
Citation: Cravioto, O.; Saldivar, B.;

Jiménez-Lizárraga, M.; Ávila-Vilchis,

J.C.; Aguilar-Ibañez, C. Sliding

Surface-Based Path Planning for

Unmanned Aerial Vehicle Aerobatics.

Mathematics 2024, 12, 1047. https://

doi.org/10.3390/math12071047

Academic Editor: Daniel-Ioan Curiac

Received: 2 March 2024

Revised: 27 March 2024

Accepted: 27 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Sliding Surface-Based Path Planning for Unmanned Aerial
Vehicle Aerobatics
Oleg Cravioto 1 , Belem Saldivar 2 , Manuel Jiménez-Lizárraga 3,* , Juan Carlos Ávila-Vilchis 1

and Carlos Aguilar-Ibañez 4

1 Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo 50130, Mexico;
ocraviotog001@alumno.uaemex.mx (O.C.)

2 Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto
Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico

3 Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo Léon,
Nuevo León 66451, Mexico

4 Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
carlosaguilari@cic.ipn.mx

* Correspondence: manuel.jimenezlzr@uanl.edu.mx; Tel.: +52-81-8329-4030 (ext. 6136)

Abstract: This paper exploits the concept of nonlinear sliding surfaces to be used as a basis in the
development of aerial path planning projects involving aerobatic three-dimensional path curves in
the presence of disturbances. This approach can be used for any kind of unmanned aerial vehicle
aimed at performing aerobatic maneuvers. Each maneuver is associated with a nonlinear surface
on which an aerial vehicle could be driven to slide. The surface design exploits the properties of
Viviani’s curve and the Hopf bifurcation. A vector form of the super twisting algorithm steers the
vehicle to the prescribed surfaces. A suitable switching control law is proposed to shift between
surfaces at different time instants. A practical stability analysis that involves the descriptor approach
allows for determining the controller gains. Numerical simulations are developed to illustrate the
accomplishment of the suggested aerobatic flight.
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1. Introduction

The term aerobatics, which is a contraction of the words ‘aerial’ and ‘acrobatics’, refers
to the practice of aerial maneuvers that involve unusual or abrupt changes of altitude or
acceleration. Performing automated aerobatic maneuvers stands as a challenging problem
within the unmanned aerial vehicle (UAV) research community. The development of such
maneuvers allows for testing aerodynamic limits concerning maneuverability and control
of an aerial vehicle [1]. Nowadays, flight mission requirements are becoming more complex
due to the broad scope of civil and military applications, which include flying in uneven
urban and natural environments, in many cases in the presence of obstacles requiring
sudden and complex trajectory changes [2,3]. Under such scenarios, aerobatics becomes
important, providing an alternative approach for navigating under the above-mentioned
conditions. Training and recreation are additional applications of aerobatics.

The path planning task consists in determining a geometrical path that a vehicle,
considering its dynamic characteristics and physical limitations, must follow in order to
achieve a set goal [4–7]. In general, the path planning task involves the determination of a
route that allows the vehicle to reach a goal. The simplest way to model a UAV path is by
using segments that connect a number of waypoints [8,9].

Path planning is vital when different autonomous systems perform tasks in the same
working environment since it aims at avoiding collisions. In [10], a bifurcation-based
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approach to generate different formation patterns is presented; it allows for generating a
path for a UAV within the formation, avoiding obstacles and/or collisions with other UAVs.

Woo et al. [11] propose the use of the rapidly exploring random tree algorithm com-
bined with the artificial potential field (P-RRT*) to generate an initial collision-free path. In
addition, the line-of-sight path optimization (LoSPO) technique is applied to obtain the
shortest path with reference to the initial one. The effectiveness of the combined path plan-
ning algorithms was demonstrated through the use of two- and three-dimensional digital
terrain maps. This paper does not address the path planning for aerobatics; the method
consists of connecting initial and final points using straight line trajectories. The algorithm
becomes slow as it needs to generate different trajectories before determining the optimal
one. In addition, it requires storing information on all the generated trajectories, which
implies high computational consumption.

In [12], the trajectory optimization for a UAV carrying out a maritime radar surveil-
lance mission is investigated. The proposed method aims at maximizing information
obtained from the search area and minimizing fuel consumption. Quintic polynomials are
used to generate UAV paths due to their ability to provide complete and complex solutions
while requiring few inputs.

In [7], a comprehensive survey of UAV path planning techniques is presented; compar-
ison tables showing path length, optimality, completeness, cost efficiency, time efficiency,
energy efficiency, robustness, and collision avoidance are included. Furthermore, sev-
eral open research problems on UAV path planning and UAV network communication
are explored. Energy efficiency, security, and privacy are among the mentioned open
research problems.

In [13], a comprehensive review of more than 150 articles from 2000 to 2022 concerning
path planning methods using optimization approaches is presented. These methods are
classified into five categories: classical methods, heuristics, metaheuristics, machine learn-
ing, and hybrid algorithms. A critical analysis is provided for each category considering
targeted objectives, constraints, and environments.

