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1. Introduction

In this paper, we investigate the Cauchy problem for a G3CH equation given in Ref. [1].
as follows: 

ut = −vpx + uxq + 3
2 uqx − 3

2 u(pxrx − pr),
vt = 2vqx + vxq,
wt = vrx + wxq + 3

2 wqx +
3
2 w(pxrx − pr),

u = p − pxx, w = rxx − r,
v = 1

2 (qxx − 4q + pxxrx − rxx px + 3px − 3prx)
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), t > 0, x ∈ R.

(1)

Based on the following spectral problem

ϕx = Uϕ, ϕ =

 ϕ1
ϕ1
ϕ3

, U =

 0 1 0
1 + λv 0 u

λw 0 0

,

recently, Geng and Xue [1] proposed a new three-component Camassa–Holm system
with N-peakon solutions (1). Here u, v, w are three potentials and λ is a constant spectral
parameter. It was shown in [1] that the N-peakon solitons of the system (1) have the form

p(x, t) =
N
∑

j=1
pj(t)e

−|x−xj(t)|,

q(x, t) =
N
∑

j=1
qj(t)e

−2|x−xj(t)|,

r(x, t) =
N
∑

j=1
rj(t)e

−|x−xj(t)|,

where pj, qj, rj, and xj evolve according to a dynamical system (1). In Ref. [1], with the
aid of the zero-curvature equation, they derived a hierarchy of new nonlinear evolution
equations and established their Hamiltonian structures. Also, they demonstrated that (1) is
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exactly a negative flow in the hierarchy and admits exact solutions with N-peakons and an
infinite sequence of conserved quantities.

When p = r = 0, the system (1) becomes

ut = 2uqx + uxq, u =
1
2
(qxx − 4q). (2)

Using an appropriate scaling ũ(x, t) = u( x
2 , t

2 ), q̃(x, t) = −q( x
2 , t) and using (2),

one has
ũt + 2ũq̃ + ũq̃x = 0, ũ = q̃ − q̃xx, (3)

which is nothing but the famous Camassa–Holm (CH) equation [2]. (3) models a one-
dimensional unidirectional propagation of shallow water waves over a flat bottom under
the influence of gravity, and ũ(t, x) represents the fluid velocity at time t in the horizontal
direction x. It is a well-known integrable equation describing the velocity dynamics of
shallow water waves. Dropping the symbol ,̃ (3) reduces

ut + 2uq + uqx = 0, u = q − qxx, (4)

In the case of the CH Equation (4), there are two local Hamilton structures [3] given by

qt = B0
δH2

δq
= B1

δH1

δq
,

B0 = −∂x + ∂3
x = −L, B1 = −(q∂x + ∂xq),

H1 =
1
2

∫
(u3 + uu2

x)dx, H2 =
1
2

∫
(u2 + u2

x)dx,

with q = u − uxx, whose compatibility was known in [4]. In [2], Camassa and Holm
showed that (4) has peaked solitary wave solutions (peakons) u(t, x) = ce−|x−ct|, which
have a discontinuous first derivative at the wave peak, in contrast to the smoothness of
most previously known specious of solitary waves, and thus are called peakons. Also, (4)
has the multi-peakon solutions

u(t, x) =
n

∑
i=1

pi(t)e−|x−qi(t)|,

where pi(t) and qi(t) satisfy the Hamiltonian system
dpi
dt = ∑

j ̸=i
pi pjsgn(qi − qj)e

−|qi−qj | = − ∂H
∂qi

,

dqi
dt = ∑

j
pje

−|qi−qj |−|qi−qk | = ∂H
∂pi

,

with the Hamiltonian

H =
1
2

n

∑
i,j=1

pi pje
−|qi−qj |.

The CH Equation (4) is integrable in the sense of an infinite-dimensional Hamiltonian
system and arises as a model for shallow water waves [2,5]. Indeed, the CH Equation (4)
and its bi-Hamiltonian structure were earlier established by Fokas and Fuchssteiner [6].
Moreover, it also used to describe small amplitude radial deformation waves in cylindrical
compressible hyper-elastic rods [7]. The local and global well-posedness of the Cauchy
problem of the CH Equation (4) have been extensively investigated in [8]. It was shown
that there are strong solutions to the CH Equation (4) [8] and finite time blow-up strong
solutions to the CH Equation (4) [8,9]. The existence and uniqueness of global weak
solutions to the CH Equation (4) were studied in [10,11]. Recently, the well-posedness, the
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scattering problem, and some qualitative properties for the CH Equation (4) were studied in
Refs. [12–19] and the references therein.

Due to the singularity of strong solutions in finite time, we are forced to study weak
solutions. In particular, in order to go beyond the breaking wave (i.e, the wave profile
remains bounded but its slope becomes unbounded in finite time) [8,9], if one considers a
global weak solution, it is natural to consider Hölder a continuous solution, for instance,
the H1 solution for CH (4). It is well known that there are two methods to deal with
the global existence of weak solutions to CH (4). One method is the vanishing viscosity
technique, see Refs. [10,11]. The other method is to introduce a new semi-linear system
on new characteristic coordinates, see Refs. [8,9]. It is worth mentioning that Zhang
et al. [12] investigated the global energy conservation solution for (4). More precisely,
using both the lower order and the higher order energy conservation laws, as well as the
characteristic method, they established the global existence and uniqueness of the Hölder
continuous energy weak solution to (4) in the energy space H1(R)× W1,2N(R). Also, they
demonstrated that a very natural and interesting problem is to study how the regularity of
solution changes with respect to N. Namely, they established Hölder continuous energy
weak solutions with the exponent 1 − 1

2N . This improves the contributions in the literature
in [20,21].

