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Abstract: This paper discusses finding solutions to the modified Fractional Black–Scholes equation.
As is well known, the options theory is beneficial in the stock market. Using call-and-pull options,
investors can theoretically decide when to sell, hold, or buy shares for maximum profits. However,
the process of forming the Black–Scholes model uses a normal distribution, where, in reality, the call
option formula obtained is less realistic in the stock market. Therefore, it is necessary to modify the
model to make the option values obtained more realistic. In this paper, the method used to determine
the solution to the modified Fractional Black–Scholes equation is a combination of the finite difference
method and the fractional differential transformation method. The results show that the combined
method of finite difference and fractional differential transformation is a very good approximation
for the solution of the Fractional Black–Scholes equation.

Keywords: modified fractional Black–Scholes; call option; put option; solution; finite difference
method; fractional differential transformation method
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1. Introduction

Nowadays, the development and application of mathematics have penetrated almost
every area of life, including investment problems. Investment problems are one of the
applications of mathematics in financial mathematics. Investors seek to buy or sell assets
traded on financial markets to obtain maximum profits. Derivative assets are financial
instruments whose value is determined by an underlying asset. One of the purposes
of using derivative instruments is to reduce risk by hedging against possible adverse
asset price movements. Options are a type of derivative product that is well known to
many people.

In 1973, Fisher Black and Myron Scholes built a model for option values called the
Black–Scholes model. The problem of determining the option value, which is determined
by the value of the underlying asset at a particular time, is not only a problem in economics
and finance but also in mathematics. The methods often used to solve the Black–Scholes
equation include the Laplace transformation and the Ito integral [1,2]. By using the Stochas-
tic Process, we finally obtain the formula for call-and-put options.

Mathematicians then developed the Black–Scholes equation model into a Fractional
Black–Scholes equation. This Fractional Black–Scholes equation model is a generalized form
of the Black–Scholes equation. Several methods for solving the Fractional Black–Scholes
equation include a combination of homotopy perturbation methods, Sumudu Transforma-
tions, and He’s polynomials [3]. The Fractional Black–Scholes equation can be solved using
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the series decomposition method. It confirms that Sumudu Transformation and fractional
calculus are used to solve the Fractional Black–Scholes equation [4]. Meanwhile, the prop-
erties of Sumudu Transformation are used to solve partial differential equations [5,6]. The
Fractional Black–Scholes equation can be solved using the series decomposition method,
asserting that the Sumudu Transformation, combined with fractional calculus, is utilized to
solve the Fractional Black–Scholes equation [7].

In the same year, Ref. [8] combined the Laplace transform and radial kernel methods
to solve the Fractional Black–Scholes equation. According to several studies on analytical
solutions, the Fractional Black–Scholes equation is an endless sequence of Mittag–Lefler
functions. Ref. [9] researched the existence and uniqueness of solutions to the Fractional
Black–Scholes equation. Banach’s fixed point and Arzella Ascoli’s fixed point have all been
used to discuss the problem’s existence and uniqueness. To discuss the numerical solution
to the Fractional Black–Scholes issue, the Crank–Nickholson technique is used. Ref. [10]
solved Burger’s equation using the Modified Laplace Adomian decomposition technique
in 2015. Burger’s equation was represented using a partial differential equation. The
Laplace Adomian decomposition method provides a precise approach for obtaining precise
solutions and very speedy convergence of results. Various approaches can be used to
solve partial differential equations, including homotopic perturbation, variational iteration,
and Adomian decomposition methods. The embedding parameter in the homotopic
perturbation method is quite small. It was assumed that the solution to the differential
equation would be an infinite series. The Adomian decomposition approach makes use of
Adomian polynomials. The absence of the discretization variable is the primary advantage
of this strategy. Another advantage is the lack of the necessity for problem linearization,
although these approaches were equivalent in terms of the rate of solution convergence.

The topic of European option pricing in the regime-switching model’s FMLS (limited
log-stable moment) was then investigated [11–13]. The Homotopic Analysis Method (HAM)
was used in [14,15] to calculate the European Call Option (ECO) using the Time-Fractional
Black–Scholes Equation (TFBSE), where stock prices are supposed to move according to
geometric Brownian motion and do not pay dividends. The HAM has discovered a series of
solutions for TFBSE. Furthermore, the ECO pricing calculation formula has been obtained.
The efficacy, suitability, and correctness of the HAM were demonstratively investigated
in the context of Crank Nicolson (CRN), Binomial Model (BM), and Black–Scholes Model
(BSM) approaches, using two examples. Because it can converge to analytical results
faster, the HAM is judged to be the best alternative instrument for determining ECO prices
with fractional orders. Ref. [16] provided a numerical technique for the Time-Fractional
Black–Scholes model, which is used in the fractional structural model within financial
markets. This method uses an initial discretization based on time and a weighted finite
difference spatial approach. Some spatial discretization characteristics are also investigated.
A fundamental limitation of this technology is its inability to proceed in time layer by layer.

