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Abstract: This paper presents a quantum formulation for classical abstract dynamical systems (ADS),
defined by coupled sets of first-order differential equations. They are referred to as “abstract” because
their dynamical variables can be of different interrelated natures, not necessarily corresponding
to physics, such as populations, socioeconomic variables, behavioral variables, etc. A classical
linear Hamiltonian can be derived for ADS by using Dirac’s dynamics for singular Hamiltonian
systems. Also, a corresponding first-order Schrödinger equation (which involves the existence of a
system Planck constant particular of each system) can be derived from this Hamiltonian. However,
Madelung’s reinterpretation of quantum mechanics, followed by the Bohm and Hiley work, produces
no further information about the mathematical formulation of ADS. However, a classical quadratic
Hamiltonian can also be derived for ADS, as well as a corresponding second-order Schrödinger
equation. In this case, the Madelung reinterpretation of quantum mechanics provides a quantum
Hamiltonian that does provide the quantum formulation for ADS, which provides new quantum
variables interrelated dynamically with the classical variables. An application case is presented: the
one-dimensional autonomous system given by the logistic dynamics. The differences between the
classical and the quantum trajectories are highlighted in the context of this application case.

Keywords: abstract dynamical systems; classical dynamics; Dirac Hamiltonian; Schrödinger equation;
Madelung quantum interpretation; Bohm and Hiley interpretation; quantum dynamics; logistic function
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1. Introduction

General System Theory was proposed by Bertalanffy [1] as a new complementary
approach to science in order to provide it with a mathematical universal language. Since
that work, some attempts to state a General System Theory have been proposed. For
a summary of these proposals, see [2]. However, the objective of stating that universal
language seems too ambitious, and it has been steered to state general systems as theories
that unify different fields of science. An example is provided in work [3], which proposes a
unified mathematical view of energy in psychology, similar to the energy of physics. The
method followed in [3] is the so-called isomorphism of systems proposed by Ferrer [4],
i.e., translating a known contrasted theory from one field to another field where similar
problems try to be solved.

The present paper’s objective is to take the isomorphism of systems proposal as
a reference: translating the quantum formalism from dynamics of physical systems to
abstract dynamical systems. Note that the dynamical systems in physics are generally
defined by Newton’s equations, i.e., by coupled sets of second-order differential equations.
However, abstract dynamical systems are here referred to as dynamical models given by
coupled sets of first-order differential equations, where the unknown temporal variables
have different interrelated natures, not necessarily corresponding to physics, such as
populations, socioeconomic variables, behavioral variables, etc. Actually, these systems are
known in the literature about the subject simply as dynamical systems (see, for example,
the work by Anosov and Arnold [5]). However, including the adjective abstract presents
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the transdisciplinary aspect of this kind of system. This question must be emphasized
because, for instance, a system Planck constant is presented in the formalism, and it is not
the physical Planck constant but a singular constant of the particular system under study.

A first attempt to state a (non-relativistic) quantum formalism for abstract dynam-
ical systems was presented by the author of this paper in [6], but he did not reach any
significant solution. Therefore, this paper tries to present a significant solution to state a
quantum formalism for abstract dynamical systems from a rigorous mathematical approach,
although no empirical support has yet been found. Therefore, this paper tries to state a new
formalism that opens a new field of research, which lies between General System Theory
and mathematical physics, by presenting the theoretical findings obtained.

To reach that formalism, the well-known method to obtain the Schrödinger equation
from the Hamiltonian is also followed. A crucial step of formalism is, therefore, to obtain
the Hamiltonian for an abstract dynamical system. The method followed is what was
discovered by Dirac [7], who provides a method to obtain a Hamiltonian for which the
momentum variables either cannot be explicitly isolated from the general velocities (i.e., the
time derivatives of the configuration variables) or the momentum variables vanish. This
last case is also known as a singular system, and it corresponds to an abstract dynamical
system, as presented in this work.

Actually, the real objective of Dirac in the work [7] was to quantize the electromagnetic
field due to it being given by first-order partial differential equations. Therefore, it was an
approach steered to solve the problem for fields rather than for abstract dynamical systems.
However, obtaining the Hamiltonian for abstract dynamical systems can also be solved
with the work by Dirac [7]. See the works [8–10] for that solution, although only in [6,9]
the subsequent quantization method is presented in two different ways: from a linear
Hamiltonian in [6] and from a quadratic Hamiltonian in [9]. The differences between the
linear Hamiltonian and the quadratic Hamiltonian are clarified throughout this paper.

In addition to the Dirac Hamiltonian approach [7], there exists a Lagrangian approach,
as stated by Havas [11], which obtains results equivalent to the Hamiltonian approach
by Dirac [7]. Govaerts highlighted that equivalence for first-order fields in [12], and that
equivalence was also highlighted for abstract dynamical systems in [8]. Both problems are
known in mathematical physics, respectively, as the inverse Lagrange problem and as the
inverse Hamiltonian problem. In other words, the inverse Lagrange problem consists of
finding the Lagrangian corresponding to a coupled set of differential equations; therefore,
this set must obey the Euler–Lagrange equations. In addition, the inverse Hamiltonian
problem consists of finding the Hamiltonian corresponding to a coupled set of differential
equations; therefore, this set must obey the Hamilton equations.

Havas solves the inverse Lagrange problem for abstract dynamical systems in Annex
B of [11]. He presents this solution from a set of general sufficient equations that solve the
inverse Lagrange problem for a more significant number of differential systems. Those
sufficient solutions were presented in previous work [13], where a wide range of general
inverse Lagrange problems were dealt with and solved. However, Micó in [8] solves the
inverse Lagrange problem for abstract dynamical systems by following a simpler way.
In [8], Micó also demonstrates the equivalence with the corresponding solution of the
inverse Hamiltonian problem provided by the method of Dirac in [7].

In addition, the objective of the paper, enounced as translating the quantum formal-
ism from dynamics of physical systems to abstract dynamical systems, can be brought
beyond by the early Madelung reinterpretation of quantum mechanics [14], which was
followed subsequently by Bohm and Hiley formalism in the work [15]. This reinterpretation
provides a quantum potential correction to the classical equations through the quantum
Hamilton–Jacobi. In fact, the quantum Hamilton–Jacobi equation arises from the polar
form of the quantum wave function and its split in modulus, which provides the proba-
bility conservation, and in phase or action, which provides the quantum Hamilton–Jacobi
equation. Bohm and Hiley linked this correction to the existence of a microscopic level
underlying the quantum level of description. However, the present paper tries to interpret
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a possible quantum correction of abstract dynamical systems as a quantum term that arises
from its own system complexity. In addition, a system Planck constant, particular to each
system studied and, therefore, with a different value of the physical Planck constant, is
presented in the formalism. Consequently, the formalism presented assumes an epistemo-
logical correction to the dynamics of an abstract dynamical system, playing a fundamental
role in the system Planck constant. Also, that incapability is present in the Bohm and
Hiley formalism [15], but as emphasized above, due to the assumption of a microscopic
world underlying the quantum level. In this paper, this incapability is only assumed in
advance as a hypothetical epistemological principle. In fact, throughout the paper, the
usual predictions of abstract dynamical systems are called classical dynamics, while the
predictions of abstract dynamical systems with quantum corrections are called quantum
dynamics. Also, depending on the context, classical dynamics can be referred to as classical
trajectory and quantum dynamics can be referred to as quantum trajectory.

In addition, the Dirac linear Hamiltonian is proved here, which provides, by using
the quantization rules, a first-order Schrödinger equation that does not have a Madelung
quantum potential correction. Therefore, the solution found is to apply the same method
provided by Dirac in [7] to a quadratic Hamiltonian. To perform this, the abstract dynamical
system must be previously reformulated as a second-order abstract dynamical system (by
taking the time derivative). In addition, some abstract masses are needed to obtain the
quadratic Hamiltonian. In fact, the corresponding Hamilton equations are Newtonian-kind
equations where the abstract masses play the same role as the masses in the physical
systems. In the subsequent step, a canonical transformation is needed to simplify the
Hamiltonian. This new Hamiltonian provides, by using the quantization rules again,
a second-order Schrödinger equation for which the action does provide the Madelung
quantum potential correction. Finally, the first-order abstract dynamical system can be
recovered: the quantum potential correction arises under an integral term. This integral
term can be represented by a new system of first-order differential equations coupled with
the original ones.

In addition, one of the most important theories about abstract dynamical systems
is referred to as synergetics, a term coined by Haken [16]. This formalism is probably
the closest to what is presented. In fact, it provides a partial differential equation, the
Fokker–Planck equation, for a stochastic abstract dynamical equation, given by Ito equa-
tions (see also [16]), which plays a similar role to Schrödinger equation in Hamiltonian
systems. The Fokker–Planck equation provides the time evolution of the probability density.
However, the starting point is stochastic, not deterministic, such as the case presented here.

In fact, the deterministic or stochastic character of the formalism presented must
be commented on. In the present work, the approach is deterministic, i.e., the quantum
correction of abstract dynamical systems is applied as deterministic dynamics, although the
approach could also be stochastic in future works due to the Madelung quantum potential
is derived from the previous wave function, which has a stochastic nature. In fact, both
differenced cases are considered in the Bohm and Hiley work [15]. This deterministic
quantum correction is studied in the application case of Section 5. In this case, the quantum
potential presents singularities that highlight the profound differences between the concept
of classical trajectory and the quantum trajectory provided here.

In addition, other works must be compared here. The work [17] uses the same
denomination, abstract dynamical system, not with the same sense as here provided, but
referring to physical systems, which are mathematically described in terms of abstract
algebras and their states. In fact, it also deals with classical and quantum dynamics in the
context of the Lie Algebras formalism, and this is the reason for the selection of the term
abstract. Therefore, no other kinds of dynamical systems that differ from physical systems
have been dealt with here. However, the approach of [17] could be an equivalent way
to study abstract dynamical systems in future research. In addition, the work [18] deals
with the so-called hybrid quantum–classical systems, which are mathematical-physics
approaches to systems where quantum degrees of freedom interact with classical ones.
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This approach also considers the classical and quantum dynamics relationships in the
context of physical systems; therefore, it is closely related to the application case here
presented in Section 5. Finally, the work [19] introduces the concept of Schrödingerisation,
i.e., how discrete linear dynamical systems can be viewed as discrete-time approximations
of dynamical systems that evolve continuously in time. Perhaps it could be a way to
overcome the singularities found in the quantum trajectories of the application case of
Section 5 in future studies.

Sections 2–4 present the formalism announced: obtaining a quantum formulation
for abstract dynamical systems. In particular, Section 2 is devoted to obtaining a Dirac
quadratic Hamiltonian for an abstract dynamical system. Section 3 makes use of this Hamil-
tonian to obtain the corresponding second-order Schrödinger equation, which does present
a Madelung quantum potential correction in the Hamiltonian. Section 4 presents the quan-
tum formulation of the abstract dynamical system from the corresponding quantum Hamil-
ton equations. In addition, Section 5 presents an application case: the one-dimensional
autonomous system given by the logistic dynamics.

On the other hand, Appendix A provides contents presented previously in the context
of different conferences [6,8–10]. In particular, Appendix A is devoted to the Dirac linear
Hamiltonian for the abstract dynamical systems, as well as to the corresponding first-order
Schrödinger equation derived, showing that no quantum potential correction arises in
the Hamiltonian. Note that these contents failed to obtain a quantum formulation for
the abstract dynamical systems, but they are necessary for the correct understanding of
Sections 2–4. In addition, the inclusion of this appendix contributes to the short length of
the paper.