As reported in the above-mentioned surveys and in the references therein, research
efforts have been devoted to ensuring optimal and collision-free paths between two loca-
tions while meeting requirements related to the UAV characteristics and the serving area.
For the case of UAV aerobatics, besides defining the start and end points, a predefined path
involving the desired acrobatic maneuvers between those two points should be character-
ized. For instance, in [14], the development of Pugachev’s cobra maneuver in a quadrotor
is addressed. This famous maneuver is used to perform aerobatic shows or in combat for a
sudden brake. It consists in turning the aircraft vertically to perform the maneuver along
with sudden deceleration. The quadrotor is suspended for a few seconds without lifting
force during that time. The above represents a challenge since, in θ = π/2, there is no
thrust to compensate the gravity. The proposal applies only for this specific maneuver, and
the algorithm presents vulnerabilities when the pitch angle is such that θ > π/2.

Other acrobatic maneuvers for UAV can be found in [15], where Knife-Edge and
Rolling Harrier are studied. Knife-Edge maneuvers are useful for flying between obstacles
when the passage is narrower than the aircraft’s wingspan. The goal is to maintain 90° roll
while tracking a straight line at a constant altitude. In a Rolling Harrier maneuver, the air-
craft flies at a constant altitude while maintaining a constant roll rate. This maneuver has
little practical utility, but it demonstrates the aircraft’s flight capability. In [15], in addition
to the Knife-Edge and Rolling Harrier maneuvers, the hovering and aggressive turnaround
flights are discussed. Each maneuver is executed in isolation. As future work, the use of
these stunts as an alternative for avoiding obstacles is mentioned.

In [16], the problem of performing quadrotor aggressive maneuvers that are attitude-
constrained is tackled. The trajectory generation is formulated as a quadratic programming
problem with linear constraints. The underactuation of the vehicle is explored to embed the
attitude constraints into the trajectory generation via constraints on the desired quadrotor
acceleration. Experimental and simulation results illustrate the application of the proposed
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method to quadrotor maneuvers involving a 360° flip. Among the disadvantages of the
approach proposed in [16], it can be mentioned that it was only applied to the flip maneuver
and that it does not consider the presence of disturbances.

On the other hand, due to the presence of external forces such as wind gusts, UAVs
are susceptible to deviation from the original intended path. In this regard, the use of
the sliding mode approach has been a successful technique to cope with this control
problem; see, for instance, [17–19]. Sliding mode control has been the subject of extensive
research for several decades, mainly due to its ability to operate in the presence of matched
uncertainties [20]. One drawback of conventional (first-order) sliding mode control is the
presence of ‘chattering’ caused by the discontinuous control action. However, higher-order
sliding mode control (HOSMC) addresses this issue by attenuating the chattering effect.
HOSMC retains the robustness observed in first-order sliding modes, while enhancing the
accuracy of the control system [21]. One disadvantage of implementing an r-th order sliding
mode is the requirement of having access to the r − 1 time derivatives of the sliding surface.
However, in a specific type of second-order sliding modes, known as ‘super twisting’,
there is no need for such derivative information. Most research works on sliding mode
control focus on a single-input control structure. For multi-input systems, a transformation
allows for decoupling the structure to deal with m single-input control structures. However,
in [22], a multivariable super twisting structure is proposed; this structure, also known as
super twisting vector control, is also considered in [20,23,24].

For the path-following problem in UAVs, several sliding-mode-based controllers have
been proposed. See, for instance, [25], where a fractional-order improved super twisting
proportional-integral-derivative sliding mode controller (STPIDSMC) is proposed to ensure
fast convergence, high precision, and good robustness against stochastic perturbations and
uncertainties. Numerical simulations illustrate the effectiveness of the proposed strategy.
This paper does not address the case of acrobatic maneuvers; it only considers straight line
trajectories, so the proposed sliding surfaces are linear.

In [26], a robust backstepping-based approach combined with sliding mode control
is proposed for trajectory tracking of a quadrotor UAV subject to external disturbances
and parameter uncertainties. Numerical simulations and experimental tests have been
developed to verify the validity of the proposed control approach. As in [25], this paper
does not consider aerobatics, but only straight line paths. The designed controller induces
chattering that could cause implementation problems.

As explained, most research works do not consider the execution of a set of acrobatic
maneuvers. In general, the problem of simple straight-line trajectories is addressed, and
in some cases, the execution of no more than one isolated acrobatic maneuver is addressed.

In this paper, the underpinning theory is the sliding mode control technique. The major
thrust of this technique is to regulate the dynamics of a system by ensuring that the system’s
state trajectory ‘slides’ along a specific surface in the state space. As it is well known, the first
step in designing a sliding mode controller is defining a sliding surface, which represents
the desired behavior of the system. The goal is to force the system’s state trajectory to
converge to and slide along this surface. This is where the aim of this paper aligns with
the sliding mode technique purpose; i.e., the underlying idea is that when the vehicle is
forced to move in the sliding regime, it will inevitably perform, even in the presence of
disturbances, the desired aerobatics represented by a suitable sliding surface. In that sense,
the design of sliding surfaces based on different mathematical structures (Hopf bifurcation,
Viviani’s curve, and logarithm function) that allows for characterizing a set of geometrical
paths to compose a circuit of acrobatic maneuvers is proposed.