Quite recently, using the Littlewood–Paley theory and transport equations theory, Luo
and Yin [22] proved the local well-posedness of the G3CH Equation (1) in Besov spaces Bs

p,r

with p, r ∈ [1, ∞], s > max{ 1
p , 1

2}. Also, they established two blow-up criteria which, along
with the conservation laws, enable us to study global existence. Moreover, when the initial
data satisfy some certain sign conditions, they obtained a global existence result. Finally,
they verified that the system possesses peakon solutions.

On the other hand, one of the most popular generalized systems is the following
integrable two-component Camassa–Holm shallow water system (2CH) [13]:

mt + umx + 2uxm + kρρx = 0, m = (1 − ∂2
x)u,

ρt + (uρ)x = 0,
m(x, 0) = m0(x), ρ(x, 0) = ρ0(x).

(5)

There are many research results with respect to 2CH (5) [14,23–27], such as the blow-up
of solutions, the well-posedness of solutions, the existence of weak solutions, the global
solutions of the Cauchy problem, and wave-breaking criteria. In [14], Yan and Yin first
proved the local well-posedness of the 2CH (5) in the Besov spaces. Then, under certain
conditions on the initial data, they established the global existence and the finite lifespan.
Also, in the case of finite time singularities, they demonstrated the precise blow-up scenario
for breaking waves. In [23], they established the local well-posedness and precise blow-up
scenarios for strong solutions for the 2CH (5). In [24], Guan and Yin investigated the global
existence and blow-up phenomena for 2CH (5). Also, a new global existence result and
several new blow-up results of strong solutions to the system are presented. Their obtained
results for the system are sharp and considerably improve earlier results, such as [13]. In
[25], in the sense of weakness, they proved the existence of a global weak solution to 2CH (5)
given the initial data satisfying some certain conditions, which improves the earlier result,
such as [24]. It is worth mentioning that Gui et al. [27] established the local well-posedness
for the two-component Camassa–Holm system in a range of the Besov spaces and derived
a wave-breaking mechanism for strong solutions. In addition, they determined the exact
blow-up rate of such solutions to 2CH (5), which improves the earlier result, such as [26].

Another one is the modified two-component Camassa–Holm system (M2CH) [28]
mt + umx + 2uxm + kρρx = 0, m = (1 − ∂2

x)u,
ρt + (uρ)x = 0, ρ = (1 − ∂2

x)(ρ − ρ0),
m(x, 0) = m0(x), ρ(x, 0) = ρ0(x).

(6)
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There are lots of contributions concerning well-posedness, including local and global
well-posedness as well as blow-up phenomena results for M2CH (6) (see, for instance,
Refs. [29–33]). In [29], using the viscous approximation technique, they established the
existence of global-in-time weak solutions for the Cauchy problem of M2CH (6). The key
elements in their analysis are the Helly theorem and some a priori one-sided supernorm and
space-time higher integrability estimates on the first-order derivatives of approximation
solutions. In [30], Tan and Yin first proved the existence of global conservative solutions to
the Cauchy problem for M2CH (6). Then, they demonstrated that these global solutions,
which depend continuously on the initial date, construct a semigroup. This improves
the contributions in the literature in [20]. In [32], introducing a new set of independent
variables, they transformed M2CH (6) into a semilinear system. To obtain a dissipative
solution, they modified the corresponding system into a discontinuous system. Then, they
mapped the solution of system to the dissipative solution of original equation. Furthermore,
they proved that these global dissipative solutions construct a semigroup. This improves
the contribution in the literature in [31].

The analyticity of solutions to Euler equations of hydrodynamics has been studied
extensively. It was initiated by [33,34] and later further developed in [35–39]. As mentioned
before, we know that the approach is based on contraction-type arguments in a suitable
scale of Banach spaces. It is well known that KdV solutions are analytic in the space variable
for all time (see Trubowitz [40]) but are not analytic in the time variable (see Kato and
Masuda [41], and Byers and Himonas [42]). However, the analytical properties of solutions
to the CH (4) are quite different from those of the KdV, studied, for instance, in Bona and
Smith [43]; Bourgain [44]; and Kenig, Ponce, and Vega [45,46]. For example, the Cauchy
problem for CH (4) is not globally well-posed since for certain initial data the first derivative
of the solution becomes unbounded in L∞ norm in finite time, see [2,47].

Concerning the analyticity of solutions, it is worth mentioning that Himonas and
Misiolek [48] considered the periodic Cauchy problem for the CH (4) with analytic initial
data and proved that its solutions are analytic in both variables, globally in space and
locally in time. Later on, Yan and Yin [49] investigated the periodic Cauchy problem for
the M2CH (5) with analytic initial data and proved that its solutions are analytic in both
variables, globally in space and locally in time. Quite recently, Yan and Yin [50] investigated
the higher dimensional Camassa–Holm equations{

mt + umx + u · ∇m +∇uT · m + m(divu) = 0,
u(x, 0) = u0(x).