Note also that Sections 2–4 and Appendix A have been developed by following
the axiomatic-deductive structure in order to present the contributions in a clearer way.
Section 6 is devoted to the paper’s discussion and conclusions. In addition, the equations
in Appendix A are presented and referred to in the rest of the paper as Equation (A1),
Equation (A2), etc. Also, the definitions, theorems, propositions, and corollaries are pre-
sented as Definition A1, Definition A2, etc., Theorem A1, Theorem A2, etc.

2. Dirac Quadratic Hamiltonian

Definition 1. An abstract dynamical system is defined by the following coupled set of differential
equations (1 ≤ k ≤ n):

.
qk(t) = fk(t, q) (1)

In Equation (1) t is the time variable, and q = (q1, q2, . . . , qn) represent the dynamical
variables. Their nature can be arbitrary, not necessarily physical, such as populations,
chemical or biochemical species, socioeconomic or behavioral indicators, etc. In addition,
the fk(t, q) (1 ≤ k ≤ n) represent their dynamic interactions, considering in advance
equipped by all kinds of smoothness properties to develop suitably the formalism. In
addition,

.
q =

( .
q1,

.
q2, . . . ,

.
qn
)

are called the dynamical velocities.
In the beginning, a quadratic Hamiltonian is derived in this section for the abstract

dynamical system of Equation (1). As “quadratic,” this section is referred to as quadratic
in the momentum variables, unlike Equation (A19) of Appendix A, which is linear in the
momentum variables. Then, a corresponding second-order formulation is needed instead
of the original Equation (1). This alternative second-order is presented as a Newtonian-kind
equation by multiplying Equation (1) by a set of functions (1 ≤ k ≤ n), here called abstract
masses mk(t, q) (still unknown), and subsequently taking the time derivative (1 ≤ k ≤ n):

d
(
mk(t, q)· .

qk(t)
)

dt
=

d(mk(t, q)· fk(t, q))
dt

=
∂(mk(t, q)· fk(t, q))

∂t
+ ∑n

j=1
∂(mk(t, q)· fk(t, q))

∂qj

.
qj (2)

The Dirac method [7] is also applied here to obtain the quadratic Hamiltonian corre-
sponding to Equation (2).
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Proposition 1. The Hamiltonian corresponding to Equation (2) is:

H(t, q, p) = h(t, q) + ∑n
j=1

pj

2mj(t, q)
·ϕj(t, q, p) =

= h(t, q) + ∑n
j=1

pj

2mj(t, q)
(

pj − gj(t, q)
) (3)

Proof. Consider the Lagrangian of Equation (A2) of Appendix A, and also the correspond-
ing Hamiltonian of Equation (A5) with the primary constants ϕk(t, q, p) = pk − gk(t, q)
(1 ≤ k ≤ n). Due to the multipliers λk(t, q, p) (1 ≤ k ≤ n) can also depend on the momen-
tum variables (the Dirac method permits it); then, the hypothesis here assumed is that they
have the following form (1 ≤ k ≤ n):

λk(t, q, p) =
pk

2mk(t, q)
(4)

Inserting Equation (4) in the Hamiltonian of Equation (A5), the Hamiltonian of
Equation (3) holds. □

Note in Equation (3) that also, in addition to the mj(t, q) functions, the h(t, q) and gj(t, q)
functions are still undetermined, i.e., they are not here obtained by AEquations (A11)–(A13) of
Appendix A due to the new hypothesis of Equation (4).

Corollary 1. The corresponding Hamilton equations for Equation (3) are (1 ≤ k ≤ n):

.
qk(t) =

∂H
∂pk

=
pk

2mk(t, q)
(5)

.
pk(t) = − ∂H

∂qk
= −∂h(t, q)

∂qk
+ ∑n

j=1

pj

2mj(t, q)
∂gj(t, q)

∂qk
(6)

Proof. Taking into account that outside the Hamiltonian expression, the primary constants
are ϕj(t, q, p) = pj − gj(t, q) = 0 (1 ≤ j ≤ n) and considering also Equation (4), the
Hamilton equations of Equations (5) and (6) hold. □

Corollary 2. The following equations hold (1 ≤ k ≤ n):

d
(
2mk(t, q)· .

qk(t)
)

dt
=

.
pk(t) = −∂h(t, q)

∂qk
+ ∑n

j=1

pj

2mj(t, q)
∂gj(t, q)

∂qk
(7)

Proof. Equation (34) holds by multiplying Equation (7) by 2mk(t, q), taking subsequently
the time derivative, and substituting Equation (6). □

Corollary 3. The following equation holds (1 ≤ k ≤ n):

−∂h(t, q)
∂qk

+ ∑n
j=1

pj

2mj(t, q)
∂gj(t, q)

∂qk
=

∂(2mk(t, q)· fk(t, q))
∂t

+ ∑n
j=1

∂(2mk(t, q)· fk(t, q))
∂qj

pj

2mj(t, q)
(8)

Proof. Equalling the right-hand sides of Equations (2) and (7), multiplying by 2, and
substituting

.
qj(t) =

pj
2mj(t,q)

from Equations (5) and (8) holds. □
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Proposition 2. The gk(t, q) (1 ≤ k ≤ n) functions hold that:

gk(t, q) = 2mk(t, q)· fk(t, q) (9)

Proof. Applying the consistency conditions,
.
ϕk(t, q, p) = 0 (1 ≤ k ≤ n), and taking into

account the zero values of the primary constants outside the Hamiltonian expression in the
Hamilton equations of Equations (5) and (6) (1 ≤ k ≤ n):

.
ϕk(t, q, p) =

∂ϕk(t, q, p)
∂t

+ ∑n
j=1

∂ϕk(t, q, p)
∂qj

.
qj + ∑n

k=1
∂ϕk(t, q, p)

∂pj

.
pj = −∂gk(t, q)

∂t
−

∑n
j=1

∂gk(t, q)
∂qj

.
qj + ∑n

j=1 δkj
.
pj = −∂gk(t, q)

∂t
− ∑n

j=1
∂gk(t, q)

∂qj

pj

2mj(t, q)
− ∂h(t, q)

∂qk
+ ∑n

j=1

pj

2mj(t, q)
∂gj(t, q)

∂qk
= 0

(10)

From the last term of Equation (10) equal to zero, the following equation is
deduced (1 ≤ k ≤ n):

−∂h(t, q)
∂qk

+ ∑n
j=1

pj

2mj(t, q)
∂gj(t, q)

∂qk
=

∂gk(t, q)
∂t

+ ∑n
j=1

∂gk(t, q)
∂qj

pj

2mj(t, q)
(11)

In the beginning, the left-hand term (1 ≤ k ≤ n) of Equation (8) is substituted by the
right-hand term (1 ≤ k ≤ n) of Equation (11):

∂(2mk(t, q)· fk(t, q))
∂t

+ ∑n
j=1

∂(2mk(t, q)· fk(t, q))
∂qj

pj

2mj(t, q)
=

∂gk(t, q)
∂t

+ ∑n
j=1

∂gk(t, q)
∂qj

pj

2mj(t, q)
(12)

Note from Equation (12) that Equation (9) holds. □

Corollary 4. The following equation holds:

∑n
j=1

pj

2mj(t, q)

(
∂gj(t, q)

∂qk
− ∂gk(t, q)

∂qj

)
− ∂h(t, q)

∂qk
− ∂gk(t, q)

∂t
= 0 (13)

Proof. Reorganizing the last term of Equation (10) equal to zero, Equation (13) ade-
quately holds. □

Corollary 5. If the following equations

∂gj(t, q)
∂qk

=
∂gk(t, q)

∂qj
1 ≤ j, k ≤ n (14)

∂h(t, q)
∂qk

+
∂gk(t, q)

∂t
= 0 1 ≤ k ≤ n (15)

hold for the gj(t, q) and h(t, q) functions, then the consistency equations of Equation (10)
hold. In addition, the following equations hold:

∂
(
mj(t, q)· f j(t, q)

)
∂qk

=
∂(mk(t, q)· fk(t, q))

∂qj
1 ≤ j, k ≤ n (16)

∂h(t, q)
∂qk

= −∂(2mk(t, q)· fk(t, q))
∂t

1 ≤ k ≤ n (17)
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Proof. The substitution of Equations (16) and (17) means that Equation (10) holds identically;
therefore, the consistency equations of Equation (10) hold. In addition, Equations (43) and (44)
are an immediate consequence of Equation (9) substitution in Equations (14) and (15). □

Note in addition that, by Equation (2), these abstract masses can be arbitrary as long
as they obey Equations (16) and (17). Moreover, they also could be chosen by a question of
practical or theoretical convenience. For instance, if the field f(t, q) derived from a potential,
then the abstract masses could be all taken equal to unit or constant values. Also, the
h(t, q) can be arbitrary as long as it obeys Equation (17). Also, h(t, q) could be chosen by
a question of practical or theoretical convenience. For instance, if the dynamical system
was autonomous, i.e., f(t, q) = f(q), then the abstract masses could all be taken as mk(q)
and h(t, q) = 0. However, a general solution for the abstract masses can be provided:
mk(t, q) = µk

fk(t,q)
, being µk constants with the suitable dimensions. Then, Equation (16)

holds identically, and the solution h(t, q) = 0 can be chosen.

Theorem 1. The quadratic Hamiltonian of Equation (3) becomes:

H(t, q, p) = h(t, q) + ∑n
j=1

pj

2mj(t, q)
·ϕj(t, q, p) =

= h(t, q) + ∑n
j=1

pj

2mj(t, q)
(

pj − 2mj(t, q)· f j(t, q)
)
=

= h(t, q) + ∑n
j=1

p2
j

2mj(t, q)
− ∑n

j=1 f j(t, q)·pj

(18)

Proof. Substitute Equation (9) in Equation (3) to obtain it. □

Proposition 3. The corresponding Hamilton equations to Equation (18) are the
following (1 ≤ k ≤ n):

.
qk(t) =

∂H
∂pk

=
pk

2mk(t, q)
(19)

.
pk(t) = − ∂H

∂qk
= −∂h(t, q)

∂qk
+ ∑n

j=1

pj

mj(t, q)
∂
(
mj(t, q)· f j(t, q)

)
∂qk

(20)

Proof. Substitute Equation (9) in the Hamilton equations of Equations (5) and (6). □

Note that Equations (16) and (17) must be obeyed in Equations (18)–(20). However,
to obtain the second-order corresponding Schrödinger equation by applying the quan-
tization rules [20] on the Hamiltonian of Equation (18), imaginary terms arise, such as
those of the second right hand of this Hamiltonian, due to the terms proportional to
pj (1 ≤ j ≤ n). These imaginary terms make the corresponding time-independent second-
order Schrödinger equation non-real. Then, a canonical transformation is needed on
Equations (18)–(20) to cancel these terms.

Proposition 4. The transformation (1 ≤ l ≤ n):

Ql = ql
Pl = pl − ml(t, q)· fl(t, q)

}
(21)

is a canonical transformation.

