information
dissemination is critical, such as social media platforms, telecommunication networks,
and IoT (Internet of Things) networks. Nodes with a high weighted indegree serve as
hubs for receiving and distributing information and enable fast and comprehensive net-
work connectivity. Another crucial aspect in which the incoming direction is important
is the organisation and optimisation of the data flow on the Internet. Nodes with a high
weighted indegree are able to process a large amount of incoming data well and ensure a
smooth flow of information without burdening individual nodes. There are other examples
of complex networks where the incoming semi-local integration centrality can be crucial,
especially for identifying and ranking important nodes.

3.2. Outgoing Directed Semi-Local Integration Importance—DSLI out

For some applications, it is very useful to determine which nodes are strongly inte-
grated in the graph based on the outgoing direction. In such network representations,
nodes with a high weighted outdegree are responsible for allocating tasks or resources to
numerous recipients in systems where efficient task or resource allocation is required.

If the integration parameters are set as α = 0 and β = 1, (2) becomes

J01(a) = degw
out(a) + ∑

e∈Eout(a)
J(e), a ∈ V. (6)

With this choice of parameters, it is easy to recognise that the DSLI measure refers to the
weighted outdegree importance.
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The values of the DSLI out scores for the example graph G shown in Figure 1 are
given in Table 2. The biggest difference between the node rankings of the DSLI versions
is between the DSLI out node with the highest rank v1 and the second-highest node v6.
The reason for this lies in the fact that the node v1 with the highest rank has a very
high weighted outdegree and is part of many directed cycles in the graph G, which is
not the case for the node v2. As in the case of the DSLI in measure, DSLI out and the
weighted outdegree-measure are not linearly dependent. The DSLI out importance ordering
of the nodes also does not match the order according to the Katz–Bonacich measure,
another semi-local centrality measure that is calculated based on the weighted outdegree
along with the cumulative weight of the paths through the particular node in the graph.
Although the most important node for these two measures is v1, the second-most-important
node for the Katz–Bonacich measure is v3, while v6 has the same rank for the centrality
measure DSLI out.

There are several reasons to identify high-level nodes by the outdegree. In transport
networks, such as metro systems, large transport hubs with multiple outbound connections
serve as highly integrated nodes. These hubs help passengers move more efficiently
between locations, manage traffic flow and optimise travel routes. Highly influential users
in a social network who have a large number of followers act as highly integrated nodes
with a high outdegree. They disseminate information, opinions, or trends to their followers
and thus influence discussions and activities throughout the network. In a Content Delivery
Network infrastructure (CDN), edge servers with a high outdegree also serve as highly
integrated nodes. These servers distribute material to numerous users, reduce latency
and improve the speed of online applications or streaming services by delivering content
from the closest server location. They are essential for the optimal use of resources and
the timely completion of tasks as they optimise task assignment and resource allocation.
In various domains, identifying the highly rated nodes in terms of weighted outdegree can
help in strategically positioning such valuable components to ensure smooth operations
and integration.

3.3. Directed Semi-Local Integration Measure in Unweighted Graphs

Unweighted graphs are often used when the relationships or connections between
the nodes are considered equally significant or important. They are suitable for scenarios
where the presence or absence of a connection is the primary consideration, rather than
the specific weight or strength of that connection. For example, in a transport network,
the nodes can represent locations and the edges can represent roads or routes between
these locations. An unweighted graph can be used when the main consideration is only
whether there is a direct connection between two locations, regardless of the quality or
distance of the road. Weighted graphs, on the other hand, are used when certain properties
of the connections between nodes, such as cost, capacity, travel time, or distance, play an
important role in network analysis or optimisation.

To illustrate the influence of edge weights on the DSLI measure, we calculate the
integration scores and compare the values obtained for the graph version with edge
weights with those for the same graph without considering the edge weights, i.e., treating
all edge weights as w(e) = 1. The obtained values of the general version of DSLI , the
indegree and outdegree DSLI centrality measures for unweighted version of graph G,
DSLI unw, DSLI unw

in , and DSLI unw
out , from Figure 1 are presented in Table 3.