(7)

where the vector fields u = u(x, t) and m = m(x, t) are defined from R+ ×Rd to Rd such
that m = (I − ∆)u or u = G ∗ m with the Green function G for the Helmholtz operator
I − ∆. Also, the analyticity of solutions for (7) is proved in both variables, globally in space
and locally in time. A natural idea is to extend such a study to the G3CH systems (1).
We observe that the classical Cauchy–Kowalevski theorem does not apply to (1) since the
initial line t = 0 is characteristic. Thus, the novel result can be viewed as an extended
Cauchy–Kowalevski theorem for the nonlinear situation (1). To our best knowledge, the
analyticity of the Cauchy problem for (1) has not been studied yet. In this paper, we will
prove the analyticity of solutions to system (1) in both variables, with x on the real line R
and t in a neighborhood of zero, provided that the initial data are analytic R.

The rest of this paper is organized as follows. In Section 2, we obtain the analytic solu-
tions to the system (1) on the line R, and we present the proof of our results (i.e., Theorem 2).
In Section 3, we present the conclusions for our paper.

2. Analytic Solutions to the System (1)

In this section, we shall show the existence and uniqueness of analytic solutions to the
system (1) on the line R. Before proceeding to our analysis, we present some notations that
will be used throughout our paper.
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Let
P1 = (1 − ∂2

x)
−1, P2 = (4 − ∂2

x)
−1, P3 = ∂x,

p = P1u, r = P1u,

q = P2(−w · P1P3u + u · P1P3w) + 2P2(−P1P3u · P1w + P1u · P1P3w)− 2P2v = B(u, w)− 2P2v.

To further facilitate our analysis, we need to rewrite the system (1) in the following
non-local form: {

Ut = F(U),
U(x, 0) = U0.

(8)

Here, U = (u, v, w)T , U0 = (u0, v0, w0)
T , and

F(U) =

 F1(U)
F2(U)
F3(U)

 (9)

where

F1(U) = −v · P1P3u + P3u(B(u, w)− 2P2v) + 3
2 u(P3B(u, w)− 2P2P3v)

− 3
2 u(−P1P3u · P1P3w + P1u · P1w),

F2(U) = 2v · (P3B(u, w)− 2P2P3v) + P3v · (B(u, w)− 2P2v),

F3(U) = −v · P1P3w + P3w(B(u, w)− 2P2P3v) + 3
2 w(P3B(u, w)− 2P2v)

+ 3
2 w(−P1P3u · P1P3w + P1u · P1w).

Next, before stating the main result of this section, we first introduce the
following theorem.

Theorem 1 ([36,37]). Let (Xs, ||| · |||s), s > 0 be a scale of decreasing Banach spaces, such that for
any 0 < s′ ≤ s, we have Xs ⊂ Xs′ with ||| · |||s′ ≤ ||| · |||s. Consider the Cauchy problem{

ut = F(t, u(t)),
u(0) = 0.

Let T, R, and C be positive numbers and suppose that F satisfies the following conditions:

(i) If for any 0 < s′ < s < 1, the function t |→ u(t) is holomorphic in |t| < T and
continuous on |t| ≤ T with values in Xs and sup

|t|≤T
|||u(t)|||s < R, then t |→ F(t, u(t))

is a holomorphic functionon |t| < T with values in Xs′ .
(ii) For any 0 < s′ < s ≤ 1, and any u, v ∈ B(0, R) ⊂ Xs, that is, |||u|||s < R, |||v|||s < R,

we have
sup
|t|≤T

|||F(t, u)− F(t, v)|||s′ ≤
C

s − s′
|||u − v|||s.

(iii) M > 0 exists such that for any 0 < s < 1,

sup
|t|≤T

|||F(t, 0)|||s ≤
M

1 − s
.

Then, T0 ∈ (0, T) exists, along with a unique function u(t), which is holomorphic in
t < (1 − s)T0 with values in Xs for every s ∈ (0, 1) and is a solution to the above IVP.

We are now in position to state our main theorem.

Theorem 2. Let (u0, v0, w0)
T be a real analytic function on R. Then, ε > 0 exists, along with a

unique solution (u, v, w)T of the IVP (1) that is analytic on (−ε, ε)×R.
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Now, we use a contraction argument to analytic solutions to the system (1). For that
purpose, we will need a suitable scale of Banach spaces. For any s > 0, we define the spaces

Es = {u ∈ C∞(R) : |||u|||s = sup
k∈N

sk∥∂k∥Hr(R)
k!/(k + 1)2 < ∞},

where r > 1
2 is any fixed real number. It is obvious that Es equipped with the norm ||| · |||s

is a Banach space, and for any 0 < s′ < s, Es ⊂ Es′ with |||u|||s′ ≤ |||u|||s. Note that any u
in Es is real analytic on R.

Let
|||U|||s = |||u|||s + |||v|||s + |||w|||s,

|||F(U)|||s = |||F1(U)|||s + |||F2(U)|||s + |||F3(U)|||s.

We will use Theorem 1 to prove Theorem 2. The conditions (i) and (iii) in Theorem 1
can be easily verified once our system (1) is transformed into a new system with zero
initial data as in (8). In order to verify Theorem 2, it suffices to let the system (8) satisfy the
following condition.

Proposition 1. Let R > 0; there is a constant C > 0 such that for any 0 < s′ < s ≤ 1, we have

|||F(U1)− F(U2)|||s′ ≤
C

s − s′
|||U1 − U2|||s.

for any U1 and U2 in the ball B(0, R) ⊂ Es.

To establish Proposition 1, we need the following two lemmas:

Lemma 1 ([49]). Let 0 < s < 1; there is a constant C > 0, independent of s, such that for any f
and g in Es, we have

||| f g|||s ≤ C||| f |||s|||g|||s,

where C = C(r) depends only on r.