Proof. To prove that Equation (21) is a canonical transformation, the following matrix
equation must be obeyed [21]:

M·J·MT = J (22)
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In Equation (22), M (MT is the transposed matrix of M), and J are the following 2nx2n
dimensional matrices:

J =
[

On In
−In On

]
; M =

[ ∂Q
∂q

]
nxn

[
∂P
∂q

]
nxn[

∂Q
∂p

]
nxn

[
∂P
∂q

]
nxn

 (23)

In Equation (23) In is the nxn identity matrix, and On is the nxn null matrix. Taking
into account Equation (21), the M matrix and its transposed matrix MT become:

M =

[
In −Fn

On In

]
; MT =

[
In On

−FT
n In

]
(24)

where in Equation (24) [Fn]lr = ∂(ml(t,q)· fl(t,q))
∂qr

, 1 ≤ l, r ≤ n, and
[
FT

n
]

lr = ∂(mr(t,q)· fr(t,q))
∂ql

,
1 ≤ l, r ≤ n. Then, the left-hand side of Equation (22) becomes:

M·J·MT =

[
Fn − FT

n In
−In On

]
(25)

However, in Equation (22), [Fn]lr −
[
FT

n
]

lr =
∂(ml(t,q)· fl(t,q))

∂qr
− ∂(mr(t,q)· fr(t,q))

∂ql
, 1 ≤ l, r ≤ n;

but all these terms are zero due to Equation (16). Therefore, Equation (22) holds, and the pro-
posed transformation in Equation (21) is canonical, i.e., it preserves the Hamilton equations. □

Corollary 6. The transformed Hamiltonian K(t, Q, P) corresponding to Equation (21) is:

K(t, Q, P) =
1
2

h(t, Q) + ∑n
j=1

1
2mj(t, Q)

(
Pj + mj(t, Q)· f j(t, Q)

)
φj(t, Q, P) =

=
1
2

h(t, Q) +
1
2∑n

j=1

P2
j

mj(t, Q)
− 1

2∑n
j=1 mj(t, Q)· f 2

j (t, Q)

(26)

where in Equation (26): φj(t, Q, P) = Pj − mj(t, Q)· f j(t, Q) (1 ≤ j ≤ n).

Proof. In order to obtain the transformed Hamiltonian, K(t, Q, P), from the previous
Hamiltonian, H(t, q, p) of Equation (18), the generating function, F, is needed. The three
functions are related by the following equations [21]:

pk − ∑n
l=1

∂Ql
∂qk

Pl =
∂F
∂qk

1 ≤ k ≤ n (27)

−∑n
l=1

∂Ql
∂pk

Pl =
∂F
∂pk

1 ≤ k ≤ n (28)

−H + K − ∑n
l=1

∂Ql
∂t

Pl =
∂F
∂t

(29)

Taking into account Equation (21), ∂Ql
∂qk

= δlk, then, from Equation (27): pk − Pk =
∂F
∂qk

,

i.e., mk(t, q)· fk(t, q) = ∂F
∂qk

. In addition, from Equation (21) in Equation (28): ∂F
∂pk

= 0, thus,

F(t, q, p) = F1(t, q), i.e., mk(t, q)· fk(t, q) = ∂F1(t,q)
∂qk

, and also, from Equation (21): ∂F1(t,Q)
∂Qk

=

mk(t, Q)· fk(t, Q). In addition, from Equation (21) in Equation (29): K = H + ∂F
∂t ; thus, taking

(Q, P) as the independent variables, the primary constants in Hamiltonian of Equation (18)
become, by Equation (21), ϕj(t, q, p) = φj(t, Q, P) = Pj − mj(t, Q)· f j(t, Q) (1 ≤ j ≤ n), and
the transformed Hamiltonian, also taking into account Equation (21), becomes:
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K(t, Q, P) = H(t, Q, P) +
∂F1(t, Q)

∂t
=

= h(t, Q) + ∑n
j=1

1
2mj(t, Q)

(
Pj + mj(t, Q)· f j(t, Q)

)
φj(t, Q, P) +

∂F1(t, Q)

∂t

(30)

Note in Equation (30) that the term ∂F1(t,Q)
∂t must be computed. To perform this,

note that from the above result that: ∂
∂Qk

(
∂F1(t,Q)

∂t

)
= ∂

∂t

(
∂F1(t,Q)

∂Qk

)
= ∂

∂t (mk(t, Q)· fk(t, Q)).

However, from Equations (17) and (21): ∂
∂t (mk(t, Q)· fk(t, Q)) = ∂

∂Qk

(
− 1

2 h(t, Q)
)

; then,

comparing both results: ∂F1(t,Q)
∂t = − 1

2 h(t, Q). Therefore, the transformed Hamiltonian of
Equation (26) holds. □

Observe that in this transformed Hamiltonian, the h(t, Q) function obeys Equation (17)
due to the change in the dynamic variables, which is the identity, i.e., Ql = ql (1 ≤ l ≤ n).
For the same reason, the same assertion can be made about the relationships of Equation (16)
that the abstract masses must obey.

From now on, for the sake of simplicity, the expressions of the dynamical velocities and
of the momentum variables are recovered, i.e., Pj → pj, Qj → qj, and also for the expression
of the Hamiltonian, K(t, Q, P) → H(t, q, p). Therefore, Equation (30) is rewritten as:

H(t, q, p) =
1
2

h(t, q) + ∑n
j=1

1
2mj(t, q)

(
pj + mj(t, q)· f j(t, q)

)
φj(t, q, p) =

=
1
2

h(t, q) +
1
2∑n

j=1

p2
j

mj(t, q)
− 1

2

n

∑
j=1

mj(t, q)· f 2
j (t, q)

(31)

Here, the fact that Equations (16) and (17) must be held in this last Hamiltonian is
emphasized. However, if the abstract dynamical system of Equation (1) is autonomous, the
abstract masses can be chosen, by Equation (16), as time-independent, and h(t, q) = 0 by
Equation (17), as it has been pointed out above. Therefore, the Hamiltonian of Equation (31)
becomes a time-conserved magnitude, which, as in the physical context, is called here as
energy and represented by E. Its expression form Equation (31) is, therefore:

E =
1
2∑n

j=1

p2
j

mj(q)
− 1

2∑n
j=1 mj(q)· f 2

j (q) (32)

Also, the Hamilton–Jacobi equation corresponding to the Hamiltonian of Equation (31)
is:

∂S(t, q)
∂t

+
1
2∑n

j=1
1

mj(t, q)

(
∂S(t, q)

∂qj

)2

− 1
2∑n

j=1 mj(t, q)· f 2
j (t, q) +

1
2

h(t, q) = 0 (33)

In addition, taking into account that the transformed primary constraints are zero outside
the Hamiltonian of Equation (31), i.e., φj(t, q, p) = pj − mj(t, q)· fj(t, q) = 0 (1 ≤ j ≤ n), the
corresponding Hamilton equations of this Hamiltonian are (1 ≤ k ≤ n):

.
qk(t) =

∂H
∂pk

=
pk + mk(t, q)· fk(t, q)

2mk(t, q)
(34)

.
pk(t) = − ∂H

∂qk
= −1

2
∂h(t, q)

∂qk
+

n

∑
j=1

pj + mj(t, q)· f j(t, q)
2mj(t, q)

∂
(
mj(t, q)· f j(t, q)

)
∂qk

(35)

To end this section, the proof that the second-order version (Equation (2)) of the
original Equation (1) is recovered from Equations (34) and (35) is provided. Isolating pk



Mathematics 2024, 12, 1076 10 of 29

from Equation (34) and taking the time derivative, it can be equaled to Equation (35) by
also using Equation (17), that is (1 ≤ k ≤ n):

d
dt
(
2mk(t, q)· .

qk − mk(t, q)· fk(t, q)
)
=

=
1
2

∂(2mk(t, q)· fk(t, q))
∂t

+
n

∑
j=1

pj + mj(t, q)· f j(t, q)
2mj(t, q)

∂
(
mj(t, q)· f j(t, q)

)
∂qk

(36)

After handling Equation (36), taking into account Equation (34) (1 ≤ k ≤ n):

d
dt
(
2mk(t, q)· .

qk
)
=

=
d
dt
(mk(t, q)· fk(t, q)) +

∂(mk(t, q)· fk(t, q))
∂t

+ ∑n
j=1

.
qj

∂
(
mj(t, q)· f j(t, q)

)
∂qk

(37)

Note in Equation (37) that the first and second terms of the right-hand side are the
same by expanding the total time derivative of the first term, therefore:

d
dt
(
2mk(t, q)· .

qk
)
= 2

∂(mk(t, q)· fk(t, q))
∂t

+ 2∑n
j=1

.
qj

∂
(
mj(t, q)· f j(t, q)

)
∂qk

(38)

Dropping the term 2 in Equation (38), Equation (2) is recovered. It is important
to compare this deduction with the deduction made in the following section. There,
the quantum potential (obtained from the second-order Schrödinger equation) changes
significantly in Equation (2) and also in the original Equation (1).

3. Second-Order Schrödinger Equation

As “second order,” this section refers to the second-order partial derivatives that
respect the dynamical variables of the Schrödinger equation. They arise by applying the
quantization rules [20] to the momentum variables of the Hamiltonian of Equation (31) once
the primary constants are substituted (that is, the second equality of Equation (31)), taking
into account that in Equation (31) the momentum variables are now quadratic. Therefore, if
Ĥ(t, q̂, p̂) is the quantum operator corresponding to the Hamiltonian of Equation (31) (its
second equality), the Schrödinger equation is written again as:

iσ
∂Ψ(t, q)

∂t
= Ĥ(t, q̂, p̂)Ψ(t, q) (39)

In Equation (39) Ψ(t, q) is the wave function, where σ represents again the system
Planck constant, with the same sense commented in Appendix A.