Common approaches for solving the Fractional Black–Scholes equation include the
homotopic perturbation method, He’s polynomials, and Adomian decomposition. The nu-
merical operational transformation method is used. However, extreme vigilance is required
when modifying time fractional derivatives. Mistakes can occur when using the differential
operator after the time inversion techniques have changed. The constructed numerical
model employs a variety of methodologies. The discrete, linear, and nonlinear charac-
teristics of European Black–Scholes option pricing models are then captured by [17,18].
To achieve this, this article combines the third-order strong stability of the Runge–Kutta
method with a sixth-order finite difference scheme. The findings from the current literature
and its precise answers were examined and contrasted. The finite–difference method is a
more popular common technique. The key challenge will be to find a more sophisticated
model solution with an approach that aligns with precise results. Therefore, the strong
stability approach of the third-order Runge–Kutta and the sixth-order finite–difference
method must be combined to produce an efficient numerical solution. Asymptotic conver-
gence has been demonstrated through convergence using the norm definition. Ref. [19]
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provided a numerical technique for the Time-Fractional Black–Scholes model, which is used
for the fractional structural model in financial markets. This method uses initial discretiza-
tion based on time and a weighted finite difference spatial approach. In 2023, Ref. [20]
used a simpler method, the Daftardar–Geijji method, to solve the Fractional Black–Scholes
equation. It also discusses the problem of existence and the uniqueness of solutions of the
Fractional Black–Scholes equation.

2. Formation of the Modified Fractional Black–Scholes Equation

Suppose V(S, τ) is the option value, while S is the value of the underlying asset, and
τ is time. The total flux rate of option value Y(s, τ) per unit of time from time τ to the
expiration date T and the option value V(S, τ) must satisfy:∫ T

τ
Y
(
s, τ′)dτ′ = Sd f −1

∫ T

τ
H
(
τ′ − τ

)
[V

(
S, τ′)− V(S, T)]dτ′

where H(τ) is the transmission function, and d f is the Haudorff dimension of the fractal
transmission system. The equation above is called the conservation equation for the
diffusion process of option values in a fractal structure. The transmission function H(τ) is
defined as follows:

H(τ) = m
A2γ

Γ(1 − 2γ)t2γ
+ (1 + mk)

Bγ

Γ(1 − γ)tγ

So, the transmission function H(τ) is a linear combination of two other transmission
functions. In this case, A2γ and Bγ are constants, while 2γ and γ are transmission exponents.
By differentiating the conservation equation above with respect to τ, we obtain:

−Y
(
s, τ′) = Sd f −1 d

dt

(∫ T

τ
H
(
τ′ − τ

)[
V
(
S, τ′)− V(S, T)

]
dτ′

)
.

Based on the modified Black–Scholes equation, we obtain:

Y(s, τ) =
∂2v
∂S2 + (k − 1)

∂v
∂S

− kv (1)

Combined with Equation (1), we obtain:

A2γSd f −1m
∂2γv
∂τ2γ

+ BγSd f −1(1 + mk)
∂γv
∂τγ

+
∂2v
∂S2 + (k − 1)

∂v
∂S

− kv = 0

where:
∂γ f
∂τγ

=
1

Γ(n − α)

∂n

∂τn

∫ T

t

f (S, τ′)− f (S, τ)

(τ′ − τ)α+1−n dτ′

and ∂2γ f
∂τ2γ = ∂γ

∂τγ

(
∂γ f
∂τγ

)
. If A2γSd f −1 = 1 and BγSd f −1 = 1, we obtain the modified Fractional

Black–Scholes equation as follows:

m
∂2γv
∂τ2γ

+(1+mk1)
∂γv
∂γ

=
∂2v
∂S2 +(k1−1)

∂v
∂S

−k1v (2)

with m:: constant
k1: risk-free interest
S: asset value
Equation (2) is called the modified Fractional Black–Scholes equation.
Based on Equation (2), we obtained:
For m=0, Equation (1) becomes the Fractional Black–Scholes equation.
For m=0 and γ=1, Equation (1) becomes the Black–Scholes equation.
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So, the Fractional Black–Scholes equation is a special case of the modified Fractional
Black–Scholes equation.