This work is inspired in the results presented in [27], where the path planning problem
for a fly mission, which depends on a circular surveillance motion around a mobile objective,
is addressed. The proposed path-following method that allows the circular flight makes
use of the Hopf bifurcation. Another proposal that exploits the Hopf bifurcation to generate
a periodic orbit behavior in an aircraft can be found in [28], where bifurcations are used to
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define the aircraft departure recovery dynamics. Invariant set theory is used to prove the
existence and stability of the elliptical orbits.

The objectives pursued in [27,28] differ from the problem addressed in this work as
explained below. In [27], the Hopf bifurcation is used to generate only a planar circular
trajectory for a UAV around a mobile objective on the ground. In [28], the Hopf bifurcation
allows for inducing periodic orbits similar to those that pilots would perform when there
are spatial restrictions on takeoff and landing. Unlike what is proposed in [27,28], in this
paper, we develop a novel strategy to solve the problem of 3D path planning to generate a
series of acrobatic maneuvers that include a loop, a descending spiral, and a curve defined
on the surface of a sphere, using, in addition to the Hopf bifurcation, Viviani’s curve and a
logarithm function.

The main focus of this article is on the characterization of the paths that define acrobatic
maneuvers. The complete complex dynamics of a UAV are not considered; hence, we
leave full orientation control for future research. Here, as a benchmark, the UAV is seen
as a punctual mass whose 3D evolution is defined by three double integrators. Then,
additionally, we propose the use of a super twisting vector control to steer the punctual
point to the 3D path. The path planning problem involves only the definition of the
translational movement of the punctual mass; the rotational movement (orientation) is not
considered here.

1.1. Contributions

The contributions of this paper that, to the best of the authors’ knowledge, are not
published before in its present form are fourfold:

1. The introduction of nonlinear 3D sliding mode surfaces, taking advantage of the
geometry profile of paths defined by the Hopf bifurcation, Viviani’s window, and the
logarithm function to execute different acrobatic maneuvers;

2. The design of a discontinuous vector sliding mode control that forces the system to
perform the aerobatics, ensuring robustness against matched perturbations with finite
time convergence characteristics;

3. The development of a practical stability analysis to determine the controller gains
that allows relaxing the condition on the term that encompasses disturbances and
unmodeled dynamics;

4. A suitable switching or commutation control to shift between different sliding surfaces
during the planning.

In summary, this paper proposes a simple and original strategy to solve the path
planning problem that exploits one of the key features of the sliding mode approach, which
is the sliding manifold. This work can be used as a base to develop a complete strategy
(considering position and orientation) for the execution of aggressive acrobatic maneuvers
of unmanned aerial vehicles. The above has an important impact in both the academic
and social fields due to the wide range of applications that can be addressed, such as
entertainment and air shows, aerospace research and development, pilot training and skill
development, search and rescue operations, among others.

1.2. Motivation

The main motivation of this study is that, to the best of the authors’ knowledge, a
simple and intuitive strategy does not exist in the literature for solving the path planning
problem for unmanned aerial vehicle aerobatics. The use of mathematical structures in
combination with the sliding mode strategy had not been exploited to solve the path
planning problem. In this sense, to highlight the simplicity and cleverness of the method, a
series of steps that guide the reader in the implementation of the proposed strategy for any
predefined aerobatics can be found in Section 5.
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1.3. Organization of the Paper

The rest of the paper is organized as follows: In Section 2, the problem statement is
presented. Four nonlinear sliding surfaces associated with different acrobatic maneuvers
are introduced. In Section 3, a super twisting vector sliding mode control is designed to
ensure the practical stability of the predefined surfaces; a Lyapunov analysis that makes
use of the descriptor method is provided. A switching control that allows swapping
between two predefined surfaces is introduced in Section 4. Section 5 presents numerical
results illustrating the effectiveness of the proposed approach. Finally, Section 6 gives some
concluding remarks.

2. Problem Statement
2.1. Motion Context

Consider a punctual unitary mass (that can be considered to be located at the center of
mass of a UAV) as the element that will be following the trajectories of interest. In addition,
consider that this punctual mass is affected by an unknown term (see, for instance, [29,30]).
The behavior of the punctual mass in three-dimensional space is modeled by three double
integrators as follows:

d2i
dt2 = ui + ξi (1)

where i ∈ {x, y, z}, in which x, y, z are the Cartesian coordinates defining the space where
the particle evolves. The terms ux, uy, uz are control inputs in the x, y, and z directions,
respectively. Each term ξi captures the combined action of bounded unknown external
disturbances and unmodeled dynamics on the respective direction x, y, or z.