Lemma 2. For any 0 < s′ < s < 1, we have

|||P1 f |||s ≤ ||| f |||s, (10)

|||P2 f |||s ≤
1
4
||| f |||s, (11)

|||P3 f |||s′ ≤
1

s − s′
||| f |||s, (12)

|||P1P3 f |||s ≤ ||| f |||s, (13)

|||P2P1 f |||s ≤
1
4
||| f |||s. (14)

Proof. As for (10), (12), and (13), we can see Ref. [49] (p. 1119). Thus, we only prove (11)
and (14). For the proof of (11), it suffices to show that

∥∂kP2 f ∥Hr(R) ≤
1
4
∥∂k f ∥Hr(R).
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Indeed,
∥∂kP2 f ∥2

Hr(R) =
∫
R(1 + ξ2)r|∂̂kP2 f (ξ)|2dξ

=
∫
R(1 + ξ2)r| ξk

4+ξ2 f̂ (ξ)|2dξ

≤ 1
16

∫
R(1 + ξ2)r|ξk f̂ (ξ)|2dξ

= 1
16∥∂k f ∥2

Hr(R).

For the proof of (14), it suffices to show that

∥∂kP2P1 f ∥Hr(R) ≤
1
4
∥∂k f ∥Hr(R).

In a similar way, we have

∥∂kP2P1 f ∥2
Hr(R) =

∫
R(1 + ξ2)r| ̂∂kP2P1 f (ξ)|2dξ

=
∫
R(1 + ξ2)r| ξk

(1+ξ2)(4+ξ2)
f̂ (ξ)|2dξ

≤ 1
16

∫
R(1 + ξ2)r|ξk f̂ (ξ)|2dξ

= 1
16∥∂k f ∥2

Hr(R).

This completes the proof of Lemma 2.

Next, by Lemmas 1 and 2, we prove Proposition 1.

Proof. It follows from (9) that

F1(U1)− F1(U2) = −v1 · P1P3u1 + P3u1(B(u1, w1)− 2P2v1)
+ 3

2 u1(P3B(u1, w)− 2P2P3v1)− 3
2 u1(−P1P3u1 · P1P3w1 + P1u1 · P1w1)

+v2 · P1P3u2 − P3u2(B(u2, w2)− 2P2v2)
− 3

2 u2(P3B(u2, w2)− 2P2P3v2) +
3
2 u2(−P1P3u2 · P1P3w2 + P1u2 · P1w2),

(15)

F2(U1)− F2(U2) = 2v1 · (P3B(u1, w1)− 2P2P3v1) + P3v1 · (B(u1, w1)− 2P2v1)
−2v2 · (P3B(u2, w2)− 2P2P3v2)− P3v2 · (B(u2, w2)− 2P2v2),

(16)

F3(U1)− F3(U2) = −v1 · P1P3w1 + P3w1(B(u1, w1)− 2P2P3v1)
+ 3

2 w1(P3B(u1, w1)− 2P2v1) +
3
2 w1(−P1P3u1 · P1P3w1 + P1u1 · P1w1)

+v2 · P1P3w2 − P3w2(B(u2, w2)− 2P2P3v2)
− 3

2 w2(P3B(u2, w2)− 2P2v2)− 3
2 w2(−P1P3u2 · P1P3w2 + P1u2 · P1w2).

(17)

From (15), we have

|||F1(U1)− F1(U2)|||s′ ≤ |||v1 · P1P3u1 − v2 · P1P3u2|||s′ + |||P3u1B(u1, w1)− P3u2(B(u2, w2)|||s′
+2|||P3u1P2v1 − P3u2P2v2)|||s′ + 3

2 |||u1P3B(u1, w1)− u2P3B(u2, w2)|||s′
+3|||u1P2P3v1 − u2P2P3v2|||s′
+ 3

2 |||u1P1P3u1 · P1P3w1 − u2P1P3u2 · P1P3w2|||s′
+ 3

2 |||u1P1u1 · P1w1 − u2P1u2 · P1w2|||s′
≜ I1 + I2 + I3 + I4 + I5 + I6 + I7.

(18)

In what follows, using Lemmas 1 and 2, we shall to estimate Ii in the right-hand side
of (18), respectively.

Estimate I1. It follows from (13) and (18) that

|||I1|||s′ = |||v1 · P1P3u1 − v2 · P1P3u2|||s′
≤ |||(v1 − v2)P1P3u1|||s′ + |||v2P1P3(u1 − u2)|||s′
≤ |||v1 − v2|||s|||P1P3u1|||s + |||v2|||s|||P1P3(u1 − u2)|||s
≤ |||v1 − v2|||s|||u1|||s + |||v2|||s|||u1 − u2|||s
≤ C1(r, R)|||U1 − U2|||s ≤ C1(r,R)

s−s′ |||U1 − U2|||s.
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Observing

B(u, w) = P2(−w · P1P3u + u · P1P3w) + 2P2(−P1P3u · P1w + P1u · P1P3w),

and using Lemma 2 (i.e., (10), (11), and (13)), we arrive at

|||B(u1, w1)|||s = |||P2(−w1 · P1P3u1 + u1 · P1P3w1) + 2P2(−P1P3u1 · P1w1 + P1u1 · P1P3w1)|||s
≤ 1

4 [||| − w1 · P1P3u1 + u1 · P1P3w1|||s + 2||| − P1P3u1 · P1w1 + P1u1 · P1P3w1|||s]
≤ 1

4 [|||w1|||s|||P1P3u1|||s + |||u1|||s|||P1P3w1|||s
+2(|||P1P3u1|||s|||P1w1|||s + |||P1u1|||s|||P1P3w1|||s)]