3. Fractional Differential Transformation Method

The Fractional Differential Transformation Method is a generalization of the differen-
tial transformation method based on the Fractional Taylor formula. The Fractional Taylor
series expansion with order α of the function u(t) around the point t = t0 is defined as:

u(t) =
∞

∑
k=0

(t − t0)
kα

Γ(kα + 1)

(
dα

dtα

)k
u(t);

where dα

dtα is the Caputo fractional derivative with order α, and
(

dα

dtα

)k
= dα

dtα . . . dα

dtα consists
of k terms.

The Fractional Differential Transformation with order α of the function u(t) in the

neighborhood t = t0 is defined as Uα(k) = 1
Γ(kα+1)

(
dα

dtα

)k
u(t), and the inverse transforma-

tion is u(t) = ∑∞
k=0 Uα(k)(t − t0)

kα. So, for t0 = 0, we obtain:

u(t) =
∞

∑
k=0

Uα(k)tkα =
∞

∑
k=0

φk(t).

Theorem 1 ([21]). If Fα(k) and Gα(k) and Hα(k) are Fractional Differential Transformations of
the functions f (t), g(t), and h(t), then this applies:

(a) If f (t) = g(t)± h(t), then Fα(k) = Gα(k)± Hα(k),

(b) If f (t) = (t − t0)
q, then Fα(k) = δ

(
k − q

α

)
where δ =

{
1 , i f k = 0
0, i f k ̸= 0

(c) If f (t) = g(t)h(t), then Fα(k) =
k
∑

l=0
Gα(k)Hα(k − l).

Theorem 2 ([22]). If f (t) = tλg(t) where λ > −1 and g(t) = ∑∞
n=0 an(t − t0)

nα with a
convergence radius R > 0 and 0 < α ≤ 1, then:

Dγ
α Dβ

α = Dγ+β
α f (t).

Theorem 3 ([22]). Suppose f (t) = Dγ
t0

g(t), m − 1 < γ ≤ m, and the function g(t) satisfies the
conditions in the theorem above, then:

Fα(k) =
Γ(kα + γ + 1)

Γ(kα + 1)
Gα

(
k +

γ

α

)
for each t ∈ (0, R), if:

(a) β < λ + 1, for any α or
(b) β ≥ λ + 1, for any γ, and ak = 0 for k = 0, 1, . . . , m − 1, where m − 1 < β ≤ m.

The following is the convergence theorem to solve the modified Fractional Black–
Scholes equation.

Theorem 4. If, for any k ∈ N0 and for each i ≥ k0, there exists 0 < ∂i < 1 such that ∥φi+1∥ <

δi+1∥φi∥, then the series
∞
∑

k=0
φk(t) converges to ut.
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Proof. Suppose there is a Cauchy sequence u1, u2, . . . , where un =
∞
∑

k=0
φk(t). It will be

shown that un is a Cauchy sequence. For 0 < ∂i < 1, it implies:

∥ui − ui−1∥ = ∥φi∥ ≤ δi∥φj−1∥ < δiδi−1 . . . δk0∥φk0∥

For n ≥ m ≥ k0, this is obtained:

∥un − um∥ =
n

∑
i=m+1

(si − si−1) ≤
n

∑
i=m+1

δiδi−1 . . . δk0∥φk0∥.

Let δ = max
{

δk0 , δk0+1 , . . . , δn

}
. So, it satisfies ∥un − um∥ ≤ 1−δn−m

1−δ δm−k0∥φk0∥. Be-
cause for 0 < ∂i < 1, it implies ∥un − um∥ → 0 . Hence, {un} is a Cauchy sequence.
□

a Fractional Differential Transformation Method for solving BSFM

If the second partial derivative of (S, τ) is substituted by 1
h2 (v(S − h, τ)− 2v(S, τ) +

v(S + h, τ))+O
(
h2) and the first partial derivative on (S, τ) is substituted by 1

h (v(S + h, τ)−
V(S, τ), this is obtained:

m
∂2γv
∂τ2γ

+ (1 + mk)
∂γv
∂γ

=
1
h2 (v(S − h, τ)− 2v(S, τ) + v(S + h, τ)) + O

(
h2
)
+

(k − 1)
h

(v(S + h, τ)− V(S − h, τ) + O(h)− kv,

Then, the interval [a, b] is divided into n subintervals of the same length, denoted by
h = b−a

n .
So, we obtain mesh points Si = a + ih , i = 1, 2, . . . , n − 1. If the truncation error is

removed and ui(t) is an approximate solution of vi(τ) = v(Si, τ), then we will obtain a
system of ordinary differential equations:

m d2γui(τ)
dτ2γ + (1 + mk1)

dγui(τ)
dγ

= 1
h2 (ui−1(τ)− 2ui(τ) + ui+1(τ)) +

(k1−1)
h ((ui+1(τ)− ui(τ))

−k1ui(τ)), i = 1, 2, . . . , n − 1.

(3)

The system of ordinary differential equations above will be solved using the Fractional
Differential Transformation method. Suppose the solution to the system of differential
equations above is:

ui(t) =
∞

∑
k=0

Uα
i (k)t

kα, (4)

where Uα
i is the unknown coefficient, i.e., the Fractional Differential Transformation of

ui(t).
Based on Theorem 3, Equation (3) can be written as:

m Γ(kα+2γ+1)
Γ(kα+1) Uα

i

(
k + 2γ

α

)
+ (1 + mk1)

Γ(kα+γ+1)
Γ(kα+1) Uα

i
(
k + γ

α

)
= 1

h2

(
Uα

i−1(k)− 2Uα
i (k) + Uα

i+1(k)
)
+ (k1−1)

h
(
Uα

i+1(k)− Uα
i (k)

)
−k1Uα

i (k))

(5)

with initial conditions:
Uα

i (0) = f1(x1) (6)

Uα
i

(
1
α

)
= f2(x1) (7)

and with boundary conditions:
Uα

0 (k) = Gα
1 (k) (8)
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Uα
N(k) = Gα

2 (k) (9)

So, Equations (5)–(9) can be written as the new equation, as follows:

Uα
i

(
k + 2γ

α

)
= Γ(kα+1)

Γ(kα+2+1)

(Uα
i−1(k)−2Uα

i (k)+Uα
i+1(k)

mh2

+ (k1−1)
mh

(
(Uα

i+1(k)− Uα
i (k))− k1Uα

i (k)
))

−(1 + mk1)
Γ(kα+γ+1)

Γ(kα+1) Uα
i
(
k + γ

α

) (10)

with initial conditions:
Uα

i (0) = f1(x1),

Uα
i

(
1
α

)
= f2(x1),

satisfying the boundary conditions:

Uα
0 (k) = Gα

1 (k),

Uα
N(k) = Gα

2 (k).

Based on Equation (5) with unknown coefficients Uα
i (1), Uα

i (2), . . . , Uα
i

(
2γ
α − 1

)
, we

can satisfy the following equation:

Uα
i (k) =

{
1

Γ(kα+1)

[
dkα

dtkα

]
t=0

i f kα ∈ Z+,

0 i f kα /∈ Z+.
(11)

4. BSFM Solution Using the Fractional Differential Transformation Method

The following will show that the Fractional Differential Transformation method can
be used to find solutions to the modified Fractional Black–Scholes equation.

Example 1. Solve the following modified Fractional Black–Scholes equation:

∂2γv
∂τ2γ

+ 2
∂γv
∂τγ

=
∂2v
∂S2 +

∂v
∂S

− 2v; 0 < γ < 1, 0 < S < 1

with initial conditions:

v(0, τ) = e−2τ , v(1, τ) = e1−2τ , v(S, 0) = max(eS − 1, 0), vτ(S, 0) = 2eS.

Solution:
Given that γ = 0.75, α = 0.25, and h = 0.1,
∂1.5v(S,τ)

∂τ1.5 is fractionally differentially transformed into Γ(kα+2γ+1)
Γ(kα+1) U0.25

i (k + 6)

= Γ(0.25k+2.5)
Γ(0.25k+1) U0.25

i (k + 6),

∂0.75v(S,τ)
∂τ0.75 is fractionally differentially transformed into Γ(kα+2γ+1)

Γ(kα+1) U0.25
i (k + 3)

= Γ(0.25k+1.75)
Γ(0.25k+1) U0.25

i (k + 3),

v(S, τ) → U0.25
i (k),

∂2v
∂S2 is fractionally differentially transformed into

U0.25
i−1 (k)−2U0.25

i (k)+U0.25
i+1 (k)

h2 ,
∂v
∂S is fractionally differentially transformed into

(U0.25
i+1 (k)−U0.25

i−1 (k)
2h ,

with initial conditions:
v(S, 0) = max(eS − 1, 0) is fractionally differentially transformed into U0.25

i (0) =
max(eSi − 1, 0), for each i = 0, 1, 2, . . . , 10.