Theorem 2. The Schrödinger equation corresponding to the Hamiltonian of Equation (31), here
so-called second-order Schrödinger equation, is written as:

iσ
∂Ψ(t, q)

∂t
=

−1
2

σ2

2

(
∑n

j=1
1

mj(t, q)
∂2Ψ(t, q)

∂q2
j

+ ∑n
j=1

∂2

∂q2
j

(
1

mj(t, q)
Ψ(t, q)

))
−

−1
2∑n

j=1 mj(t, q)· f 2
j (t, q)·Ψ(t, q) +

1
2

h(t, q)·Ψ(t, q)

(40)
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Proof. Following the quantization rules provided by the Copenhagen formalism of the
quantum theory [20], Ĥ(t, q̂, p̂) is an operator that acts on the wave function as:

Ĥ(t, q̂, p̂)Ψ(t, q) =
1
2∑n

j=1
1
2

(
1

mj(t, q̂)
p̂2

j + p̂2
j

1
mj(t, q̂)

)
Ψ(t, q)+

+

(
−1

2

n

∑
j=1

mj(t, q̂)· f 2
j (t, q̂) +

1
2

h(t, q̂)

)
Ψ(t, q)

(41)

Such that in Equation (41):
(
− 1

2 ∑n
j=1 mj(t, q̂)· f 2

j (t, q̂)
)

Ψ(t, q)

=
(
− 1

2 ∑n
j=1 mj(t, q)· f 2

j (t, q)
)

Ψ(t, q), 1
2 h(t, q̂)Ψ(t, q) = 1

2 h(t, q)·Ψ(t, q) and p̂jΨ(t, q) =

−iσ ∂Ψ(t,q)
∂qj

. Note that the term 1
2 ∑n

j=1

(
1

mj(t,q̂)
p̂2

j + p̂2
j

1
mj(t,q̂)

)
Ψ(t, q) provides that the Hamil-

tonian is a self-adjoint operator (see [22] for this case, which is not dealt with in [20]). In
fact, by making explicit this operator in Equation (41) and subsequently in Equation (39),
the second-order Schrödinger equation arises. □

If the abstract dynamical system of Equation (1) is autonomous, the abstract masses
can be chosen, by Equation (16), as time-independent, and h(t, q) = 0 by Equation (17),
as it has been pointed out in Section 2. Therefore, the time-independent second-order
Schrödinger equation corresponding to Equation (40) can be found by the common sub-
stitution Ψ(t, q) = −i E

σ t·ψ(q), where E corresponds to the system energy of Equation (32),
that is:

E·ψ(q) =

−1
2

σ2

2

(
n

∑
j=1

1
mj(q)

∂2ψ(q)
∂q2

j
+ ∑n

j=1
∂2

∂q2
j

(
1

mj(q)
ψ(q)

))
−

−1
2∑n

j=1 mj(q)· f 2
j (t, q)·ψ(q)

(42)

In order to find out if some quantum potential arises from the second-order Schrödinger
equation (Equation (40)), then, as in Equation (A24) of Appendix A, the wave function split
in its amplitude A(t, q) and its phase B(t, q) is completed:

Ψ(t, q) = A(t, q) i B(t,q)
σ (43)

Proposition 5. The A(t, q) and B(t, q) functions of Equation (43) obey the following equa-
tions:

∂B(t, q)
∂t

+
1
2

n

∑
j=1

1
mj(t, q)

(
∂B(t, q)

∂qj

)2

− 1
2∑n

j=1 mj(t, q)· f 2
j (t, q) +

1
2

h(t, q) + Vq(t, q) = 0 (44)

∂A2(t, q)
∂t

+ ∑n
j=1

(
1

mj(t, q)
∂B(t, q)

∂qj
A2(t, q)

)
= 0 (45)

where in Equation (44) Vq(t, q) is the quantum potential, whose expression is:

Vq(t, q) = −σ2

4

n

∑
j=1

∂2

∂q2
j

(
1

mj(t, q)

)
− σ2

2A(t, q)

n

∑
j=1

∂

∂qj

(
1

mj(t, q)
∂A(t, q)

∂qj

)
(46)
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Proof. Such as has been performed in Appendix A, the substitution of Equation (43) in
Equation (40) provides an equation for the real part and another equation for the imaginary

part (after some operations and canceling the term i B(t,q)
σ ):

−A(t, q)
∂B(t, q)

∂t
= −σ2

2

n

∑
j=1

1
mj(q)

∂2A(t, q)
∂q2

j
+

A(t, q)
2

n

∑
j=1

1
mj(q)

(
∂B(t, q)

∂qj

)2

−

−σ2

2 ∑n
j=1

∂

∂qj

(
1

mj(q)

)
∂A(t, q)

∂qj
− A(t, q)

σ2

4 ∑n
j=1

∂2

∂q2
j

(
1

mj(q)

)
−

−1
2∑n

j=1 mj(t, q)· f 2
j (t, q)·A(t, q) +

1
2

h(t, q)·A(t, q)

(47)

σ
∂A(t, q)

∂t
= −σ∑n

j=1
∂A(t, q)

∂qj

∂B(t, q)
∂qj

−

−σ

2
A(t, q)∑n

j=1
1

mj(q)
∂2B(t, q)

∂q2
j

− σ

2
A(t, q)

n

∑
j=1

∂

∂qj

(
1

mj(q)

)
∂B(t, q)

∂qj

(48)

Dividing the first one by A(t, q) and dividing the second one by σ and subsequently
multiplying it by 2A(t, q), Equations (44)–(46) hold. □

Therefore, Equation (44) represents the quantum Hamilton–Jacobi equation [14,15] due to
the difference with the Hamilton–Jacobi equation of Equation (33) is the quantum potential of
Equation (44). In addition, Equation (45) represents the conservation of the probability density
provided by A2(t, q), being the vector of coordinates 1

mj(t,q)
∂B(t,q)

∂qj
(1 ≤ j ≤ n) the current density.

4. The Quantum Hamilton Equations and the Quantum Formulation of the Abstract
Dynamical Systems

By comparing the Hamilton–Jacobi equation of Equation (33) and the quantum
Hamilton–Jacobi equation of Equation (45), the difference is the quantum potential Vq(t, q).
Then, following the Madelung interpretation of quantum mechanics [14], assumed also by
Bohm and Hiley in [15], a quantum version of the Hamiltonian can be found, Hq(t, q, p),
differenced from the Hamiltonian of Equation (31) by the quantum potential, that is:

Hq(t, q, p) = H(t, q, p) + Vq(t, q) =

=
1
2

h(t, q) + ∑n
j=1

1
2mj(t, q)

(
pj + mj(t, q)· f j(t, q)

)
φj(t, q, p) + Vq(t, q)

=
1
2

n

∑
j=1

p2
j

mj(t, q)
− 1

2

n

∑
j=1

mj(t, q)· f 2
j (t, q) +

1
2

h(t, q) + Vq(t, q)

(49)

In Equation (49) Vq(t, q) is the quantum potential of Equation (46).

Proposition 6. The Hamilton equations corresponding to the Hamiltonian of Equation (49),
here so-called quantum Hamilton equations, are (1 ≤ k ≤ n):

.
qk(t) =

∂Hq

∂pk
=

pk + mk(t, q)· fk(t, q)
2mk(t, q)

(50)

.
pk(t) = −

∂Hq

∂qk
= −1

2
∂h(t, q)

∂qk
+ ∑n

j=1

pj + mj(t, q)· f j(t, q)
2mj(t, q)

∂
(
mj(t, q)· f j(t, q)

)
∂qk

−
∂Vq(t, q)

∂qk
(51)
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Proof. Taking into account that the transformed primary constraints are zero outside the
Hamiltonian of Equation (49) (φj(t, q, p) = pj − mj(t, q)· fj(t, q) = 0, 1 ≤ j ≤ n), and consider-
ing the Hamilton equations of the classical mechanics, Equations (50) and (51) hold. □

Theorem 3. The quantum Hamilton equations of Equations (50) and (51) provide the following
2n-dimensional differential system (1 ≤ k ≤ n):

.
qk(t) = fk(t, q)− xk

2mk(t,q)
.
xk(t) =

∂Vq(t,q)
∂qk

}
(52)

where xk(t) (1 ≤ k ≤ n) are additional dynamical variables defined as xk(t) =
∫ t

t0

∂Vq
∂qk

(s, q(s))ds
(1 ≤ k ≤ n).

Proof. First, isolating pk from Equation (50) and taking the time derivative, it can be
equaled to Equation (51) by also using Equations (16) and (17), that is (1 ≤ k ≤ n):

d
dt
(
2mk(t, q)· .

qk − mk(t, q)· fk(t, q)
)
=

=
1
2

∂(2mk(t, q)· fk(t, q))
∂t

+ ∑n
j=1

pj + mj(t, q)· f j(t, q)
2mj(t, q)

∂
(
mj(t, q)· f j(t, q)

)
∂qk

−
∂Vq(t, q)

∂qk

(53)

Second, handling Equation (53) and taking into account Equation (50) (1 ≤ k ≤ n):

d
dt
(
2mk(t, q)· .

qk
)
=

=
d
dt
(mk(t, q)· fk(t, q)) +

∂(mk(t, q)· fk(t, q))
∂t

+
n

∑
j=1

.
qj

∂
(
mj(t, q)· f j(t, q)

)
∂qk

−
∂Vq(t, q)

∂qk

(54)

Third, note in Equation (54) that the first and second terms of the right-hand equation
are the same by expanding the total time derivative of the first term, therefore:

d
dt
(
2mk(t, q)· .

qk
)
= 2

∂(mk(t, q)· fk(t, q))
∂t

+ 2∑n
j=1

.
qj

∂
(
mj(t, q)· f j(t, q)

)
∂qk

−
∂Vq(t, q)

∂qk
(55)

In the beginning, dividing by 2 in Equation (55), Equation (2) is recovered with the

additional quantum term − 1
2

∂Vq(t,q)
∂qk

. However, trying to recover the original Equation (1),
Equation (55) can be rewritten more simplified as:

d
dt
(
mk(t, q)· .

qk
)
=

d(mk(t, q)· fk(t, q))
dt

− 1
2

∂Vq(t, q)
∂qk

(56)

Followed by taking the time integral in Equation (56) and subsequently dividing by
mk(t, q) (1 ≤ k ≤ n), the quantum version of Equation (1) is obtained that is (1 ≤ k ≤ n):

.
qk(t) = fk(t, q)− 1

2mk(t, q)

∫ t

t0

∂Vq

∂qk
(s, q(s))ds (57)

Finally, considering the additional variables xk(t) =
∫ t

t0

∂Vq
∂qk

(s, q(s))ds (1 ≤ k ≤ n) in
Equation (57), Equation (52) holds. □

Note in Equation (52) that the quantum potential Vq(t, q) is provided by Equation (46),
taking into account that A(t, q) = |Ψ(t, q)| =

√
Ψ(t, q)·Ψ∗(t, q), after being solved the

second-order Schrödinger equation of Equation (40) for the wave function Ψ(t, q), or its
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time-independent version (Equation (42)) for the autonomous case for the wave function
ψ(q), such that Ψ(t, q) = −i E

σ t·ψ(q). In this last case, A(q) = |Ψ(t, q)| = |ψ(q)|.
In addition, if the second-order Schrödinger equation of Equation (40) (or its time-

independent version of Equation (42) for the autonomous case) provides quantized wave
functions depending on an integer n, Ψn(t, q), the base of a Hilbert space; this quantization
can be translated to the quantum formulation of Equation (52).

Note that, in order to compute the quantum dynamics by Equation (52), the initial
values are needed: if t = t0 ≥ 0 is the initial time, then qk(t0) = q(0)k (1 ≤ k ≤ n) must be
known and xk(t0) = 0 (1 ≤ k ≤ n), following the above integral definition of xk(t).

5. The Autonomous One-Dimensional Case: The Logistic Function Dynamics

To better support the formalism provided and its limitations, an application case is
presented: the one-dimensional case particularized to the logistic function dynamics. Then,
Equation (1) can be written as:

.
q(t) = f (q) = a·q − b·q2

q(t0) = q0

}
(58)

Equation (58) can describe population dynamics with parameter b > 0, which avoids
infinite population growth. Parameter a can be positive or negative and represents the
population growth rate (if positive) or population decay rate (if negative). If a > 0, the
q = 0 value is a repulsor from which the dynamics escapes, and the q = c = a/b value is a
saturation population or attractor to which the dynamics tends asymptotically (growing
toward q = c if the initial value is q0 < c, and decaying toward q = c if the initial value is
q0 > c). If a < 0, the q = c value is a repulsor from which the dynamics escape, and the
value q = 0 is an attractor to which the dynamics tend asymptotically (decaying toward
q = 0 if the initial value is q0 < c, and infinitely growing if the initial value is q0 > c).