≤ 1
4 [|||w1|||s|||u1|||s + |||u1|||s|||w1|||s + 2(|||u1|||s|||w1|||s + |||u1|||s|||w1|||s)]

= 3
2 |||u1|||s|||w1|||s,

(19)

B(u1, w1)− B(u2, w2) = P2(−w1 · P1P3u1 + u1 · P1P3w1)
+2P2(−P1P3u1 · P1w1 + P1u1 · P1P3w1)
+P2(−w2 · P1P3u2 + u2 · P1P3w2)
+2P2(−P1P3u2 · P1w2 + P1u2 · P1P3w2)
= −P2(w1 · P1P3u1 − w2 · P1P3u2) + P2(u1 · P1P3w1 − u2 · P1P3w2)
−2P2(P1P3u1 · P1w1 − P1P3u2 · P1w2)
+2P2(P1u1 · P1P3w1 − P1u2 · P1P3w2)

≜ J1 + J2 + J3 + J4.

(20)

For J1, it follows from (20), Lemmas 1 and 2 (i.e., (11) and (13)) that

|||J1|||s = ||| − P2(w1 · P1P3u1 − w2 · P1P3u2)|||s
≤ 1

4 |||w1 · P1P3u1 − w2 · P1P3u2|||s
≤ 1

4 [|||(w1 − w2) · P1P3u1|||s + |||w2 · P1P3(u1 − u2)|||s]
≤ 1

4 [|||w1 − w2|||s|||P1P3u1|||s + |||w2|||s|||P1P3(u1 − u2)|||s]
≤ 1

4 (|||w1 − w2|||s|||u1|||s + |||w2|||s|||u1 − u2|||s)
≤ C̃1(r, R)|||U1 − U2|||s.

(21)

Similarly, we have

|||J2|||s = |||P2(u1 · P1P3w1 − u2 · P1P3w2)|||s
≤ C̃2(r, R)|||U1 − U2|||s,

(22)

|||J3|||s = ||| − 2P2(P1P3u1 · P1w1 − P1P3u2 · P1w2)|||s
≤ C̃3(r, R)|||U1 − U2|||s,

(23)

|||J4|||s = |||2P2(P1u1 · P1P3w1 − P1u2 · P1P3w2)|||s
≤ C̃4(r, R)|||U1 − U2|||s.

(24)

Thus, it follows from (20)–(24) that

|||B(u1, w1)− B(u2, w2)|||s ≤ C̃5(r, R)|||U1 − U2|||s, (25)

where
C̃5(r, R) = C̃1(r, R) + C̃2(r, R) + C̃3(r, R) + C̃4(r, R).

Estimate I2. It follows from (12), (18), (19), and (25) that

|||I2|||s′ = |||P3u1B(u1, w1)− P3u2(B(u2, w2)|||s′
≤ |||P3(u1 − u2)|||s|||B(u1, w1)|||s + |||P3u2|||s|||B(u1, w1)− B(u2, w2)|||s
≤ 3

2
1

s−s′ |||u1|||s|||w1|||s|||u1 − u2|||s + 1
s−s′ |||u2|||sC̃5(r, R)|||U1 − U2|||s

≤ C2(r,R)
s−s′ |||U1 − U2|||s.
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Estimate I3. Using (11), (12), and (18), we obtain

|||I3|||s′ = 2|||P3u1P2v1 − P3u2P2v2)|||s′
≤ 2|||P3(u1 − u2)|||s|||P2v1|||s + |||P3u2|||s|||P2(v1 − v2)|||s
≤ 2[ 1

s−s′ |||u1 − u2|||s 1
4 |||v1|||s + 1

s−s′ |||u2|||s 1
4 |||v1 − v2|||s]

≤ C3(r,R)
s−s′ |||U1 − U2|||s.

Estimate I4. Using (12), (18), (19), and (25), we obtain

|||I4|||s′ = 3
2 |||u1P3B(u1, w1)− u2P3B(u2, w2)|||s′

≤ 3
2 [|||(u1 − u2)P3B(u1, w1)|||s + |||u2P3(B(u1, w1)− B(u2, w2))|||s]

≤ 3
2 [|||u1 − u2|||s|||P3B(u1, w1)|||s + |||u2|||s|||P3(B(u1, w1)− B(u2, w2))|||s

≤ 3
2 [|||u1 − u2|||s 1

s−s′ |||B(u1, w1)|||s + |||u2|||s 1
s−s′ |||B(u1, w1)− B(u2, w2)|||s

≤ 3
2 [|||u1 − u2|||s 1

s−s′
3
2 |||u1|||s|||w1|||s + |||u2|||s 1

s−s′ C̃5(r, R)|||U1 − U2|||s
≤ C4(r,R)

s−s′ |||U1 − U2|||s.

Estimate I5. Using (11), (12), and (18), we obtain

|||I5|||s′ = 3|||u1P2P3v1 − u2P2P3v2|||s′
≤ 3[|||P2(u1 − u2)P3v1|||s + |||P2u2P3(v1 − v2)|||s]
≤ 3[|||P2(u1 − u2)|||s|||P3v1|||s + |||P2u2|||s|||P3(v1 − v2)|||s]
≤ 3[ 1

4 |||u1 − u2|||s 1
s−s′ |||v1|||s + 1

4 |||u2|||s 1
s−s′ |||v1 − v2|||s

≤ C5(r,R)
s−s′ |||U1 − U2|||s.