Based on Equations (4), (5) and (8) above, we obtain:
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U0.25
i (1) = U0.25

i (2) = U0.25
i (3) = U0.25

i (5) = 0; for each i = 0, 1, 2, . . . , 10.
Based on Equations (4), (5) and (9), the following system of equations is obtained:

v(0, τ) = e−2τ is fractionally differentially transformed into U0.25
0 (k)=

 2.(−2)
k
4

Γ( k
4+1)

, i f k
4 ∈ Z+

0 , i f k
4 /∈ Z+

,

v(1, τ) = e1−2τ is fractionally differentially transformed into U0.25
10 (k) =

 2.(−2)
k
4. e

Γ( k
4+1)

, i f k
4 ∈ Z+

0 , i f k
4 /∈ Z+

,

U0.25
i (k + 6) =

1
m

{
U0.25

i−1 (k)− 2U0.25
i (k) + U0.25

i+1 (k)
h2 + (k1 − 1)

(U0.25
i+1 (k)− U0.25

i−1 (k)
2h

− k1U0.25
i (k)

}
− (1 + mk1)

Γ(0.25k + 1.75)
Γ(0.25k + 1)

U0.25
i (k + 3),

S0 = 0, we obtain u0(t) = ∑∞
k=0 U0.25

0 (k)t0.25k = m ∑∞
k=0 U0.25

0 (k)t0.25k = 2 ∑∞
k=0 U0.25

0 (k)t0.25k = U0.25
0 (0)+

U0.25
0 (1)t0.25 + U0.25

0 (2)t0.5 + U0.25
0 (3)t0.75 + · · · = 2 + 0t0.25 + 0t0.5 + 0t0.75 − 4t + 0t5.0.25 + 0t6.0.25 + 0t7.0.25+

2t2 − 4
3 t3 + 4

3 t4 − 32
120 t5 + · · · = ∑∞

4m
(−2)

k
4

Γ( k
4+1)

t0.25.k, m = 0, 1, 2, . . .

S0 = 0 − 2t = −2t

S1 = 0.1, we obtain u1(t) = ∑∞
k=0 U0.25

1 (k)t0.25k = U0.25
1 (0) + U0.25

1 (1)t0.25 + U0.25
1 (2)t0.5 + U0.25

1 (3)t0.75 + · · · =
max

{
e0.1 − 1, 0

}
+ 0t0.25 + 0t0.5 + · · · − 2e0.1t + · · · = e0.1 − 1 − 2e0.1t + · · ·

S2 = 0.2 we obtain u2(t) = ∑∞
k=0 U0.25

2 (k)t0.25k = U0.25
2 (0) + U0.25

2 (1)t0.25 + U0.25
2 (2)t0.5 + U0.25

2 (3)t0.75 + · · · =
max

(
e0.2 − 1, 0

)
+ 0t0.5 + · · · − 2e0.2t0.75 + · · · = e0.2 − 1 − 2e0.2t + · · ·

S3 = 0.3 → u3(t) = e0.3 − 1 − 2e0.3t + · · ·

S4 = 0.4 → u4(t) = e0.4 − 1 − 2e0.4t + · · ·

S5 = 0.5 → u5(t) = e0.5 − 1 − 2e0.5t + · · ·

S6 = 0.6 → u5(t) = e0.6 − 1 − 2e0.6t + · · ·

S7 = 0.7 → u6(t) = e0.7 − 1 − 2e0.7t + · · ·

S8 = 0.8 → u8(t) = e0.8 − 1 − 2e0.8t + · · ·

S9 = 0.9 → u9(t) = e0.9 − 1 − 2e0.9t + · · ·

S10 = 1, we obtain u10(t) = ∑∞
k=0 U0.25

10 (k)t0.25k = U0.25
10 (0) + U0.25

10 (1)t0.25 + U0.25
10 (2)t0.5 + U0.25

10 (3)t0.75 + · · · S10 =
1 → u10(t) = e − 1 − 2et + · · ·

The following is a simulation using the Python program to illustrate the solutions
obtained:

Figure 1 shows the graph for solving the modified Black–Scholes fractional equation
with n = 5 and t = 0.01. The resulting graph increases monotonically, but it seems not to
be smooth due to a wide interval partition and a few number of sampled points taken. The
minimum value is obtained when Si = 0, so ui = 0, while the maximum value is obtained
when Si = 1.0, so ui = 1.6. and t = 0.025.
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Example 2. The following is the procedure for determining the solution of the modified Fractional 
Black–Scholes equation: 𝑚 + (1 + 𝑚𝑘 ) = + (𝑘 − 1) − 𝑘 𝑣 ; 
with initial conditions: 

𝑣(𝑆, 0) = 𝑒 − 1(1 + 𝑚𝑘 ) 

Figure 1. Graph of the solution to the Modified Fractional Black–Scholes equation with n = 5 and t =
0.025.

Figure 2 shows a graph of the solution to the modified Fractional Black–Scholes
equation, with n = 25 and t = 0.025. The solution graph obtained is a monotonically
increasing function, but it is relatively smooth compared to the graph in Figure 1.
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Example 2. The following is the procedure for determining the solution of the modified Fractional
Black–Scholes equation:

m
∂2γv
∂τ2γ

+ (1 + mk1)
∂γv
∂τγ

=
∂2v
∂S2 + (k1 − 1)

∂v
∂S

− k1v;

with initial conditions:
v(S, 0) =

ex − 1
(1 + mk1)

vi(S, 0) =
k1ex

(1 + mk1)
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v(0, τ) =

(
1 − e−k1τ

)
(1 + mk1)

v(1, τ) =

(
2e − e1−k1τ − 1

)
(1 + mk1)

.

Suppose we take γ = 1.0 and α = 0.25, then we obtain the following:
∂2v(S,τ)

∂τ2 is transformed into Γ(0.25k+3)
Γ(0.25k+1)U0.25(k + 8),

∂v
∂τ is transformed into Γ(0.25k+2)

Γ(0.25k+1)U0.25(k + 4),

∂v
∂τ is transformed into (U0.25

i (k)−U0.25
i−1 (k))

2h ,
v(S, τ) is transformed into U0.25

i (k). Then, we successively obtain:

v(S, 0) =
eS − 1

(1 + mk1)
= U0.25

i (0),

for each i = 0, 1, 2, . . . , 10:

vi(S, 0) =
k1eS

(1 + mk1)
= U0.25

i (4),

for each i = 0, 1, 2, . . . , 10. Meanwhile, based on Equation (11), the following is obtained:

U0.25
i (1) = U0.25

i (2) = U0.25
i (3) = U0.25

i (5) = · · · = 0,v(0, τ) =
1 − e−k1τ

(1 + mk1)
,

transformed into:

U0.25
0 (k) =

 1
1+mk1

k1
k
4

Γ( k
4+1)

, i f k
4 ∈ Z+

0, i f k
4 /∈ Z+

.

For S0 = 0, we obtain:

u0(τ) = ∑∞
k=0 U0.25

0 (k)τ0.25k

= U0.25
0 (0) + U0.25

0 (1)τ0.25 + U0.25
0 (2)τ0.5 + U0.25

0 (3)τ0.75 + U1
0(4)τ

1 + · · ·
= 0 + 0τ0.25 + 0τ0.5 + 0τ0.75 +

(
k1

1+mk1

)
τ = k1τ

1+mk1

For S1 = 0.1, we obtain:

u1(τ) = ∑∞
k=0 U0.25

1 (k)τ0.25k

= U0.25
1 (0) + U0.25

1 (1)τ0.25 + U0.25
1 (2)τ0.5 + U0.25

1 (3)τ0.75 + U1
1(4)τ

1 + · · ·
= e0.1−1

1+mk1
+ 0τ0.25 + 0τ0.5 + 0τ0.75 + k1e0.1

1+mk1
τ

= e0.1−1
1+mk1

+ k1e0.1

1+mk1
τ

For S2 = 0.2, we obtain:

u(τ) = ∑∞
k=0 U0.25

2 (k)τ0.25k

= U0.25
2 (0) + U0.25

2 (1)τ0.25 + U0.25
2 (2)τ0.5 + U0.25

2 (3)τ0.75 + U1
2(4)τ

1 + · · ·
= e0.2−1

1+mk1
+ k1e0.2

1+mk1
τ
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For S3 = 0.3, we obtain

u3(τ) = ∑∞
k=0 U0.25

3 (k)τ0.25k

= U0.25
3 (0) + U0.25

3 (1)τ0.25 + U0.25
3 (2)τ0.5 + U0.25

3 (3)τ0.75 + U1
3(4)τ

1 + · · ·
= e0.3−1

1+mk1
+ k1e0.3

1+mk1
τ

. . .