The centrality measures DSLI unw and DSLI do not result in the same order and
distribution of importance among the nodes. Although the two highest-ranking nodes are
the same in both the weighted and unweighted versions of the graph, the relative difference
in their importance is considerable: while node v1 is almost three times as important as
node v2 in the weighted case, the values are almost the same in the unweighted case.
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Table 3. Comparison of different centrality measures of nodes in graph G illustrated in Figure 1.

Node DSLI unw DSLI unw
in DSLI unw

out DSLI Weighted
Indegree

Weighted
Outdegree

v1 19.972 9.090 30.371 39.069 2 5
v2 19.452 28.069 10.576 14.368 4 3
v6 12.388 5.513 15.471 10.564 2 4
v4 10.850 9.765 9.111 11.376 2 3
v3 8.883 8.663 7.484 6.029 3 3
v5 7.280 5.513 6.183 6.061 2 3
v7 7.206 7.718 5.597 4.351 3 3
v73 5.038 7.088 2.864 2.107 3 2
v60 1.829 1.575 1.627 1.874 1 1
v52 1.738 1.575 1.822 0.567 1 1
v40 1.243 1.575 1.302 0.816 1 1
v20 0.551 3.488 0 0.779 2 0
v21 0.316 0 0.976 0.142 0 1
v23 0.316 0 0.976 0.197 0 1
v30 0.304 0 0.976 0.090 0 1
v32 0.304 0 0.976 0.051 0 1
v42 0.304 0 0.976 0.052 0 1
v71 0.304 0 0.976 0.134 0 1
v731 0.296 0 0.868 0.066 0 1
v733 0.296 0 0.868 0.066 0 1
v22 0.138 1.313 0 0.117 1 0
v31 0.127 1.181 0 0.182 1 0
v41 0.127 1.181 0 0.127 1 0
v51 0.118 1.050 0 0.134 1 0
v61 0.127 1.050 0 0.071 1 0
v70 0.127 1.181 0 0.439 1 0
v72 0.127 1.181 0 0.051 1 0
v732 0.118 1.181 0 0.066 1 0
v50 0.118 1.050 0 0.051 1 0

The main reason for this minimal difference between the values of the two highest
ranked nodes lies in the fact that the sum of the weighted indegree and the weighted outdegree
is the same for each of these two nodes, as well as in the fact that all edges leading into and
out of the nodes v1, v2 are involved in approximately the same number of directed simple
cycles. All values of the centrality measure DSLI unw are non-zero, as all nodes have at
least one incoming or outgoing incident edge. For the nodes that have only incoming edges,
DSLI unw

in is not equal to zero, while DSLI unw
out is zero. The same applies to the other direc-

tion. This is similar to the DSLI in and DSLI out metrics for the weighted version (Table 2),
but the order of the important nodes is not kept when the edge weights are unified.

3.4. Discussion

Direction plays a very important role in graph analysis, especially when it comes to
representing relations between nodes or entities. For illustration, let us consider the undi-
rected graph obtained from the directed graph shown in Figure 1, where we intentionally
disregard the edge orientation, see Figure 2.

The resulting graph G′ shown in Figure 2a, is an undirected graph in which all nodes
have kept the same original degree, as in G. Consequently, many more (undirected) cycles
are present in the undirected graph than in the original directed graph. We use the SLI
centrality measure for undirected and weighted graphs introduced in [21] to evaluate the
integration score of each node in the graph G′. The values are shown in Table 4.
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(a) (b)

Figure 2. Comparison of undirected and directed graphs with all nodes of the same degree.
(a) Undirected graph G′; (b) Directed graph G′′.

Table 4. Comparison of SLI centrality measure of nodes in the undirected graph G′ presented in
Figure 2a and DSLI centrality measure of nodes in the directed graph G′′ illustrated in Figure 2b.