For a state space representation of the system, the state vector is chosen as follows:

x = [x, y, z, vx, vy, vz]
⊺ (2)

where vi =
di
dt is the translational velocity of the punctual mass in the i direction. Defining

the control vector u as follows:

u = [ux, uy, uz]
⊺ (3)

and the vector that encompasses disturbances and unmodeled dynamics as follows:

ξ = [ξx, ξy, ξz]
⊺ (4)

the system can be expressed in matrix form as follows:

ẋ = Ax + B(u + ξ) (5)

where the state matrix A ∈ R6×6 and the input matrix B ∈ R6×3 are given by the following:

A =

[
03×3 I3×3
03×3 03×3

]
(6)

B =

[
03×3
I3×3

]
(7)

where 03×3 is the 3 × 3 zero matrix and I3×3 is the identity matrix of dimension 3.
Disturbances and unmodeled dynamics are matched Lebesgue-measurable input

functions such that ∥ξ∥ < Lξ ∈ R. Consider the following error vector:

e = x − xr (8)
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where xr ∈ R6 is the reference state vector defined as follows:

xr = [xr, yr, zr, 0, 0, 0]⊺ (9)

The desired position of the particle is identified with the Cartesian coordinates (xr, yr, zr).
The target position is defined according to the considered maneuver, as will be explained
in Section 2.2. The error vector is defined as follows:

e = [ex, ey, ez, ėx, ėy, ėz]
⊺ (10)

Therefore, assuming a constant reference position, the error dynamics is defined by
the following:

ė = Ae + B(u + ξ) + Axr (11)

As mentioned before, the path planning design stands as one of the most crucial
problems in aerial navigation. The next section describes in detail the proposed approach,
which is based on the concept of sliding mode surface, for the path planning design to
perform a series of aerobatic maneuvers.

2.2. Path Planning Design

Executing complex aerial assignments is becoming more relevant in the world of
agile miniature aircraft. Such flights are required, for example, when navigating in hostile
environments where the vehicle needs to perform difficult maneuvers like inverted flight
or sudden direction changes. Studying the development of such movements serves as a
basis for testing the limits of the vehicle. Nevertheless, solving the problem of the 3D path
planning is first required.

In this section, we propose an approach to build up the path planning for the devel-
opment of three different types of aerobatics: looping, eight on a sphere, and descending
spiral. The looping consists in following a circular trajectory in a vertical plane. The eight
on a sphere consists of two turns in opposite directions; the vehicle climbs and descends
following a symmetric pattern on a spherical surface. During the spiral, the vehicle follows
a circular pattern while descending.

Figure 1 shows a circuit consisting of seven path segments; three of them define the
aforementioned aerobatic maneuvers, and the remaining four correspond to straight-line
paths. The trajectories are defined on the basis of the inertial reference frame shown in
Figure 1.

The proposed approach to build up the path planning uses the concept of nonlinear
sliding mode surface (SMS). An SMS is commonly used to stabilize the trajectories of a
given system or drive them to some operating mode (see, for instance, [20,21,31]). However,
in this case, SMSs are designed to define the movement of a punctual mass that represents a
UAV; a different surface is designed for each path segment of the circuit shown in Figure 1.

1. Logarithm-based surface defining straight-line paths in the 3D space (S1, S3, S5, S7);
2. Hopf-bifurcation-based parameterized surface defining the looping (S2);
3. Viviani’s window-based surface defining the eight on a sphere (S4);
4. Hopf-bifurcation-based parameterized surface defining the descending spiral (S6).

Z

X

Y

S2

S3

S4

S5

S6

S7

S1

Figure 1. Three-dimensional planned circuit for aerobatics.
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The key idea of the path planning proposal is to determine a suitable set of parameter-
ized nonlinear SMSs that define the movement of the punctual mass representing a UAV
for the execution of aerobatic maneuvers.

For the case of the looping and the spiral, the SMS exploits the properties of the Hopf
bifurcation to generate a circular path. For the eight on a sphere, Viviani’s window is
used to define the movement on a spherical surface. Finally, to describe straight-line paths,
logarithm functions that allow for reducing the convergence time are used.

In the remaining part of this section, the sliding surfaces that allow for generating
the path planning corresponding to each acrobatic maneuver are presented. In Section 4,
a suitable switching control is defined to shift between each pair of SMSs.

It is important to point out that this paper proposes four different types of nonlinear
SMS for the path planning of the aforementioned maneuvers; however, following the
design approach proposed in this work, other 3D parameterized curves can be converted
to an SMS to develop a distinct path planning and execute different maneuvers.

2.3. Logarithm-Based Surface: Straight-Line Path Segment

As shown in Figure 1, the circuit starts and ends with straight-line path segments,
and between two different aerobatics, there is also a straight-line path. In this section,
an SMS proposal for generating the 3D straight-line paths is presented. Following [32],
the considered sliding surface makes use of the natural logarithm function, which al-
lows faster convergence properties to the surface. The 3D SMS is defined in vector form
as follows:

Sj =

 ėxj + c′xjexj + cxj ln(kl1|exj|+ 1) sign(exj)

ėyj + c′yjeyj + cyj ln(kl2|eyj|+ 1) sign(eyj)

ėzj + c′zjezj + czj ln(kl3|ezj|+ 1) sign(ezj)

 (12)

where Sj = [Sjx, Sjy, Sjz]
⊺, j ∈ {1, 3, 5, 7} corresponds to each straight-line path. The param-

eters cxj, c′xj, cyj, c′yj, czj, c′zj, kl1, kl2, and kl3 are positive design constants. The position error
is defined by the following:

e⊺l =
[
exj, eyj, ezj

]
where exj = x − xrj ∈ R, eyj = y − yrj ∈ R, and ezj = z − zrj ∈ R. The current Cartesian
coordinates of the vehicle’s position are denoted by x, y, z ∈ R. The coordinates xrj, yrj, zrj
define a target position; in this case, it corresponds to the end point of the straight-line path
defined by Sj. For example, xr1, yr1, zr1 denote the end point of the segment defined by S1.
Notice that if Sj = 0, a set of three differential equations describing the error dynamics is
obtained. A stability proof of this system of equations can be found in [32]. The stable error
dynamics allows the convergence of the vehicle to the target position.