For S10 = 1, we obtain u10(τ) =
e−1

1+mk1
+ k1e

1+mk1
τ. So, we obtain the points (Si, ui) for

i = 0, 1, 2, 3, . . . , 10. Accordingly, the graph of the solution is as follows.
According to Figure 3, a graph of the solution to the Fractional Black–Scholes equation

is obtained, modified with the values 0 ≤ m ≤ 1 and k1 = 0.05 in the form of a family of
exponential functions. When m = 0, the graph is at the bottom. Meanwhile, when m = 1,
the graph is at the top.
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Figure 3. Graph of the solution to the Fractional Black–Scholes equation with 0 ≤ m ≤ 1 and
k1 = 0.05.

Figure 4 shows that the solution to the Fractional Black–Scholes equation is modified
in the form of an exponential function. The minimum value is obtained when Si = 0, with
a value of ui = 0. Meanwhile, the maximum value is obtained when Si = 1, with a value of
ui = 1.75. Furthermore, based on Equation (2), the Fractional Black–Scholes equation is a
special case of the Fractional Black–Scholes equation when the value of m = 0.
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Figure 4. Graph of the solution to the Fractional Black–Scholes equation. modified with t = 0.01,
γ = 1.0, k = 0.05, n = 10, m = 0, and 0 ≤ Si ≤ 1.

The general form of the Fractional Black–Scholes equation with a value of γ = 1.0 is:

∂v
∂τ

=
∂2v
∂S2 + (k − 1)

∂v
∂S

− kv

with the initial condition v(S, 0) = max{ex − 1, 0}. Using the Daftardar–Gejji method, the
general solution is:

v(S, τ) =
∞
∑

n=0
vn(S, τ) = max

{
eS − 1, 0

}
E1.0(−k1τ) + max{ex, 0}(1 − E1.0(−k1τ). If

the graph is plotted, it is obtained as follows:
Figure 5 shows that the solution to the Fractional Black–Scholes equation can be

approximated using the Fractional Black–Scholes equation solution by taking the value of
m = 0. This is because, in Figure 5, the pink and blue graphs almost coincide. Thus, the
solution error is guaranteed to be very small. The following is the error calculation between
the solution of the Fractional Black–Scholes equation and the solution of the modified
Fractional Black–Scholes equation:
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Symbol vi represents the solution to the Fractional Black–Scholes equation, while
the symbol ui represents the solution to the modified Fractional Black–Scholes equation.
The values are k1 = 0.05, γ = 1.0, and τ = 0.01. Table 1 uses the absolute error formula



Mathematics 2024, 12, 1077 12 of 15

= |vi−ui |
vi

× 100% and squared error =
n
∑

i=1
(vi − ui)

2. Table 1 shows that the squared error

and the absolute error for each point is very small. Using Phyton 3.7 software, it is obtained
that the mean squared error is 2.1214603575846715 × 10−7, and the mean absolute error
is 0.049973388247889494%. This means that the solution to the modified Fractional Black–
Scholes equation, taking the value s of m = 0 and γ = 1.0, is a very good approximation
to the solution to the Fractional Black–Scholes equation with γ = 1.0. In other words, the
Fractional Black–Scholes equation is a special case of the modified Fractional Black–Scholes
equation when the value of m = 0.

Table 1. Error between vi and ui.

No xi vi ui Squared Error Abs Error (%)

1 0.100 0.105671 0.105724 2.778390 × 10−9 0.049882
2 0.109 0.115662 0.115720 3.330000 × 10−9 0.049892
3 0.118 0.125744 0.125807 3.937190 × 10−9 0.049901
4 0.127 0.135917 0.135985 4.601382 × 10−9 0.049908
... ... ... ... ... ...
96 0.964 1.622664 1.623475 6.580569 × 10−7 0.049992
97 0.973 1.646370 1.647193 6.774279 × 10−7 0.049992
98 0.982 1.670290 1.671125 6.972588 × 10−7 0.049993
99 0.991 1.694427 1.695274 7.175589 × 10−7 0.049993
100 1.000 1.718782 1.719641 7.383379 × 10−7 0.049993

Moreover, vi and ui are compared using the 4th order Rungge–Kutta method. As is
known, the Runge–Kutta method is a very accurate method for solving ordinary differential
equations numerically. In this paper, the solution to the Fractional Black–Scholes equation,
with the value of α = 1, will be approached using the 4th order Runge–Kutta method.