Node SLI DSLI

v1 33.622 27.759
v6 17.696 13.449
v4 14.504 11.894
v2 8.128 17.226
v5 7.805 6.873
v3 7.388 8.532
v7 2.411 3.804
v60 1.796 1.611
v20 1.395 1.498
v40 1.086 1.151
v73 0.941 2.073
v52 0.614 0.946
v70 0.495 0.522
v23 0.238 0.242
v31 0.235 0.393
v21 0.179 0.198
v51 0.178 0.208
v71 0.173 0.183
v41 0.167 0.188
v22 0.150 0.183
v30 0.123 0.146
v61 0.100 0.131
v732 0.092 0.129
v731 0.092 0.119
v733 0.009 0.119
v50 0.075 0.104
v32 0.075 0.100
v42 0.075 0.102
v72 0.074 0.104

At the same time, we simulate this undirected graph, G′, with the graph G′′ shown in
Figure 2b by adding the missing edges so that each pair of nodes in G (shown in Figure 1)
is connected by edges of both directions. We keep the node degree for all nodes of G by
taking the relatively low weight of 0.1 from the original direction. In this way, we obtain a
directed graph G′′ in which the edges between the nodes always occur in reciprocal pairs.
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Due to this construction, many more (directed) cycles appear compared to the original
graph G. We use the DSLI centrality measure to calculate the integration scores from
the graph G′′. The values obtained are shown in Table 4. Both centralities identify the
node v1 as the highest-ranked node, but they do not agree on the second-highest node.
For the SLI method on the undirected graph, G′ the node v2 ranks in second place, while
in the directed graph G′′, v6 ranks second. For the other nodes, which are categorised as
less important, there are also differences in the order according to the SLI and the DSLI
measure. The five most important nodes according to the SLI measure are v1, v2, v4, v6, v5,
while according to the DSLI measure the five most important nodes are v1, v6, v4, v2, v5.
It is of great significance to note that the rankings and the values of the SLI measure for
the graph G′ and the DSLI for the graphs G and G′′ do not match either in the order or in
the relative differences of the node scores, despite an increased number of cycles in both
graphs. The reason for the difference in these centralities originates in the information
about the edge direction. Specifically, Formula (3) for the edge importance takes into
account which node is the initial node of this edge and its degree. This also shows that
the respective weights of the reciprocal edges cannot be disregarded, even if their sum is
fixed, e.g., the cumulative weight of 3, split into 1.5 and 1.5 in each direction, clearly does
not have the same effect in the directed network as splitting the same weight into 0.1 and
2.9. This important characteristic of directed and weighted networks has been successfully
incorporated into the definition of the DSLI centrality.

In the context of integration in a graph, cycles play a crucial role for several reasons.
This means, for example, that information or resources can flow via multiple paths, which
increases the system’s resilience to disruptions. In addition, the presence of many cycles,
especially short cycles, is often a sign of high cohesion within a group of nodes, indicating
strong local integration. Figure 3 shows the graph G1, which is a slightly modified version
of the graph G from Figure 1.

Figure 3. An example of a simple weighted directed graph.

We introduce G1 = (V1, E1, w1), where V1 = V, E1 = E\{ev2v1 , ev4v3}, and the weights
of all remaining directed edges keep the same values as in the initial graph G, where
w(ev2v1) = 0.8, w(ev4v3) = 1.4. Although these two specified edges may seem relatively
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unimportant due to their lower weighting within the graph G, we will show that their
removal leads to a significantly altered node integration ranking within the graph G1.

The first few nodes of the graph G1 with the highest DSLI integration ranking are
shown in Table 5.

Table 5. DSLI measure for graph G1 introduced in Figure 3.

Node DSLI DSLI in DSLI out

v1 32.320 1.044 64.901
v2 14.424 34.264 0.628
v6 13.891 4.789 13.726
v5 8.591 12.257 2.461
v4 7.487 12.826 0.537
v7 7.402 6.487 3.866
v3 4.072 1.095 7.157

It is interesting to note that in contrast to the graph G shown in Table 1, the order of
the highly integrated nodes has changed and the order of the most important nodes is
different in all three versions of the DSLI measure presented. The underlying cause of
this scenario is attributed to the fact that the excluded edges, even if they did not have
high weight values, contributed to numerous cycles within the graph G; in particular, i.e.,
ev2v1 was part of four directed cycles and ev4v3 was involved in two directed cycles. This
emphasises the significant influence that directed cycles have on the integration of nodes
within a graph.