For the application case, the following values are taken: t0 = 0.0 q0 = 2.0, a = 0.01,
and b = 0.001, thus c = a

b = 10.0. Therefore, the dynamics represent the case of an
asymptotic growth toward q = c = a

b = 10.0. In addition, to compute the classical logistic
dynamics given by Equation (58), the integration of the equation differential provides:

q(t) =
c

1 +
(

c
q0
− 1
)
·e−a(t−t0)

(59)

It must be highlighted that all figures and computations were obtained with the
MATHEMATICA 13.2 software except for the quantized energies, which were obtained by
a C++ program.

First of all, Equation (59) provides Figure 1 for the classical logistic dynamics with
the above values chosen. In order to provide a realistic application of these dynamics,
consider that the population studied is that corresponding to a biological population for
an evolution period of t = 1000.0 years. In addition, the q(t) variable could be measured
by thousands of population in an extreme environment. However, if the application case
changed, the units could also change (for instance, in microbiologic populations, the time
units could be hours). Note that for a long time term of t = 1000.0 years, the dynamics tend
to the attractor c = a

b = 10.0 population thousands.
Figure 1 is important to be presented because it is compared along all sections with

the quantum dynamics provided by the corresponding formulation of Equation (52). Note
that the case is one-dimensional; the corresponding abstract mass can be taken equal to the
unit (m(q) = 1). Then, Equation (52) becomes for this case (t0 = 0.0 q0 = 2.0, a = 0.01, and
b = 0.001):

.
q(t) = f (q)− x

2 = a·q − b·q2 − x
2.

x(t) = V′
q(q)

q(t0) = q0
x(t0) = 0

 (60)
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Note that the q-derivative of the quantum potential V′
q(q) already contains the abstract

Planck system σ (see Equation (40)). Then, its value should be provided here. However,
it is provided above for the reasons explained above. In addition, to obtain this quantum
potential Vq(q) and its q-derivative V′

q(q), the corresponding time-independent Schrödinger
equation of Equation (42) must be solved. After some manipulations, it becomes (note
that m(q) = 1):

ψ′′ (q) +
(

f 2(q)
σ2 +

2E
σ2

)
ψ(q) = 0 (61)

Note in Equation (61) that f (q) = a·q − b·q2. The way to solve it is through two
different steps. In the first step, the approach is analytical, and it is inspired by the method
provided in [23] (concretely in that of the IV section called the transformation-group method)
to reduce a differential equation that models a forced time-dependent oscillator to an
autonomous differential equation. The second step is a numerical approach.
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Figure 1 is important to be presented because it is compared along all sections with 
the quantum dynamics provided by the corresponding formulation of Equation (52). Note 
that the case is one-dimensional; the corresponding abstract mass can be taken equal to 
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Figure 1. Classical logistic dynamics by Equation (59), solution of Equation (58), with the particular
values provided (t0 = 0.0 q0 = 2.0, a = 0.01, and b = 0.001), with t = 1000.0 years. The dotted
straight line value represents the saturation value c = a

b = 10.0 population thousands and the
dot-dashed curve the classical logistic dynamics.

The first step consists of two consecutive changes: first on the dependent variable,
ψ(q) = θ(q)Ω(q), and second on the independent variable z = z(q), then w(z) = Ω(q(z)).
After some calculations, including the θ(q) cancellation, both changes provide:(

z′(q)
)2w′′ (z) + z′(q)

(
z′′ (q) + 2θ′(q)

)
w′(z)+

+

(
θ′′ (q) +

(
θ′(q)

)2
+

f 2(q)
σ2 +

2E
σ2

)
w(z) = 0

(62)

In Equation (62), the term multiplying w′(z) can vanish if z′′ (q)+2·θ′(q) = 0, i.e., if z′(q) =
−2θ(q) or z(q) = −2

∫ q
q0

θ(y) dy, being q0 an arbitrary value. Thus, Equation (62) becomes:

4θ2(q)·w′′ (z) +
(

θ′′ (q) +
(
θ′(q)

)2
+

f 2(q)
σ2 +

2E
σ2

)
w(z) = 0 (63)

Now, Equation (63) is forced to hold that:

θ′′ (q) +
(
θ′(q)

)2
+

f 2(q)
σ2 +

2E
σ2 = k2·4θ2(q) (64)

In Equation (64), the constant k2 ̸= 0. Thus, Equation (63) becomes:

w′′ (z) + k2·w(z) = 0 (65)
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The solution of Equation (65) is then trivial:

w(z) = C·sin(k·z + γ) (66)

In Equation (66), C and γ are two arbitrary constants. Undoing now the proposed
changes, the analytical solution of Equation (61) is:

ψ(q) = C·eθ(q)sin
(
−2k

∫ q

q0

θ(y) dy + γ

)
(67)

Some additional considerations about the solution ψ(q) of Equation (67) must be
completed. The first one is the choice of the k value. Note that in the neighboring of the
points q ∼= 0 and q ∼= c = a/b, f (q) ∼= 0, therefore, Equation (67) becomes approximately:

θ′′ (q) +
(
θ′(q)

)2
+

2E
σ2

∼= 4k2θ2(q) (68)

A solution of Equation (68) is an arbitrary constant θ(q) = R, then θ′(q) = θ′′ (q) = 0
and k = ±

√
2E

2Rσ . Note that the energy must be positive, E > 0. In addition, in the neighbor-
ing of the critical points of f (q) ( f (q) ∼= 0), Equation (66) solution becomes:

ψ(q) ∼= C·Rsin

(
∓
√

2E
Rσ

∫ q

q0

R dy + γ

)
= C·eRsin

(
∓
√

2E
σ

(q − q0) + γ

)
(69)

In Equation (69), the sign of ∓
√

2E
σ can be chosen to take into account that, also in the

neighboring of the critical points of f (q) ( f (q) ∼= 0), Equation (61) becomes:

ψ′′ (q) +
2E
σ2 ψ(q) ∼= 0 (70)

With the Equation (70) solution (with E > 0):

ψ(q) ∼= D·sin

(√
2E
σ

q + δ

)
(71)

Comparing Equations (69) and (71), the conclusion is that the sign considered in
Equation (69) must be positive, i.e., +

√
2E
σ . Moreover, the respective constants are related as

D = C·eR and −
√

2E
σ q0 + γ = δ. Therefore, k = −

√
2E

2Rσ , and in Equation (67): −2k =
√

2E
Rσ .

The R constant value can be arbitrary, and it has been considered as R = 1. Consequently,
Equation (67) can be rewritten as:

ψ(q) = C·eθ(q)sin

(√
2E
σ

∫ q

q0

θ(y) dy + γ

)
(72)

In addition, Equation (64) becomes:

θ′′ (q) +
(
θ′(q)

)2
+

f 2(q)
σ2 =

2E
σ2

(
θ2(q)− 1

)
(73)

This author’s paper has not been able to find the analytical solution of Equation (73).
Therefore, at this point, a numerical approach must be taken. This numerical approach
needs the system Planck constant value σ and the boundary conditions. In order to better
understand the following deductions and computations, Table 1 provides in advance the
boundary conditions for Equations (72) and (73) and the initial conditions for Equation (60).
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Table 1. Boundary conditions for Equations (72) and (73) and initial conditions for Equation (60).

Function ψ(q) θ(q) θ’(q) q(t) x(t)

Boundary − Intitial conditions ψ(0) = ψ(c) = 0 θ(0) = −1 θ′(0) = 0 q(0) = 2 x(0) = 0

In addition, several numerical essays with different E > 0 values provide an adequate
σ = 10 value, although strangely, it can look similar to a big value. In addition, following
Table 1, the boundary conditions considered have been: θ(0) = −1, trying to obtain
a negative domain for θ(q), and θ′(0) = 0, trying that q = 0 be a maximum and that
θ(q) → −∞ as q → ±∞ . Therefore, in Equation (72), ψ(q) → 0 , as q → ±∞ . These
assumptions are confirmed below with the numerical solutions of Equations (72) and (73).

In addition, under the hypothesis that the wave function cancels in the two critical
points of f (q) (see Table 1), the wave function becomes quantized. On the one hand,
if ψ(0) = 0: √

2E
σ

∫ 0

q0

θ(y) dy + γ = π·n1 ; n1 ∈ Z (74)

On the other hand, if ψ(c) = 0:
√

2E
σ

∫ c

q0

θ(y) dy + γ = π·n2 ; n2 ∈ Z (75)

Subtracting Equation (75) minus Equation (74), the condition of quantization arises:
√

2En

σ

∫ c

0
θn(y) dy = π(n2 − n1) = π·n ; n = n2 − n1 ∈ Z<0 (76)

Note in Equation (76) that n = n2 − n1 < 0 due to
∫ c

0 θn(y) dy < 0, under the
θn(q) above assumptions and below confirmed. Therefore, in order to compute the En
energies, with n < 0, Equation (76) must be considered jointly with the quantized version
of Equation (73) with the boundary conditions of Table 1:

θ
′′
n (q) + (θ′n(q))

2 +
f 2(q)

σ2 = 2En
σ2

(
θ2

n(q)− 1
)

θn(0) = −1
θ′n(0) = 0

 ; n ∈ Z<0 (77)

Once the En energies are obtained from Equation (76): γ = π·n1 +
√

2E
σ

∫ q0
0 θ(y) dy =

π(n2 − n) +
√

2E
σ

∫ q0
0 θ(y) dy. However, π·n2 can be removed due to the fact that this

term’s influence does not provide further mathematical information. The substitution in
Equation (72) provides the quantized wave functions:

ψn(q) = Cn·eθn(q)sin
(√

2En

σ

∫ q

0
θn(y) dy − π·n

)
(78)

Note that the Cn constants must be positive as a consequence that the set{
Ψn(t, q) = e−i En

σ tψn(q)
}−∞

n=−1
be orthonormal, for the scalar product

∫ +∞
−∞ Ψ∗

m(t, q)·Ψn(t, q) dq

=
∫ +∞
−∞ ψm(q)·Ψn(t, q) dq < +∞. In other words:

∫ +∞
−∞ Ψ∗

m(t, q)·Ψn(t, q) dq =∫ +∞
−∞ ψm(q)·Ψn(t, q) dq = Cn·Cm·δnm. Therefore, Ψn(t, q) ∈ L2(R) ∀n ∈ Z<0, such as it is nu-

merically shown below for the first three negative integers.
In order to compute the quantum dynamics by Equation (60), the quantum potential

must be computed. First of all, the modulus of the wave function becomes quantized,
that is:

An(q) = |Ψn(t, q)| = Bneθn(q)
∣∣∣∣sin

(√
2En

σ

∫ q

0
θn(y) dy − π·n

)∣∣∣∣ (79)
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Note in Equation (79) that the absolute value vanishes due to the quantum potential
computation is finally divided by An(q). Effectively, from Equation (46) for the present
application case:

V(n)
q (q) = − σ2

2An(q)
d2 An(q)

dq2 =

=
f 2(q)

2
+ En −

σ2

2

√
2En

σ
θ′n(q)(2θn(q) + 1)cotg

(√
2En

σ

∫ q

0
θn(y) dy − π·n

) (80)

In Equation (80) derivation, the quantized differential equation of Equation (77) has
been taken into account to simplify it. Then, the q-derivative of V(n)

q (q) becomes:

dV(n)
q (q)
dq

= f (q)· f ′(q)−

−σ
√

2En

2

(
θ
′′
n (q)(2θn(q) + 1) + 2

(
θ′n(q)

)2
)

cotg
(√

2En

σ

∫ q

0
θn(y) dy − π·n

)
+

+En
θn(q)·θ′n(q)(2θn(q) + 1)

sin2
(√

2En
σ

∫ q
0 θn(y) dy − π·n

)
(81)

Taking into account Equation (81), Equation (60) provides the quantum dynamics
depending on any integer n < 0, with the initial conditions provided in Table 1:

.
qn(t) = 0.01·qn − 0.001·q2

n − xn
2

.
xn(t) =

dV(n)
q (q)
dq

qn(0) = 2
xn(0) = 0

 (82)

Let us now present the results. First, the quantized energies have been computed by
setting up a C++ program for Equation (77) plus the phase φn(q) =

√
2En
σ

∫ q
0 θn(y) dy of

Equation (78) due to the energies involved in both equations. This program has used the 4th-
order Runge–Kutta method to solve the differential equations, such that φn(q) is rewritten
as a differential equation as φ′

n(q) =
√

2En
σ θn(q) with φn(0) = 0. The C++ program includes

the condition that the energies En must hold φn(c) =
√

2En
σ

∫ c
0 θn(y) dy = π·n, with an error

bound of 10−3, for each n < 0 considered. The energy outcomes are presented in Table 2
for the 10 first negative integers.