To understand the behavior of the surface Sj, consider, for instance, the first element
of (12). If we assume that Sjx = 0, then

ėxj = −c′xjexj − cxj ln(kl1|exj|+ 1) sign(exj) (13)

Figure 2 shows the phase diagram of the dynamics defined by Equation (13). Figure 3
shows the behavior of the variable ėxj with respect to time, for c′xj = cxj = 1 and dif-
ferent values of kl1. The curves shown in Figures 2 and 3 are compared with the ones
corresponding to the linear equation:

ėxj = −c′xjexj (14)

obtained by choosing kl1 = 0 (in yellow). Figure 2 shows that the curves corresponding
to the nonlinear Equation (13) present an almost-linear behavior far from the equilibrium
point (zero) and a nonlinear one when close to it. Evidently, this fact allows for accelerating
the convergence to the equilibrium point. Notice also that the convergence to zero of the
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trajectories corresponding to (13) is faster compared with the one of the linear Equation (14)
(see Figure 3).
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Figure 2. Phase diagram for cxj = c′xj = 1.
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Figure 3. Evolution of ėxj for cxj = c′xj = 1.

Following [32], the Lyapunov function V(el) = 1
2 e⊺l I3×3el is used to analyze the

stability of the dynamics resulting from Sj = 0.
The time derivative of V(el) is given by the following:

V̇(el) = e⊺l I3×3ėl

In view of (12), for Sj = 0, one obtains the following:

V̇(el) = −c′xje
2
xj − cxj|exj| ln(kl1|exj|+ 1)

−c′yje
2
yj − cyj|eyj| ln(kl2|eyj|+ 1) (15)

−c′zje
2
zj − czj|ezj| ln(kl3|ezj|+ 1)

The Lyapunov stability condition V̇(el) ≤ 0 is satisfied for any positive constants c′xj,
c′yi, c′zj, cxi, cyi, czj, kl1, kl2, and kl3.

2.4. Bifurcation Sliding Mode Surface: Looping and Spiral

In a differential equation, the local birth or death of a periodic solution (self-excited
oscillation) from an equilibrium as a parameter crosses a critical value is referred to as Hopf
bifurcation. This phenomenon occurs when a complex conjugate pair of eigenvalues of
the linearized flow at a fixed point becomes purely imaginary [33,34]. In the case of a set
of differential equations with a single equilibrium point at the origin that exhibits a Hopf
bifurcation behavior, the solution behaves according to the parameter values: it circles the
equilibrium point, it converges to the origin describing a spiral shape, or it presents a limit
cycle whose radius grows from the equilibrium point.

The design of the sliding surface to execute the looping and spiral is based on the
results presented in [27], where the path planning problem for a fly mission involving a
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circular motion is addressed. The proposed method that allows the circular flight makes
use of the Hopf bifurcation.

The path planning to perform the loop and the spiral takes advantage of the bifurcation
sliding mode surface introduced in [27], which is a parameterized nonlinear SMS including
Hopf bifurcation dynamics. The key idea is to force the system trajectories to evolve
according to the solution of a set of differential equations describing a circular path around
the equilibrium point.

Notice in Figure 4 that the looping defines a movement in a plane parallel to the XZ
plane (there is no displacement on the Y axis), while the spiral (Figure 5) is defined in the
3D space. The spiral consists in a circular path, defined in a plane parallel to the XY plane,
that descends along the Z axis.

Figure 4. Acrobatic maneuvers: looping.

Figure 5. Acrobatic maneuvers: spiral.

The proposed sliding surface for generating the looping and the spiral is defined
as follows:

Sp =

 ėxp − µpexp − γpekp + exp(e2
xp + e2

kp)

ėkp + γpexp − µpekp + ekp(e2
xp + e2

kp)

ėqp + c′qpeqp + cqp ln(klqp|eqp|+ 1) sign(eqp)

 (16)

where Sp = [Spx, Spk, Spq]⊺, µp, γp, c′qp, cqp, and klqp are design constants, p ∈ {2, 6},
k, q ∈ {y, z}, with q ̸= k. For the spiral, p = 6, k = y, q = z, and for the looping, p = 2,
k = z, q = y.

The position error is defined by the vector
[
exp, eyp, ezp

]⊺, where exp = x − xrp,
eyp = y − yrp, and ezp = z − zrp, where the coordinates xrp, yrp, and zrp define the center of
the circular path related to each maneuver, and as before, the current Cartesian coordinates
of the vehicle’s position are denoted by x, y, z ∈ R.

The first two components of Equation (16) exploit the Hopf bifurcation properties,
while the third one is of the form of the logarithm-based surface defined in Section 2.3. For
Sp = 0, the first two elements correspond to a set of differential equations whose solution
must present a stable limit cycle. This behavior allows for defining a circular path in a 2D
space (in a plane parallel to the XZ plane for the looping or parallel to the XY plane for the
spiral) around an appropriate equilibrium point.