Estimate I6. It follows from (13) and (18) that

|||I6|||s′ = 3
2 |||u1P1P3u1 · P1P3w1 − u2P1P3u2 · P1P3w2|||s′

= 3
2 |||[(u1 − u2)P1P3u1 · P1P3w1 + u2(P1P3u1 · P1P3w1 − P1P3u2 · P1P3w2)|||s

≤ 3
2 [|||u1 − u2|||s|||P1P3u1|||s|||P1P3w1|||s + |||u2|||s|||P1P3u1 · P1P3w1 − P1P3u2 · P1P3w2|||s]

≤ 3
2 [|||u1 − u2|||s|||u1|||s|||w1|||s + |||u2|||s|||P1P3u1 · P1P3w1 − P1P3u2 · P1P3w2|||s].

On the other hand, using (13), we have

|||P1P3u1 · P1P3w1 − P1P3u2 · P1P3w2|||s
= |||P1P3(u1 − u2) · P1P3w1 + P1P3u2 · P1P3(w1 − w2)|||s
≤ |||P1P3(u1 − u2)|||s|||P1P3w1|||s + |||P1P3u2|||s|||P1P3(w1 − w2)|||s
≤ |||u1 − u2|||s|||w1|||s + |||u2|||s|||w1 − w2|||s.

Thus, we obtain

|||I6|||s′ ≤ 3
2 [|||u1 − u2|||s|||u1|||s|||w1|||s

+|||u2|||s(|||u1 − u2|||s|||w1|||s + |||u2|||s|||w1 − w2|||s)]
≤ C6(r, R)|||U1 − U2|||s ≤ C6(r,R)

s−s′ |||U1 − U2|||s.

Estimate I7. It follows from (10) and (18) that

|||I7|||s′ = 3
2 |||u1P1u1 · P1w1 − u2P1u2 · P1w2|||s′

≤ 3
2 [|||(u1 − u2)P1u1 · P1w1|||s + |||u2(P1u1 · P1w1 − P1u2 · P1w2)|||s]

≤ 3
2 [|||u1 − u2|||s|||P1u1|||s|||P1w1|||s + |||u2|||s|||P1u1 · P1w1 − P1u2 · P1w2|||s]

≤ 3
2 [|||u1 − u2|||s|||u1|||s|||w1|||s + |||u2|||s|||P1u1 · P1w1 − P1u2 · P1w2|||s].

On the other hand, using (10), we have

|||P1u1 · P1w1 − P1u2 · P1w2|||s = |||P1(u1 − u2) · P1w1 + P1u2 · P1(w1 − w2)|||s
≤ |||P1(u1 − u2) · P1w1|||s + |||P1u2 · P1(w1 − w2)|||s
≤ |||P1(u1 − u2)|||s|||P1w1|||s + |||P1u2|||s|||P1(w1 − w2)|||s
≤ |||u1 − u2|||s|||w1|||s + |||u2|||s|||w1 − w2|||s.

Thus, we obtain
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|||I7|||s′ ≤ 3
2 [|||u1 − u2|||s|||u1|||s|||w1|||s + |||u2|||s(|||u1 − u2|||s|||w1|||s + |||u2|||s|||w1 − w2|||s)]

≤ C7(r, R)|||U1 − U2|||s ≤ C7(r,R)
s−s′ |||U1 − U2|||s.

Hence, using estimate Ii(i = 1, 2, . . . , 7), we obtain

|||F1(U1)− F1(U2)|||s′ ≤
C8(r, R)

s − s′
|||U1 − U2|||s,

where
C8(r, R)

s − s′
= max{Ci(r, R)

s − s′
}, (i = 1, 2, . . . , 7).

Similarly, we have

|||F2(U1)− F2(U2)|||s′ ≤
C9(r, R)

s − s′
|||U1 − U2|||s,

|||F3(U1)− F3(U2)|||s′ ≤
C10(r, R)

s − s′
|||U1 − U2|||s.

Thus, we obtain

|||F(U1)− F(U2)|||s′ = |||F1(U1)− F1(U2)|||s′ + |||F2(U1)− F2(U2)|||s′ + |||F3(U1)− F3(U2)|||s′
≤ C

s−s′ |||U1 − U2|||s,

where
C

s − s′
= max{Ci(r, R)

s − s′
}, (i = 8, 9, 10).

The proof of Proposition 1 is then completed.
By Theorem 1 and Proposition 1, thus we complete the proof of Theorem 2.

3. Conclusions

This paper is mainly interested with the Cauchy problem for a three-component gen-
eralization of the Camassa–Holm equation with analytic initial data. Based on contraction-
type arguments in a suitable scale of Banach spaces, we establish that the analyticity of its
solutions is proved in both variables, globally in space and locally in time.

Author Contributions: Writing—original draft, M.B.; writing—review & editing, Z.Z.; project
administration, C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by NSF of Guangxi Grant (Nos. 2021GXNSFAA220130,
2022GXNSFAA035617), the project of Guangxi Education Department (Nos. 2024KY0594,
2023KY0599).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Geng, X.G.; Xue, B. A three-component generalization of Camassa–Holm equation with N-peakon solutions. Adv. Math. 2011,

226, 827–839. [CrossRef]
2. Camassa, R.; Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993, 71, 1661–1664.

[CrossRef] [PubMed]
3. Popowicz, Z. A Camassa–Holm equation interacted with the Degasperis-Procesi equation. Czech. J. Phys. 2006, 56, 1263–1268.

[CrossRef]
4. Fuchssteiner, B. Some tricks from the symmetry-tool box for nonlinear equations: Generalizations of the Camassa–Holm equation.