4. Related Work

There are different approaches to evaluating the semi-local node importance within
weighted networks, which have been discussed in several studies. It is important to
note that most of these measures are primarily designed for undirected graphs. This
leaves a significant gap in methods specifically tailored to directed graphs, in which the
directionality of edges plays a crucial role in the inbound and outbound importance of their
nodes. Consequently, the applicability of undirected measures to directed graphs is often
limited, highlighting the need to develop new techniques or adapt existing techniques to
better address the unique characteristics of directed networks.

Available semi-local centrality measures do not recognize inbound and outbound
interconnectivity and integration, which is a property of great importance in numerous
applications of complex networks. In our previous work [21], we introduced the Semi-
Local Integration (SLI) measure of node centrality for undirected and weighted graphs
that takes into account the coherence of the locally connected subnetwork and evaluates
the integration of nodes within their neighbourhood. We have illustrated SLI importance
differentiation between nodes in lexical networks and demonstrated its usefulness in
natural language processing (NLP) and its potential for use in various types of complex
networks in different research domains. This served as an inspiration and motivation for
this work, which extends the semi-local approach and evaluates the integration within a
neighbourhood subnetwork, defining a similar semi-local measure, DSLI, but for directed
and weighted graphs.

DSLI is a comprehensive measure of the importance of a node within the network,
parametric with respect to the indegree and outdegree node influence. In addition to the
weighted indegree and weighted outdegree of a node, it takes into account the number of
(directed) cycles of any length in which the node is involved, and the weights of the incident
edges. Since the direction of the edges leads to different interpretations of centrality, this
novel measure can be of great interest for many applications and various aspects of network
analysis. For example, indegree centrality indicates how central a node is with respect to
the incoming edges, and provides information about the orientation of the other important
nodes in the subnetwork towards the node. Within a complex network, the indegree and
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outdegree centrality can vary significantly due to the diversity of connections between the
nodes and the corresponding weights. For example, depending on its role in the network,
a node can have a high DSLI in but a low DSLI out or vice versa.

Most centrality measures in the literature focus on undirected graphs. In addition to
the well-known standard centrality measures, several novel perspectives have emerged
for evaluating the importance of nodes in undirected graphs. For example, Opsahl et al.,
2010 [22] extend the concepts of degree centrality and shortest path analysis, by proposing
that the node importance increases with the accumulation of network strength it possesses.
Furthermore, Opsahl etl al., 2008 [23] addresses the significance of nodes in terms of
prominence and control across diverse domains such as transportation [24], scientific
collaboration, and online communication [20]. This work highlights the tendency of
influential nodes to connect to each other, creating ‘range-based clubs’, and formalises
this tendency using the weights of edges that connect the ‘members’. However, despite
these advances, these measures do not generalise to directed graphs. Moreover, directed
graphs are often converted to undirected graphs by applying symmetry to each edge
(after removing self-loops, if any) [19], although directionality, i.e., orientation, is crucial in
numerous applications in various domains.

The concept of centrality measures in directed graphs is quite challenging due to the
complexity arising from directionality, while in undirected graphs, where the edges have
no specified direction, definition of particular centrality is simplified by the symmetric
relation of connectedness between the nodes, the directionality in directed graphs, affects
the relations between the nodes, which is not necessarily reciprocal. Even if two nodes are
connected in both directions, the weights of these edges can be different. This directional
offset makes the interpretation of centrality measurements considerably more difficult.

PageRank is probably the best-known centrality measure for directed graphs, but it
operates on the principle that the importance of a node (a webpage) can be determined
by looking at the other nodes (web pages) that link to it. It is defined globally, not semi-
locally. One of the semi-local centrality measures for directed networks, Katz–Bonacich
centrality [14], takes into account both the node’s direct connections (it focuses mainly on
outcoming edges to evaluate the centrality of a particular node, with connections from
other influential nodes leading to higher centrality values for that node) and its influence
via paths of different lengths in the network (the measure assigns higher centrality values
to nodes that are not only directly connected to other important nodes, but also to nodes
that are connected to important nodes via longer paths). Katz–Bonacich reflects both the
local importance of the node in its immediate vicinity and its global influence on the overall
network structure.