The sliding surface defined in (16) is proposed based on the ideas explained below.
A sliding-mode-based controller is designed in Section 3 to guarantee Sp = Ṡp = 0. In this
scenario, from Equation (16), one obtains the following:
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ėxp = µpexp + γpekp − exp(e2
xp + e2

kp) (17)

ėkp = −γpexp + µpekp − ekp(e2
xp + e2

kp) (18)

ėqp = −c′qpeqp − cqp ln(klqp|eqp|
+1) sign(eqp) (19)

Let us consider the pair of Equations (17) and (18) that exhibiting Hopf bifurcation
properties. To define the radius of the circular path and the rotational speed at which the
vehicle must follow it, Equations (17) and (18) are transformed to the polar coordinates
defined by rh =

√
e2

xp + e2
kp and θh = tan−1(ekp/exp) as follows:

exp = rh cos(θh)
ekp = rh sin(θh)

(20)

Taking the time derivative of (20) yields the following:

ėxp = ṙh cos(θh)− rh θ̇h sin(θh)
ėkp = ṙh sin(θh) + rh θ̇h cos(θh)

(21)

By substituting (20) into (17) and (18), one obtains the following:

ėxp = rh(µp − r2
h) cos(θh) + γprh sin(θh)

ėkp = rh(µp − r2
h) sin(θh)− γprh cos(θh)

(22)

Equating (21) and (22) yields the following:

ṙh = rh(µp − r2
h) (23)

θ̇h = −γp (24)

Note that the first differential Equation (23) has two solutions: rh = 0, rh =
√

µp, and
that the solution of the second one is θh = −γpt. This implies that the radius of the circular
path is 0 or √µp, and that the rotational speed at which the punctual mass representing
a UAV will follow it is defined by γp. According to Jiménez and Jiménez-Lizárraga [27],
for system (23) and (24), rh → 0 (asymptotically) for µp ≤ 0, and rh → √

µp (asymptotically)
for µp > 0.

Therefore, the looping and the spiral are executed by forcing the existence of a stable
limit cycle with the radii

√
µ2 and

√
µ6, respectively, where µ2 > 0 and µ6 > 0.

We can also identify this behavior by looking at the solution of the differential
Equation (21), which is given by the following:

exp =
√

µp cos(γpt) (25)

ekp = −√
µp sin(γpt) (26)

By substituting (25) and (26) into the position errors defined as exp = x − xrp, ekp =
k − krp, where k = y for the spiral, and k = z for the looping, one obtains the following:

x = xrp +
√

µp cos(γpt) (27)

k = krp −
√

µp sin(γpt) (28)

Equations (27) and (28) describe a circular trajectory with the center at (xrp, krp) and
the radius √µp.
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2.5. Viviani’s Window-Based Surface: Eight on a Sphere

This section presents an approach for generating the path planning to develop the
acrobatic maneuver called eight on a sphere. The path segment corresponding to this
maneuver is generated through a specific Clelia curve (a Clelia curve or Clélie is a curve
limited by the surface of the radius of a sphere (see [35])); if the sphere’s diameter is
intersected by a cylinder on a parallel axis, the Clélie is called Viviani’s window (see, for
instance, [36]).) called Viviani’s curve (also known as Viviani’s window), which is the space
curve defined by the intersection of a cylinder and a sphere (see Figures 6 and 7).

The proposed SMS to perform the mentioned maneuver is given by the following:

S4 =

 S4x
S4y
S4z

 =

 ėx4 − αrv + 2αez4
ėy4 − αrv cos(αt)

ėz4 − 2αex4

 (29)

where α and rv are design parameters described below. The position error is defined by the
vector

[
ex4, ey4, ez4

]⊺, where

ex4 = x − xr4

ey4 = y − yr4 (30)

ez4 = z − zr4

The coordinates xr4, yr4, and zr4 define the start and end points of this acrobatic
maneuver that are the same, i.e., the point where the two turns of the eight shape inter-
sect. As before, the current Cartesian coordinates of the vehicle’s position are denoted
by x, y, z ∈ R.

The key idea for the design of the SMS (29) consists in defining a set of equations for
the error dynamics whose solution evolves along the aforementioned curve.

Figure 6. Geometry of Viviani’s window.

Figure 7. Viviani’s window used to generate the acrobatic maneuver eight on a sphere.

Viviani’s window is defined by the following:

x′2 + y′2 + z′2 = r2
v

z′2 + y′2 = −rvz′
(31)
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which defines the intersection of a sphere with the center (0, 0, 0) and radius rv and a
cylinder of radius rv/2, where x′, y′, and z′ are Cartesian coordinates in the 3D space.
The system of parametric coordinates of (31) is given by the following:

x′ = rv cos(αt) sin(αt)

y′ = rv sin(αt) (32)

z′ = −rv cos2(αt)

where α is a design constant. The system of Equation (32) defines the eight on a sphere
curve where the intersection of the two turns is located at point (0, 0,−rv). In order to
move the start and end point of this maneuver to the origin (0, 0, 0), the curve must be
translated rv units along the Z axis; i.e, the third equation of (32) must be modified as
z′ = rv − rv cos2(αt).