Phys. D 1996, 95, 229–243. [CrossRef]
5. Johnson, R.S.; Holm, C. Korteweg de Vries and related models for water waves. J. Fluid Mech. 2002, 455, 63–82. [CrossRef]
6. Fokas, A.; Fuchssteiner, B. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D 1981, 4, 47–66.

http://doi.org/10.1016/j.aim.2010.07.009
http://dx.doi.org/10.1103/PhysRevLett.71.1661
http://www.ncbi.nlm.nih.gov/pubmed/10054466
http://dx.doi.org/10.1007/s10582-006-0435-5
http://dx.doi.org/10.1016/0167-2789(96)00048-6
http://dx.doi.org/10.1017/S0022112001007224


Mathematics 2024, 12, 1085 11 of 12

7. Dai, H. Model equations for nolinear dispersive waves in compressible Mooney-Rivlin rod. Acta Mech. 1998, 127, 193–207.
[CrossRef]

8. Constantin, A.; Escher, J. Well-posedness; global existence, and blow up phenomena for a periodic quasilinear hyperbolic equation.
Comm. Pure Appl. Math. 1998, 51, 475–504. [CrossRef]

9. Constantin, A.; Escher, J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998, 181, 229–243. [CrossRef]
10. Xin, Z.; Zhang, P. On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 2000, 53, 1411–1433. [CrossRef]
11. Xin, Z.; Zhang, P. On the uniqueness and large time behavior of the weak solution to a shallow water equation. Commun. Partial

Diff. Eqs. 2002, 27, 1815–1844. [CrossRef]
12. Bressan, A.; Constantin, A. Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 2007, 5, 1–27. [CrossRef]
13. Constantin, A.; Ivanov, R. On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 2008, 372,

7129–7132. [CrossRef]
14. Yan, K.; Yin, Z. Initial boundary value problems for the two-component shallow water systems. Rev. Mat. Iberoam. 2013, 29,

911–938. [CrossRef]
15. Yan, K.; Yin, Z. On the solutions of the Dullin-Gottwald-Holm equation in Besov spaces. Nonlinear Anal. RWA 2012, 13, 2580–2592.

[CrossRef]
16. Zhang, Z.Y.; Liu, Z.; Deng, Y.; Huang, C.; Lin, S.; Zhu, W. Global well-posedness and infinite propagation speed for the N-abc

family of Camassa–Holm type equation with both dissipation and dispersion. J. Math. Phys. 2020, 61, 071502. [CrossRef]
17. Zhang, Z.Y.; Li, L.; Fang, C.; He, F.; Huang, C.; Zhu, W. A new blow-up criterion for the N-abc family of Camassa–Holm type

equation with both dissipation and dispersion. Open Math. 2020, 18, 194–203. [CrossRef]
18. Zhang, Z.Y.; Huang, J.H.; Sun, M.B. Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation revisited. J.

Math. Phys. 2015, 56, 092703. [CrossRef]
19. Zhang, Z.Y.; Liu, Z.H.; Deng, Y.J. Global energy conservation solution for the N-abc family of Camassa–Holm type equation.

Nonlinear Anal. RWA 2024, 78, 104093. [CrossRef]
20. Bressan, A.; Constantin, A. Global conservative solutions to the Camassa–Holm equation. Arch. Ration. Mech. Anal. 2007, 183,

215–239. [CrossRef]
21. Chen, G.; Chen, M.; Liu, Y. Existence and uniqueness of the global conservative weak solutions for the integrable Novikov

equation. Indiana Univ. Math. J. 2018, 67, 2393–2433. [CrossRef]
22. Luo, W.; Yin, Z. Global existence and local well-posedness for a three-component Camassa–Holm system with N-peakon solutions.

J. Differ. Equ. 2015, 259, 201–234. [CrossRef]
23. Escher, J.; Lechtenfeld, O.; Yin, Z. Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation.

Discrete Contin. Dyn. Syst. 2007, 19, 493–513. [CrossRef]
24. Guan, C.; Yin, Z. Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water

system. J. Differ. Equ. 2010, 248, 2003–2014. [CrossRef]
25. Guan, C.; Yin, Z. Global weak solutions for a two-component Camassa–Holm shallow water system. J. Func. Anal. 2011, 260,

1132–1154. [CrossRef]
26. Gui, G.; Liu, Y. On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Func. Anal.

2010, 258, 4251–4278. [CrossRef]
27. Gui, G.; Liu, Y. On the Cauchy probelm for the two-component Camassa–Holm system. Math. Z. 2011, 268, 45–66. [CrossRef]
28. Holm, D.; Naraigh, L.; Tronci, C. Singular solution of a modified two-component Camassa–Holm equation. Phys. Rev. E 2009,

79, 1–13. [CrossRef]
29. Guan, C.; Yin, Z. Global weak solutions for a modified two-component Camassa–Holm equation. Ann. Inst. Henri Poincaré C 2011,

28, 623–641. [CrossRef]
30. Tan, W.; Yin, Z. Global conservative solutions of a modified two-component Camassa–Holm shallow water system. J. Differ. Equ.

2011, 251, 3558–3582. [CrossRef]
31. Tan, W.; Yin, Z. Global dissipative solutions of a modified two-component Camassa–Holm shallow water system. J. Math. Phys.