Table 2. Quantized energies.

n −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

En 4.838 19.350 43.538 77.401 120.939 174.153 237.041 309.604 391.843 483.757

The numerical results for n = −1, θ1(q) of Equation (77) and the corresponding
φ1(q) =

√
2E1
σ

∫ q
0 θ1(y) dy, are presented in Figure 2, for the interval q ∈ [−15·c, 15·c] =

[−150, 150]. Note that θ1(q) < 0 and that θ1(q) → −∞ as q → ±∞ , which implies that,
by Equation (78), Ψ1(t, q) → 0 as q → ±∞ . In addition, as it is shown below numerically,∫ +∞
−∞ Ψ1(t, q) < ∞, therefore Ψ1(t, q) ∈ L2(R).
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Similar patterns to those of Figure 2 present 𝜃 𝑞)  and 𝜑 𝑞)  for the subsequent 
negative integers. Therefore, from now on, the attention is focused on the wave functions 
of Equation (78) and the quantum dynamics provided by Equation (82) for the three first 

Figure 2. θ1(q) (left) and the corresponding φ1(q) =
√

2E1
σ

∫ q
0 θ1(y)dy function (right) for the interval

q ∈ [−15·c, 15·c] = [−150, 150].

Similar patterns to those of Figure 2 present θn(q) and φn(q) for the subsequent
negative integers. Therefore, from now on, the attention is focused on the wave functions
of Equation (78) and the quantum dynamics provided by Equation (82) for the three first
negative integers. All the results have been obtained from the previous results of θn(q)
and φn(q) =

√
2En
σ

∫ q
0 θn(y) dy in the interval q ∈ [−15·c, 15·c] = [−150, 150]. Note that

the q-derivative of the quantum potential of Equation (81) presents singularities when√
2En
σ

∫ q
0 θn(y) dy − π·n = 0. These singularities represent the fundamental difference

between the classical dynamics given by Equation (1) and the quantum dynamics given by
Equation (82). The way that these singularities are overcome is explained below. To perform
this, both the wave function and the corresponding quantum dynamics are presented in
the following three figures in the same interval q ∈ [−15·c, 15·c] = [−150, 150].

Figure 3 presents the normalized wave function ψ1(q) of Equation (78) jointly the corre-
sponding quantum dynamics q1(t) for t ∈ [0, 1000] of Equation (82), plotted jointly the Figure 1
classical dynamics. On the one hand, note that, as announced above, ψ1(q) → 0, as q → ±∞ .
The C1 constant is computed, as usual, as C2

1 =
∫ +∞
−∞ ψ2

1(q) dq ∼=
∫ +15·c
−15·c ψ2

1(q) dq = 7.348. On
the other hand, no singularity arises in the quantum dynamics q1(t), at least in the interval
t ∈ [0, 1000]. Therefore, the quantum dynamics q1(t) represents a correction of the classical
logistics dynamics of Figure 1 that should be taken into account for empirical studies. However,
some singularities arise in the following two cases.
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Figure 3. Normalized wave function ψ1(q) for q ∈ [−15·c, 15·c] = [−150, 150] (left) and the
corresponding quantum dynamics q1(t) for t ∈ [0, 1000] (right). The quantum dynamics corre-
sponds to the continuous curve, while the dotted straight line value represents the saturation value
c = a

b = 10.0 population thousands and the dot-dashed curve the classical logistic dynamics.

Figure 4 presents the normalized wave function ψ2(q) of Equation (78) jointly the corre-
sponding quantum dynamics q2(t) for t ∈ [0, 1000] of Equation (82), plotted jointly the Figure 1
classical dynamics. On the one hand, note that, as announced above, ψ2(q) → 0, as q → ±∞ .
The C2 constant is computed, as usual, as C2

2 =
∫ +∞
−∞ ψ2

2(q) dq ∼=
∫ +15·c
−15·c ψ2

2(q) dq = 10.345.
On the other hand, a singularity arises in the quantum dynamics q2(t) in the time t ∼= 136.53,
corresponding to q ∼= 5.050. It is represented in Figure 4 with a vertical line. The solution to
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represent the quantum dynamics in all the overall interval t ∈ [0, 1000] has been to consider
the characteristic time interval ∆τ ∼= σ

|E1−E2|
= 0.689, provided in [20]. This time represents an

approximation for the Energy-Time uncertainty relation, and then it can be interpreted as a
time interval for which no information about the quantum dynamics is known. Then, the
quantum dynamics is computed first in the interval t ∈

[
0, 136.53− ∆τ

2

]
with the same initial

conditions, and in a second interval t ∈
[
136.53+ ∆τ

2 , 1000
]

with q
(

136.53+ ∆τ
2

)
= 5.1 and

x
(

136.53+ ∆τ
2

)
= 0.0. Avoiding this singularity, the quantum dynamics q2(t) represents again

a correction of the classical logistics dynamics of Figure 1 that should be taken into account for
empirical studies.
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Figure 5 presents the normalized wave function ψ3(q) of Equation (78) jointly the
corresponding quantum dynamics q3(t) for t ∈ [0, 1000] of Equation (82), represented
jointly in Figure 1 classical dynamics. Again, as announced above, ψ3(q) → 0 , as q → ±∞ .
The C3 constant is computed, as usual, as C2

3 =
∫ +∞
−∞ ψ2

3(q) dq ∼=
∫ +15·c
−15·c ψ2

3(q) dq = 14.492.
On the other hand, also a singularity arises in the quantum dynamics q3(t) in the time
t ∼= 63.81, corresponding to q ∼= 3.367. It is represented in Figure 5 with a vertical line. The
solution to represent the quantum dynamics in all the overall interval t ∈ [0, 1000] has been
to consider again the characteristic time interval ∆τ ∼= σ

|E1−E2|
= 0.689, provided in [20], with

the meaning mentioned above in the context of Figure 4. Then, the quantum dynamics is
computed first in the interval t ∈

[
0, 63.81 − ∆τ

2

]
with the same initial conditions, and in a

second interval t ∈
[
63.81 + ∆τ

2 , 1000
]

with q
(

63.81 + ∆τ
2

)
= 3.4 and x

(
63.81 + ∆τ

2

)
= 0.0.

Avoiding this singularity, The quantum dynamics q3(t) represents now a very different
periodic pattern, not a correction of the classical logistics dynamics of Figure 1, which could
also be taken into account for empirical studies.

To complete the results presented, note that
∫ +∞
−∞ ψ1(q)·ψ2(q)dq ∼=

∫ +15·c
−15·c ψ1(q)·ψ2(q)dq ∼=

0.00003,
∫ +∞
−∞ ψ1(q)·ψ3(q)dq ∼=

∫ +15·c
−15·c ψ1(q)·ψ3(q)dq ∼= −0.00001 and

∫ +∞
−∞ ψ2(q)·ψ3(q)dq ∼=∫ +15·c

−15·c ψ2(q)·ψ3(q)dq ∼= 0.003. These outcomes point out that, numerically, it can be asserted

that the set
{

Ψn(t, q) = ℮−i En
σ tψn(q)

}−∞

n=−1
is orthonormal. However, the approximation to the

zero value is lesser in the third integral than for the other two first integrals. Note that this
outcome is related to the density of curves in the same interval q ∈ [−15·c, 15·c] = [−150, 150],
and consequently, with the number of zeros of the wave function ψ3(q) in Figure 5, vs. ψ2(q) in
Figure 4 and ψ1(q) in Figure 3. In fact, subsequent results not here presented support this trend:
the density of curves in the same interval q ∈ [−15·c, 15·c] = [−150, 150], and thus, the number
of zeros increases as the quantum integer becomes more negative.
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That pattern indicates that, as the quantum integer becomes more negative, the number
of singularities increases for the quantum dynamics of Equation (82). For instance, for
n = −4, a singularity arises at t ∼= 24.82, becoming also periodical the dynamics after
the singularity; and for n = −5 a first singularity arises at t ∼= 0.53 and a second one at
t ∼= 72.61. For this last case, the pattern between the first and second singularity is of a
growing kind, while the pattern after the second singularity is also periodical, similar to
that of Figure 5.

The general conclusions of this section can be summarized as follows:

1. The system energy is positive, and it becomes quantized as a function of the non-zero
negative integers over the hypotheses that the quantum wave vanishes in the critical
points of the logistic function. Table 2 shows these energy outcomes.

2. The set of quantized wave functions given by Equations (77) and (78),{
Ψn(t, q) = e−i En

σ tψn(q)
}−∞

n=−1
, define an orthonormal set of functions, i.e.,∫ +∞

−∞ Ψ∗
m(t, q)·Ψn(t, q) dq = Cn·Cm·δnm.

3. It is expectable that, as the quantum integer becomes more negative, the density of
curves of ψn(q) by Equation (77) increases in all the domain q ∈ (−∞,+∞), as well
as the number of zeros in the same domain.

4. As a consequence of item 3, it is also expected that, as the quantum integer becomes
more negative, the number of singularities will increase in the time interval of predic-
tion for the quantum dynamics given by Equation (78).

5. As a consequence of item 4, the conception of quantum trajectory given by Equation (78)
becomes radically different from the classical trajectory given by Equation (58). The growth
of singularities as the negative integers become more negative seems to be the key point
of this radical difference.

6. In future studies, the approaches presented in the works [18,19] could provide a way
to overcome the singularities of the quantum trajectories found in this application case.

In addition, a general conclusion is that a fundamental objective of research must be
to study if the singularities can be avoided. Avoiding the singularities will allow a better
comparison between classical and quantum dynamics, as Figure 3 provides. However, on
the other hand, the singularities could be unavoidable under the quantization hypotheses
stated, and other quantization hypotheses should be stated instead. Note that these quanti-
zation hypotheses provided in Equations (74) and (75) have been ψ(0) = 0 and ψ(c) = 0,
but other hypotheses could provide quantum dynamics that avoid the singularities. In
addition, although the quantization hypotheses ψ(0) = 0 and ψ(c) = 0 maintain, the
boundary conditions θn(0) = −1 and θ′n(0) = 0 in Equation (77) could be different in order
to avoid the singularities.
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Finally, the assumption of the system Planck constant as σ = 10 has been chosen
by numerical computations’ convenience. However, finding a way to relate the system
Planck constant with other significant constants of other formalisms could be necessary.
For instance, in the work [24], Feigenbaum provides significant constants in the context of
the logistic dynamics and similar functions. Consequently, could the Planck constant in
the system be related to those constants? In addition, if the singularities discovered were
unavoidable, could they also represent a route to chaos as the integers of the quantum
approach become more negative?