These valuable approaches are suitable for many important properties, but do not
provide a comprehensive understanding of the qualitative differences between nodes in
terms of their local integration.

5. Conclusions

Choosing the right centrality measure is crucial for gaining useful insights from
network analysis. To ensure that the chosen centrality measure effectively represents the
intended attributes of node importance within the network, careful consideration must
be given to the various aspects of the system’s operation and objectives, on the one hand,
and the characteristics of the network and computational constraints, on the other. For
many applications, semi-local centralities can reveal the most relevant information about
the properties of closely connected network clusters in the challenging and sophisticated
analysis of complex networks.

The available semi-local measures do not seem to assess the importance of integration
and influence within network communities and are particularly scarce for the more intricate
analysis. This is even more demanding for directed networks, which are the appropriate
model for many real-world systems where collaboration, communication, and exchange of
resources are represented by both one-way and bidirectional connections, such as on the
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Internet, in telecommunication networks, in IoT (Internet of Things) networks, or on social
media platforms.

The DSLI centrality proposed in this paper aims to identify the most influential nodes
in terms of integration within the subnetwork of such complex networks. Many strong
links within the neighbourhood, including redundant routes, are an indicator of coherence
and stronger integration within the subnetwork. They enable effective communication and
dissemination of information, promote connectivity throughout the network and foster
integration at both local and global levels.

Several extensions for research go beyond the scope of this work. As future work, we
plan to look at applications involving loops in the graph and integration centrality beyond
simple graphs. For certain network characteristics, we could also explore the potential for
finer tuning of the in- and out- parameters, e.g., using parameters over the segment [0, 1],
α, β ∈ [0, 1], where β = 1 − α.

Another direction of further research is the analysis of concrete applications of central-
ity in complex networks, e.g., linguistic networks in NLP, which are formed on the basis of
many directed syntactic-semantic constructions. Various server–client and other Internet
network relations are also of particular interest.

Supplementary Materials: The Python function implementing the DSLI measure is available on-
line at https://github.com/sbujacic/Semi-Local-Integration-Measure-For-Directed-and-Weighted-
Graphs, accessed on 31 March 2024.
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21. Ban Kirigin, T.; Bujačić Babić, S.; Perak, B. Semi-Local Integration Measure of Node Importance. Mathematics 2022, 10, 405.

[CrossRef]
22. Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw.

2010, 32, 245–251. [CrossRef]
23. Opsahl, T.; Colizza, V.; Panzarasa, P.; Ramasco, J.J. Prominence and Control: The Weighted Rich-Club Effect. Phys. Rev. Lett. 2008,

101, 168702. [CrossRef] [PubMed]
24. Guze, S. Graph Theory Approach to the Vulnerability of Transportation Networks. Algorithms 2019, 12, 270. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/0022250X.1972.9989806
http://dx.doi.org/10.1086/228631
https://github.com/sbujacic/Semi-Local-Integration-Measure-For-Directed-and-Weighted-Graphs
http://dx.doi.org/10.1016/B978-0-12-804452-0.00005-1
http://dx.doi.org/10.1016/j.geomphys.2023.104955
http://dx.doi.org/10.1007/s41109-017-0047-y
http://www.ncbi.nlm.nih.gov/pubmed/30443581
http://dx.doi.org/10.1016/j.scico.2003.12.008
http://dx.doi.org/10.3390/math10030405
http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1103/PhysRevLett.101.168702
http://www.ncbi.nlm.nih.gov/pubmed/18999722
http://dx.doi.org/10.3390/a12120270

	Introduction
	Semi-Local Integration Measure for Directed and Weighted Graphs
	Definition of Directed Semi-Local Integration Measure (DSLI)
	 DSLI Algorithm

	Versions of Directed Semi-Local Integration Measure
	Incoming Directed Semi-Local Integration Importance—DSLIin
	Outgoing Directed Semi-Local Integration Importance—DSLIout
	Directed Semi-Local Integration Measure in Unweighted Graphs
	Discussion

	Related Work
	Conclusions
	References