2011, 52, 033507. [CrossRef]
32. Wang, Y.J.; Song, Y.D. On the global existence of dissipative solutions for the modified coupled Camassa–Holm system. Soft

Comput. 2013, 17, 2007–2019. [CrossRef]
33. Ovsiannikov, L.V. Non-local Cauchy problems in fluid dynamics. Actes Congress Int. Math. Nice 1970, 3, 137–142.
34. Ovsiannikov, L.V. A nonlinear Cauchy problems in a scale of Banach spaces. Dokl. Akad. Nauk SSSR 1971, 12, 1497–1502.
35. Constantin, A.; Escher, J. Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 2011, 173, 559–568.

[CrossRef]
36. Nirenberg, L. An abstract form of the nonlinear Cauchy–Kowalevski theorem. J. Differ. Geom. 1972, 6, 561–576.
37. Nishida, T. A note on a theorem of Nirenberg. J. Differ. Geom. 1977, 12, 629–633. [CrossRef]
38. Baouendi, S.; Goulaouic, C. Remarks on the abstract form of nonlinear Cauchy–Kowalevski theorems. Comm. PDE 1977, 2,

1151–1162. [CrossRef]
39. Baouendi, S.; Goulaouic, C. Sharp estimates for analytic pseudodifferential operators and applications to Cauchy problems. J.

Differ. Equ. 1983, 48, 241–268. [CrossRef]
40. Trubowitz, E. The inverse problem for periodic potentials. Comm. Pure Appl. Math. 1977, 30, 321–337. [CrossRef]

http://dx.doi.org/10.1007/BF01170373
http://dx.doi.org/10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
http://dx.doi.org/10.1007/BF02392586
http://dx.doi.org/10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
http://dx.doi.org/10.1081/PDE-120016129
http://dx.doi.org/10.1142/S0219530507000857
http://dx.doi.org/10.1016/j.physleta.2008.10.050
http://dx.doi.org/10.4171/rmi/744
http://dx.doi.org/10.1016/j.nonrwa.2012.03.004
http://dx.doi.org/10.1063/5.0010374
http://dx.doi.org/10.1515/math-2020-0012
http://dx.doi.org/10.1063/1.4930198
http://dx.doi.org/10.1016/j.nonrwa.2024.104093
http://dx.doi.org/10.1007/s00205-006-0010-z
http://dx.doi.org/10.1512/iumj.2018.67.7510
http://dx.doi.org/10.1016/j.jde.2015.02.005
http://dx.doi.org/10.3934/dcds.2007.19.493
http://dx.doi.org/10.1016/j.jde.2009.08.002
http://dx.doi.org/10.1016/j.jfa.2010.11.015
http://dx.doi.org/10.1016/j.jfa.2010.02.008
http://dx.doi.org/10.1007/s00209-009-0660-2
http://dx.doi.org/10.1103/PhysRevE.79.016601
http://dx.doi.org/10.1016/j.anihpc.2011.04.003
http://dx.doi.org/10.1016/j.jde.2011.08.010
http://dx.doi.org/10.1063/1.3562928
http://dx.doi.org/10.1007/s00500-013-1116-5
http://dx.doi.org/10.4007/annals.2011.173.1.12
http://dx.doi.org/10.4310/jdg/1214434231
http://dx.doi.org/10.1080/03605307708820057
http://dx.doi.org/10.1016/0022-0396(83)90051-7
http://dx.doi.org/10.1002/cpa.3160300305


Mathematics 2024, 12, 1085 12 of 12

41. Kato, T.; Masuda, K. Nonlinear evolution equations and analyticity I. Ann. Inst. Henri Poincaré C 1986, 3, 455–467. [CrossRef]
42. Byers, P.; Himonas, A. Non-analytic solutions of the KdV equation. Abstr. Appl. Anal. 2004, 6, 453–460. [CrossRef]
43. Bona, J.; Smith, R. The initial value problem for the Korteweg-de Vries equation. Phil. Trans. Roy. Soc. Lond. A 1975, 278, 555–601.

[CrossRef]
44. Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations

II. KdV-Equation. Geom. Funct. Anal. 1993, 3, 107–156. [CrossRef]
45. Kenig, C.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the

contraction principle. Comm. Pure Appl. Math. 1993, 46, 527–620. [CrossRef]
46. Kenig, C.; Ponce, G.; Vega, L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices.

Duke Math. J. 1993, 71, 1–21. [CrossRef]
47. McKean, H. Breakdown of a shallow water equation. Asian J. Math. 1998, 2, 867–874. [CrossRef]
48. Himonas, A.A.; Misiolek, G. Analyticity of the Cauchy problem for an integrable evolution equation. Math. Ann. 2003, 327,

575–584. [CrossRef]
49. Yan, K.; Yin, Z. Analytic solutions of the Cauchy problem for two-component shallow water systems. Math. Z. 2011, 269,

1113–1127. [CrossRef]
50. Yan, K.; Yin, Z. On the initial value problem for higher dimensional Camassa–Holm equations. Discrete Contin. Dyn. Syst. 2015,

35, 1327–1358. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/s0294-1449(16)30377-8
http://dx.doi.org/10.1155/S1085337504303076
http://dx.doi.org/10.1017/S0308210500022915
http://dx.doi.org/10.1007/BF01896020
http://dx.doi.org/10.1002/cpa.3160460405
http://dx.doi.org/10.1215/S0012-7094-93-07101-3
http://dx.doi.org/10.4310/AJM.1998.v2.n4.a10
http://dx.doi.org/10.1007/s00208-003-0466-1
http://dx.doi.org/10.1007/s00209-010-0775-5
http://dx.doi.org/10.3934/dcds.2015.35.1327

	Introduction
	Analytic Solutions to the System (1)
	Conclusions
	References 