Therefore, only in the context of this section is the future research area enormous, and
it has to be investigated.

6. Discussion and Conclusions

A first discussion and the corresponding conclusions have been presented in the final
paragraphs of Section 5. It is unavoidable to present them in the context of Section 5 because
the formalism presented has been put into practice for the application case of this section.
Therefore, for concrete discussion and conclusions about the quantum dynamics of the
logistic function, Section 5 must be addressed.

However, before starting the general discussion, the important results of the paper
must be provided:

1. The first-order Schrödinger equation of Appendix A (Equation (A22)), derived from
the linear Hamiltonian of Equation (A19) by applying the quantization rules, does
not provide any new quantum formulation to abstract dynamical systems defined
by Equation (1).

2. The second-order Schrödinger Equation of Equation (40), derived from the quadratic
Hamiltonian of Equation (31) by applying the quantization rules, does provide an al-
ternative quantum formulation to abstract dynamical systems defined by Equation (1).
This quantum formulation is provided by Equation (52).

3. Equation (52) needs the previous knowledge of the abstract masses, which are pro-
vided by Equations (50) and (51).

4. The application case of Section 5 demonstrates that formalism works despite the
arising singularities of quantum dynamics for logistic functions.

About the general discussion, note that the application case of Section 5 can also en-
lighten the general discussion and conclusions paper. The first question that any researcher
of General Systems Theory or mathematical physics could ask is if there exists a need for
such formalism. The answer is positive in the sense that an understanding of the world’s
complexity needs new formalisms, such as those presented here. However, this is only
an epistemological assumption, and only future empirical support could provide validity
for formalism.

In addition, from a mathematical point of view, note that the work by Dirac [7] was
what allowed him to obtain his equation for fermionic quantum fields [25]. That equation
is also first-order in the partial derivatives, such as the first-order Schrödinger equation of
Equation (A22) of Appendix A. However, Equation (A22) is non-relativistic, unlike the Dirac
equation. However, a magnitude such as the information speed, similar to the light speed,
has never been defined in the context of abstract dynamical systems. If this magnitude
could be discovered and empirically supported, may be a kind of Dirac equation could be
discovered. In this context, the Flk(t, q) (k, l = 1, 2, . . . , n) of Equation (A12) (Appendix A)
could play the role of the electromagnetic field and the gl(t, q) (l = 1, 2, . . . , n) and h(t, q)
functions could play the role of, respectively, its vector potential and its scalar potential.
However, that theoretical advance has not been produced, and, in addition, the first-
order Schrödinger equation of Equation (A22) presented in Appendix A has no further
information to provide to the dynamics of abstract dynamical systems.

The last disappointing conclusion is what motivates the second-order formulation
presented in Sections 2–4. It must be highlighted that both Hamiltonians of Section 2, those
corresponding to Equations (18) and (31), could provide significant information in addition
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to its use to obtain a second-order Schrödinger equation in Section 3. For instance, the
energy conservation of autonomous systems for both Hamiltonians could help us better
understand the classical dynamics of the abstract dynamical systems. This point should also
be investigated. In addition, could there be a universal way to define the abstract masses?
The answer has also been provided in Section 2: the abstract masses could be defined
as mk(t, q) = µk

fk(t,q)
(k = 1, 2, . . . , n), being µk constants with the suitable dimensions. In

this case, Equation (43) holds identically, and it can also be considered that h(t, q) = 0.
Therefore, the application case of Section 5 could have been presented similar to this, i.e.,
as m(q) = µ

f (q) instead m(q) = 1. Then, the conclusions of the application case could be
different. This hypothesis must also be investigated.

However, the most important contributions of this paper are in Section 3, the second-order
Schrödinger equation of Equation (40) or this time-independent version of Equation (42) for
autonomous systems, and in Section 4, the quantum formulation of the abstract dynamical
systems of Equation (52). Note that more application cases must be investigated in addition to
that of Section 5.

On the one hand, similar theoretical contributions to that of Section 5 must be investi-
gated, trying to discover if the abstract masses’ choice can be universal, such as discussed
above, or their choice can be arbitrary (while they obey Equations (16) and (17)). On the
other hand, formalism needs a great amount of empirical support. The systems that could
support all the formalism presented can be of a different nature. For instance, population
dynamics or chemical reaction dynamics can provide a great amount of empirical data to
support formalism, basically because both kinds of dynamical systems are modeled by
systems of first-order differential equations.

A question that must also be studied in future research is the stochastic formulation
of Equation (52). This question was highlighted by Bohm and Hiley in [15]. In fact, in
that work, the deterministic and the stochastic approaches are considered. The stochastic
approach can provide reliable quantum dynamics, i.e., outcomes with confidence intervals,
which are not possible with a deterministic approach. To support this possible approach,
note that the wave functions of Equation (78) are probability densities. In addition, the
stochasticity consideration could provide quantum dynamics similar to those of physical
systems, such as the dynamics of an electron around the proton in a hydrogen atom [20].
However, the stochastic approach must take part in a subsequent phase of research after
having found better theoretical and empirical support for the formalism presented.

Finally, the author of this paper is conscious that the inclusion of the Planck constant
system in formalism is problematic. In fact, this inclusion makes epistemological and math-
ematical questions difficult to explain without previous empirical or theoretical evidence.
Some ways to support its existence and its value for a particular abstract dynamical system
have been discussed in the conclusions of Section 5. However, from a theoretical approach,
the system Planck constant arises with the translation of the quantum formalism to the
abstract dynamical systems, such as has been shown throughout this paper. However, as
it happens in all newly proposed theories, the existence of the system Planck constant, as
well as all the formalism background, take part in a hypothetical proposal that must be
supported in the future by empirical evidence.

Funding: This research received no external funding.

Data Availability Statement: No empirical data have been necessary for this work.
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Appendix A

The definition of an abstract dynamical system is also presented in this appendix, as it
is presented in Section 2. The reason is to maintain coherence with the rest of the appendix.
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Definition A1. An abstract dynamical system is defined by the following coupled set of differential
equations (1 ≤ k ≤ n):

.
qk(t) = fk(t, q) (A1)

In Equation (A1) t is the time variable and q = (q1, q2, . . . , qn) represent the dynamical
variables. Their nature can be arbitrary, not necessarily of physical nature, such as popu-
lations, chemical or biochemical species, socioeconomic or behavioral indicators, etc. In
addition, the fk(t, q) (1 ≤ k ≤ n) represent their dynamic interactions, considering that
they are equipped with all kinds of smoothness properties to develop suitably formalism.
In addition,

.
q =

( .
q1,

.
q2, . . . ,

.
qn
)

are called the dynamical velocities.
Following the methodology developed by Dirac [7] for fields, the works [8,10] applied

it to obtain a Hamiltonian to abstract dynamical systems. The method presented in those
works is also presented here because they are needed in the subsequent sections.

Proposition A1. The Lagrangian for AEquation (A1) is provided by:

L
(
t, q,

.
q
)
= ∑n

j=1 gj(t, q)· .
qj − h(t, q) (A2)

Proof. It is trivial, taking into account that, as noted by Dirac in [7], a Lagrangian for
AEquation (A1) is only possible if it is linear in the dynamical velocities. □

Note in AEquation (A2) that the gj(t, q) and h(t, q) functions are still undetermined.
The corresponding momentum variables are then defined as (1 ≤ k ≤ n):

pk =
∂L
∂

.
qk

= gk(t, q) (A3)

Note that in AEquation (A3), the first problem is that the momentum variables do not
depend on the dynamical velocities; thus, the dynamical velocities cannot be isolated from
the momentum variables.

Corollary A1. As a consequence of the definition of Hamiltonian in classical mechanics,
the Hamiltonian for AEquation (A1) becomes:

H0(t, q, p) = ∑n
j=1

∂L
∂

.
qj
· .
qj − L

(
t, q,

.
q
)
= h(t, q) (A4)

Note in AEquation (A4) that the momentum variables are represented as p = (p1, p2, . . . , pn).
In addition to the first problem provided by AEquation (A3), AEquation (A4) shows a second
problem: the H0 Hamiltonian does not depend on the momentum variables. Due to these
two problems H0(t, q, p) is referred to as singular. The Dirac method [7] consists in solving
both problems.

Proposition A2. The Hamiltonian, that is, the function of the momentum variables, is
provided by:

H(t, q, p) = h(t, q) + ∑n
j=1 λj(t, q, p)

(
pj − gj(t, q)

)
(A5)

Proof. Defining the primary constants ϕk(t, q, p), such as stated in [7] (1 ≤ k ≤ n):

ϕk(t, q, p) = pk − gk(t, q) (A6)

and subsequently reinserting the primary constants in the Hamiltonian H0(t, q, p) by the usual
way of the use of the (still undetermined) Lagrange multipliers λk(t, q, p) (1 ≤ k ≤ n) as
H(t, q, p) = H0(t, q, p) + ∑n

j=1 λj(t, q, p)ϕk(t, q, p), the Hamiltonian of AEquation (A5) arises. □
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Note that the Dirac method to reinsert the momentum variables implies that, in the
context of the Hamiltonian H(t, q, p), the primary constants are not identically zero, but
ϕj(t, q, p) = 0 (1 ≤ j ≤ n) when they are applied in the Hamilton equations.

Proposition A3. The corresponding Hamilton equations of the Hamiltonian of AEqua-
tion (A5) are (1 ≤ k ≤ n):

.
qk(t) =

∂H
∂pk

= ∑n
j=1

∂λj(t, q, p)
∂pk

·ϕj(t, q, p) + ∑n
j=1 λj(t, q, p)·

∂ϕj(t, q, p)
∂pk

= λk(t, q, p) (A7)

.
pk(t) = − ∂H

∂qk
= −∑n

j=1

∂λj(t, q, p)
∂qk

·ϕj(t, q, p)− ∑n
j=1 λj(t, q, p)·

∂ϕj(t, q, p)
∂qk

− ∂h(t, q)
∂qk

=

= −∂h(t, q)
∂qk

+ ∑n
j=1 λj(t, q, p)

∂gj(t, q)
∂qk

(A8)

Proof. AEquations (A7) and (A8) are a consequence of the Hamilton equations in classical
mechanics and of AEquation (A6) assumption for the primary constants. □

Corollary A2. The Hamilton AEquations (A7) and (A8) become (1 ≤ k ≤ n):

.
qk(t) =

∂H
∂pk

= fk(t, q) (A9)

.
pk(t) = − ∂H

∂qk
= −∂h(t, q)

∂qk
+ ∑n

j=1 f j(t, q)
∂gj(t, q)

∂qk
(A10)

Proof. Comparing AEquations (A1) and (A7): λk(t, q, p) = fk(t, q) (1 ≤ k ≤ n). □

In order to determine the gj(t, q) and h(t, q) functions, the so-called Dirac as consistency
conditions,

.
ϕl(t, q, p) = 0 (1 ≤ l ≤ n), must be applied below.