Using Python 3.7 software, Figure 6 shows a graph of the solution to the Fractional
Black–Scholes equation with γ = 1.0 using the 4th order Runge–Kutta method in three
dimensions with 0 ≤ S ≤ 1 and 0 ≤ τ ≤ 1. If the graph in Figure 6 is cut by τ = 0.01, it
will obtain Figure 7.
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Figure 7. Graph of the solution to the Fractional Black–Scholes equation with γ = 1.0 using the
Runge–Kutta method when τ = 0.01.

Using Python 3.7 software, Figure 7 shows a graph of the solution to the Fractional
Black–Scholes equation with γ = 1.0 when τ = 0.01. The resulting graph is an increasing
function graph. Then, if the solution graph for the Fractional Black–Scholes equation
with γ = 1.0, obtained using the combined method of finite difference and fractional
differential transformation, along with the graph using the 4th order Runge–Kutta method,
are combined into one graph, Figure 8 will be obtained, as shown below.
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Figure 8. Graph of the combined solution method to the Fractional Black–Scholes equation with
γ = 1.0 when t = 0.01.

The graph in blue is a solution to the Fractional Black–Scholes equation, the graph in
yellow is an approximate graph of the solution to the Fractional Black–Scholes equation
using the 4th order Runge–Kutta method, while the graph in green is an approximation
using a combined method of finite difference and fractional differential transformation.
Visually, the combined graph between these methods almost coincides. This means that
both the 4th order Runge–Kutta method and the combined method of finite difference
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and fractional differential transformation are good approximations for graphing solutions
to the Fractional Black–Scholes equation with γ = 1.0. Therefore, the error obtained by
the 4th order Runge–Kutta method and the combination of finite difference and fractional
differential transformation are compared to the solution of the Fractional Black–Scholes
equation with γ = 1.0, as shown in Table 2 below:

Table 2. Error between vi and RK4.

No xi vi RK4 Squared Error Abs Error (%)

1 0.100 0.105671 0.099972 0.000032 5.700230
2 0.109 0.115662 0.110417 0.000028 4.750148
3 0.118 0.125744 0.120956 0.000023 3.958334
4 0.127 0.135917 0.131507 0.000019 3.353538
... ... ... ... ... ...
96 0.964 1.622664 1.613694 0.000080 0.555898
97 0.973 1.646370 1.636458 0.000098 0.605712
98 0.982 1.670290 1.659431 0.000118 0.654394
99 0.991 1.694427 1.682425 0.000144 0.713348
100 1.000 1.718782 1.705629 0.000173 0.771142

Table 2 shows that the squared error and absolute error for each point are very small.
Using Python 3.7 software, the mean squared error was 1.3939683876496377 × 10−5, and
the mean absolute error was 0.6089656268506086%. Based on the mean squared error and
mean absolute error, it can be said that the resulting error is very small, being less than
5%. Therefore, it can be concluded that the 4th order Runge–Kutta method is a very good
approximation. When comparing with Table 1, the mean absolute error and mean squared
error caused by the combination of the finite difference method and fractional differential
transformation are smaller than those of the 4th order Runge–Kutta method. However,
both methods are said to be very good for approaching the solution to the Fractional
Black–Scholes equation with γ = 1.0.

5. Conclusions

The combined method of finite difference and fractional differential transformation
can be used to solve the modified Fractional Black–Scholes equation. In real financial
market conditions, the Black–Scholes equation is more realistic to use for modeling option
values compared to the Fractional Black–Scholes equation. This is because the fractional
order of the modified Fractional Black–Scholes equation is greater than the order of the
Fractional Black–Scholes equation and can vary the value of m.

6. Further Research

There is a lot of research that can be done on the modified Fractional Black–Scholes
equation; for example, looking for guarantees of existence and unique solutions. Then,
the analytical solution of the Fractional Black–Scholes equation can be modified. Next,
conducting error comparisons between the numerical and analytical solutions would be
valuable. Other interesting things can also be developed for the Fractional Black–Scholes
equation with multiple assets.
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