Now, to define the path planning for the eight on a sphere curve starting at the point
(xr4, yr4, zr4) that corresponds to the end point of the straight-line path defined by S3 (see
the circuit described in Section 2.2), one has that the coordinates of the vehicle’s position
must be defined by the following:

x = rv cos(αt) sin(αt) + xr4

y = rv sin(αt) + yr4 (33)

z = rv − rv cos2(αt) + zr4

Then, in view of (30), one has the following:

ex4 = rv cos(αt) sin(αt)
ey4 = rv sin(αt)
ez4 = rv − rv cos2(αt)

(34)

which can be rewritten as follows:

ex4 = rv cos(αt) sin(αt)

ey4 = rv sin(αt) (35)

ez4 = rv sin2(αt)

The time derivative of (35) is given by the following:

ėx4 = αrv[cos2(αt)− sin2(αt)]

ėy4 = αrv cos(αt) (36)

ėz4 = 2αrv sin(αt) cos(αt)

which can be written as follows:

ėx4 = αrv[1 − 2 sin2(αt)] = αrv − 2αez4

ėy4 = αrv cos(αt) (37)

ėz4 = 2αrv sin(αt) cos(αt) = 2αex4

Note that if S4 = 0, the system of Equation (37) is obtained.
The proposed path planning approach requires the design of a suitable control law

that guarantees Sj = Sp = S4 = 0, j ∈ {1, 3, 5, 7}, p ∈ {2, 6}. Section 3 presents the design
of a vector controller that allows for achieving this goal.
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3. Super Twisting Vector Control

In this section, a super twisting vector sliding mode control (STVSMC) that guarantees
the movement on the sliding surfaces defined in (12), (16), and (29) is proposed.

Notice that the seven nonlinear surfaces of interest Sj, Sp, S4, j ∈ {1, 3, 5, 7}, and
p ∈ {2, 6} can be represented in the general form (38), where subscripts are not
needed anymore:

S = Sfe + f(e, t) (38)

where e is defined as in (10). The linear terms are included in Sfe (Sf ∈ R3×6), and
f(e, t) ∈ R3 encompasses the nonlinear ones.

For example, the surface S4 defined in (29) admits the representation (38) with
the following:

Sf =

 0 0 2α 1 0 0
0 0 0 0 1 0

−2α 0 0 0 0 1


f(e, t) =

 −αrv
−αrv cos(αt)

0

 (39)

e = [ex4, ey4, ez4, ėx4, ėy4, ėz4]
⊺

Taking the time derivative of (38) and substituting the error dynamics (11) yields
the following:

Ṡ = SfAe + SfBu + SfBξ +
d
dt

f(e, t) + SfAxr (40)

By defining the variables a(e, t) := SfAe+ d
dtf(e, t) +SfAxr and b := SfB, Equation (40)

can be rewritten as follows:

Ṡ = a(e, t) + b(u + ξ) (41)

Note that, for all surfaces, one has that b = I3×3.
The controller u is defined as follows:

u = −a(e, t) + v (42)

Following [22], the vector form of the super twisting control is used, i.e.,

v = −k1
S

∥S∥1/2 − k2S + Z

Ż = −k3
S

∥S∥ − k4S
(43)

where k1, k2, k3, and k4 ∈ R+ are design constants. Substituting (42), (43) into (41), one
obtains the following:

Ṡ = −k1
S

∥S∥1/2 − k2S + Z + ξ

Ż = −k3
S

∥S∥ − k4S
(44)

In [22], it was demonstrated that, for system (44), there exist a range of values for the
gains k1, k2, k3, and k4, such that the variables S and Ṡ are forced to zero in finite time
and remain zero for all subsequent time when the term that encompasses unmodeled
dynamics and disturbances ξ is bounded by a linear function of the norm of the variable S,
i.e., ∥ξ∥ < δ1∥S∥, where δ1 > 0 is a known scalar bound.
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To relax the condition on ξ, in what follows, a practical stability analysis is developed
for system (44) under the assumption that ξ is just bounded in norm, i.e., ∥ξ∥ < Lξ , for a
known constant Lξ . The proposed analysis is based on the guidelines of the descriptor
method (see [37]) to reduce the conservatism of the stability conditions stated in terms of
matrix inequalities.

To develop the stability analysis, the following vectors are defined:

χ :=
[

S⊺

∥S∥1/2
S⊺

∥S∥ S⊺ Z⊺
]⊺

, (45)

ξ̄ :=
[

ξ⊺
ξ⊺

∥S∥1/2
ξ⊺

∥S∥
ξ⊺SS⊺

∥S∥5/2
ξ⊺SS⊺

∥S∥3

]⊺
(46)

In terms of the variables χ and ξ̄, system (44) can be expressed as follows:

χ̇ = A1χ +
1

∥S∥1/2 A2χ + A3
1

∥S∥χ

+A4
SS⊺

∥S∥5/2 χ + A5
SS⊺

∥S∥3 χ + BSξ̄ (47)

where

A1 =


− k2

2 I3×3 − k1
2 I3×3 03×3 03×3

03×3 03×3 03×3 03×3
−k1 I3×3 03×3 −k2 I3×3 I3×3

03×3 −k3 I3×3 −k4 I3×3 03×3


(48)