Definition A2. For k, l = 1, 2, . . . , n, the Fkl(t, q) functions are defined as:

Fkl(t, q) = −Flk(t, q) = −∂gl(t, q)
∂qk

+
∂gk(t, q)

∂ql
(A11)

Theorem A1. The gj(t, q) (1 ≤ j ≤ n) and h(t, q) functions obey the following equations (1 ≤ j, l ≤ n):

n

∑
k=1

Flk(t, q) fk(t, q) = −∂gl(t, q)
∂t

− ∂h(t, q)
∂ql

(A12)

∂Fjl(t, q)
∂t

=
∂

∂qj

(
∑n

k=1 Flk(t, q) fk(t, q)
)
− ∂

∂ql

(
Fjk(t, q) fk(t, q)

)
(A13)

Proof. From AEquation (A6) (1 ≤ l ≤ n):

.
ϕl(t, q, p) =

∂ϕl(t, q, p)
∂t

+ ∑n
k=1

∂ϕl(t, q, p)
∂qk

.
qk + ∑n

k=1
∂ϕl(t, q, p)

∂pk

.
pk = 0 (A14)

The substitution of Aquations (A9) and (A10) in AEquation (A14) provides, taking into
account the zero value of the primary constraints, and after some calculations (1 ≤ l ≤ n):
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−∂gl(t, q)
∂t

− ∂h(t, q)
∂ql

+ ∑n
k=1

(
−∂gl(t, q)

∂qk
+

∂gk(t, q)
∂ql

)
fk(t, q) = 0 (A15)

Then, considering AEquation (A11) in AEquation (A15), AEquation (A12) holds. In
addition, AEquation (A13) arises from AEquation (A12) by following the steps: 1. Take the
partial derivative respect an arbitrary qj in AEquation (A12); 2. Rewrite AEquation (A12)
by replacing l by j; 3. Take the partial derivative respect ql in the rewritten equation; 4. Sub-
tract both equations, taking into account the equality of both h(t, q) crossed derivatives,
AEquation (A13) holds. □

Therefore, the process to obtain the gj(t, q) and h(t, q) functions of the Hamiltonian
given by AEquation (A5) is: 1. Obtain the Flk(t, q) functions by AEquation (A13); 2. Sub-
stitute these results in AEquation (A12) to obtain the gj(t, q) and h(t, q) functions. Take
into account in this process that Fll(t, q) = 0 and that Fkl(t, q) = −Flk(t, q) (i.e., it is an
antisymmetric functional matrix).

However, two different classes of solutions must be considered depending on the
system dimension n. This is due to the antisymmetric definition of the Flk(t, q) functions.
On the one hand, if n is even, then, in general det(Flk(t, q)) ̸= 0. In this case both sets of
AEquation (A12) or AEquation (A13) are independent. On the other hand, if n is odd, then
always det(Flk(t, q)) = 0, and being det(Flk(t, q)) ̸= 0 for the n − 1 even dimension, one of
AEquation (A12) is dependent on the others, which means some Flk(t, q) functions become
undetermined parameters from which the rest depend on.

Actually, this last case always happens due to AEquation (A12) is a coupled set of n
equations and n + 1 unknown variables: gl(t, q) (l = 1, 2, . . . , n) and h(t, q). For instance,
let the special one-dimensional (n = 1) odd case be. The consistency conditions that
AEquation (A12) provides become:

η(t, q, p) :=
∂g(t, q)

∂t
+

∂h(t, q)
∂q

= 0 (A16)

Note that AEquation (A16) does not provide the λ(t, q, p) = f (t, q) multiplier. When
this case happens, the Dirac method [7] prescription is to consider equations such as
AEquation (A16) as secondary constraints. In order to obtain the multiplier in an equation,
the time derivative is taken in AEquation (A16):

.
η(t, q, p) =

∂η(t, q, p)
∂t

+
∂η(t, q, p)

∂q
.
q +

∂η(t, q, p)
∂p

.
p = 0 (A17)

Taking into account the Hamilton equations of AEquations (A9) and (A10), such as for
the primary constraints, AEquation (A17) becomes, after some calculations:

∂2g(t, q)
∂t2 +

∂2h(t, q)
∂t ∂q

+ f (t, q)
(

∂2g(t, q)
∂q ∂t

+
∂2h(t, q)

∂q2

)
= 0 (A18)

Note in AEquation (A18) that just an equation is provided for two unknown variables,
g(t, q) and h(t, q), then one of the two variables becomes undetermined, and therefore,
different solutions can be applied.

Now that, considering all the formalism developed, the gj(t, q) (j = 1, 2, . . . , n) and
h(t, q) functions can be found, and the Hamiltonian can be written from AEquation (A5) as:

H(t, q, p) = ∑n
j=1 f j(t, q)

(
pj − gj(t, q)

)
+ h(t, q) =

= ∑n
j=1 f j(t, q)·pj − ∑n

j=1 f j(t, q)·gj(t, q) + h(t, q)
(A19)



Mathematics 2024, 12, 1076 27 of 29

Observe in addition that if the action is represented by S(t, q), the corresponding
Hamilton–Jacobi equation for this Hamiltonian is:

∂S(t, q)
∂t

+ ∑n
j=1 f j(t, q)

∂S(t, q)
∂qj

+ W(t, q) = 0 (A20)

Note that in AEquation (A20): W(t, q) = −∑n
j=1 f j(t, q)·gj(t, q) + h(t, q).

On the other hand, AEquations (A11)–(A13) are deduced by Havas in Annex 2 of [11]
for the Lagrangian of AEquation (A2), which provides that both approaches, Lagrangian
and Hamiltonian, are equivalent, such as Govaerts demonstrates in [12] for fields. Also,
Micó in [8] deduces both formalisms and demonstrates their equivalence for the abstract
dynamical systems here dealt. However, the odd n case is solved by Havas [11] and Micó [8]
by adding the differential equation

.
qn+1(t) = 0. With this new equation, n + 1 is even and,

in general, det(Flk(t, q)) ̸= 0, becoming independent of both sets of AEquation (A12) or
AEquation (A13), such as it happens in the even n case.

A first failed attempt to obtain a quantum approach to the abstract dynamical systems
given by AEquation (A1) was provided in [6]. However, this attempt is also here provided
to motivate the need for the alternative approach in Sections 2–4.

If Ĥ(t, q̂, p̂) is the quantum operator corresponding to a known Hamiltonian H(t, q, p),
the Schrödinger equation is written as:

iσ
∂Ψ(t, q)

∂t
= Ĥ(t, q̂, p̂)Ψ(t, q) (A21)

In AEquation (A21) Ψ(t, q) is the wave function. Due to the Hamiltonian that corre-
sponds to an abstract dynamical system such as AEquation (A19), σ represents the system
Planck constant different from the Planck constant of physics. Therefore, the hypothesis
assumed is that each abstract dynamical system has its own system Planck constant, whose
value represents a limitation of the mathematical knowledge of the system.

Theorem A2. The Schrödinger equation corresponding to the Hamiltonian of AEquation (A19),
here so-called first-order Schrödinger equation, is written as:

iσ
∂Ψ(t, q)

∂t
= −i

σ

2 ∑n
j=1 f j(t, q)

∂Ψ(t, q)
∂qj

− i
σ

2 ∑n
j=1

∂

∂qj

(
f j(t, q)·Ψ(t, q)

)
+ W(t, q) Ψ(t, q) (A22)

Proof. Following the quantization rules provided for the Copenhagen formalism of the
quantum theory [20], Ĥ(t, q̂, p̂) is an operator that acts on the wave function as:

Ĥ(t, q̂, p̂)Ψ(t, q) =
1
2∑n

j=1

(
f j(t, q̂) p̂j + p̂j fi(t, q̂)

)
Ψ(t, q) + W(t, q̂) Ψ(t, q) (A23)

Such that in AEquation (A23): W(t, q̂) = −∑n
j=1 fj(t, q̂)gj(t, q̂) + h(t, q̂), W(t, q̂)Ψ(t, q) =

W(t, q)Ψ(t, q), and p̂jΨ(t, q) = −iσ ∂Ψ(t,q)
∂qj

. Note in AEquation (A23) that the term
1
2 ∑n

j=1
(

fj(t, q̂)p̂j + p̂j fi(t, q̂)
)

provides that the Hamiltonian is a self-adjoint operator [20].
Therefore, AEquation (A22) is the first-order Schrödinger equation corresponding to

the Hamiltonian of AEquation (A19). □

Note that AEquation (A22) is a first-order partial differential equation, contrary to
the physical problems where it is a second-order partial differential equation. However,
following the Madelung approach [14], does AEquation (A22) provide new information for
AEquation (A1) through a quantum potential arising in the Hamiltonian? To answer this
question, splitting the wave function in its amplitude A(t, q) and its phase B(t, q) is needed:

Ψ(t, q) = A(t, q) i B(t,q)
σ (A24)
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Proposition A4. The A(t, q) and B(t, q) functions of AEquation (A24) obey the follow-
ing equations:

∂B(t, q)
∂t

+ ∑n
j=1 f j(t, q)

∂B(t, q)
∂qj

+ W(t, q) = 0 (A25)

∂A2(t, q)
∂t

+ ∑n
j=1

∂

∂qj

(
f j(t, q)·A2(t, q)

)
= 0 (A26)

Proof. The substitution of AEquation (A24) in AEquation (A22) provides, respectively, for

the real and the imaginary parts (after some easy operations and canceling the term i B(t,q)
σ ):

−A(t, q)
∂B(t, q)

∂t
= A(t, q)∑n

j=1 f j(t, q)
∂B(t, q)

∂qj
+ A(t, q)W(t, q) (A27)

σ
∂A(t, q)

∂t
= −σ∑n

j=1 f j(t, q)
∂A(t, q)

∂qj
− σ

2
A(t, q)∑n

j=1

∂ f j(t, q)
∂qj

(A28)

Dividing AEquation (A27) by A(t, q), AEquation (A25) holds, and dividing AEqua-
tion (A28) by σ and subsequently multiplying it by 2A(t, q), AEquation (A26) holds. □

AEquation (A25) provides the Hamilton–Jacobi equation of AEquation (A20), corre-
sponding to the Hamiltonian of AEquation (A19), for the phase B(t, q). AEquation (A26)
provides the probability conservation for the square amplitude A2(t, q), being the vector of
components f j(t, q) (1 ≤ j ≤ n) the probability current density. Note that contrary to the
physical systems, despite the fact that the probability conservation holds, an additional
quantum potential in the Hamiltonian of AEquation (A19) does not arise in this context.
This term would produce a further quantum potential (following the Madelung approach)
that could change the original abstract dynamical system of AEquation (A1). Thus, the
first-order Schrödinger equation AEquation (A22) fails to provide further mathematical
information to AEquation (A1).

Therefore, as an alternative formulation, is there any way to obtain a second-order
Schrödinger equation for the abstract dynamical systems of AEquation (A1)? The answer
is positive, but previously, a reformulation of AEquation (A1) as a second-order differential
equation system is necessary, as well as finding the corresponding Hamiltonian that will be
quadratic in the momentum variables (referred to as the quadratic Hamiltonian). This is
the objective of Sections 2–4.
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