A2 =

[
03×9 I3×3
09×9 09×3

]
(49)

A3 =

 03×9 03×3
03×9 I3×3
06×9 06×3

 (50)

A4 =

[
03×9 − 1

2 I3×3
09×9 09×3

]
(51)

A5 =

 03×9 03×3
03×9 −I3×3
06×9 06×3

 (52)

BS =


03×3 I3×3 03×3 − 1

2 I3×3 03×3
03×3 03×3 I3×3 03×3 −I3×3
I3×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3

 (53)

and ξ̄ is such that

(BSξ̄)⊺Kξ̄(BSξ̄) ≤ 1, ∀ t ≥ 0 (54)

the matrix Kξ̄ ∈ R12×12 is strictly positive definite, i.e., Kξ̄ > 0.

Remark 1. Note that a necessary condition for inequality (54) to be satisfied is ∥ξ∥ < Lξ .

Lemma 1 presented below is useful for the stability proof of Proposition 1 [38,39].

Lemma 1. Consider a system of the following form:

ẋ(t) = f(x(t)) + ξ, x(0) = x0
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where x(t) ∈ Rn is the state, x0 is the initial condition, and ξ denotes external perturbations such
that ∥ξ∥ < Lξ .

If there exists a Lyapunov function V(x) that satisfies the following:

α1∥x(t)∥2 ≤ V(x(t)) ≤ α2∥x(t)∥2 ∀t ≥ 0 (55)

and

d
dt

V(x(t)) + γV(x(t)) ≤ β, ∀t ≥ 0 (56)

where α1, α2, γ, and β are positive constants, then, for any initial condition x0, the following
practical exponential estimate of the response holds:

∥x(t)∥2 ≤ e−γt
(

α2

α1
∥x0∥2 − β

α1γ

)
+

β

α1γ
(57)

Furthermore, if the initial condition is such that ∥x0∥2 ≤ β
γα2

, one has that

∥x(t)∥2 ≤ β

γα1
, ∀t ≥ 0

For an initial condition that satisfies ∥x0∥2 > β
γα2

,

∥x(t)∥2 ≤ µ, ∀t ≥ T(µ, x0)

where µ ≥ β
γα1

and T(µ, x0) satisfies the following:

T(µ, x0) ≥
1
γ

ln
(

α2∥x0∥2γ − β

µγα1 − β

)
Proof. Multiplying (56) by eγt yields the following:

d
dt
(eγtV(x)) ≤ βeγt (58)

Integrating the above expression from 0 to t yields the following:

V(x) ≤ β

γ
(1 − e−γt) + e−γtV(x0) (59)

From (55), one has that V(x0) ≤ α2∥x0∥2, which yields the following:

V(x) ≤ β

γ
(1 − e−γt) + α2e−γt∥x0∥2 (60)

Then,

∥x(t)∥2 ≤ β

γα1
+ e−γt

(
α2

α1
∥x0∥2 − β

γα1

)
(61)

If the initial condition is such that ∥x0∥2 ≤ β
γα2

, one has that

∥x(t)∥2 ≤ β

γα1
, ∀t ≥ 0
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For an initial condition that satisfies ∥x0∥2 > β
γα2

, it yields the following:

∥x(t)∥2 ≤ µ, ∀t ≥ T(µ, x0)

where µ ≥ β
γα1

and T(µ, x0) is obtained as follows. From (61), one has that

∥x(t)∥2 ≤ β

γα1
+ e−γt

(
α2

α1
∥x0∥2 − β

γα1

)
≤ µ

then,

e−γt
(

α2

α1
∥x0∥2 − β

γα1

)
≤ µ − β

γα1

from the above inequality, one can see that T(µ, x0) satisfies the following:

T(µ, x0) ≥
1
γ

ln
(

α2∥x0∥2γ − β

µγα1 − β

)
Observe that for ∥x0∥2 > β

γα2
and µ ≥ β

γα1
, one has that α2∥x0∥2γ − β > 0, µγα1 − β > 0,

and α2∥x0∥2γ − β > µγα1 − β; then, T(µ, x0) exists.

Proposition 1. Consider system (47), which corresponds to the dynamics of the sliding surface
given in (41) in a closed loop with the controller defined in (42). This controller guarantees the
practical stability of the surfaces if matrices

Ψ1 =


γP1 + P2A1 + A1

⊺P2
⊺ P1 − P2 + A1

⊺P3
⊺ P2 + A1

⊺P4
⊺

∗ −P3 − P3
⊺ P3 − P4

⊺

∗ ∗ P4 + P4
⊺ − βKξ

 (62)

Ψ2 =

 P2A2 + A2
⊺P2

⊺ A2
⊺P3

⊺ A2
⊺P4

⊺

∗ 0 0
∗ ∗ 0


(63)

Ψ3 =

 P2A3 + A3
⊺P2

⊺ A3
⊺P3

⊺ A3
⊺P4

⊺

∗ 0 0
∗ ∗ 0


(64)

Ψ4 =

 P2A4 + A4
⊺P2

⊺ A4
⊺P3

⊺ A4
⊺P4

⊺

∗ 0 0
∗ ∗ 0


(65)

Ψ5 =


P2A5 + A5

⊺P2
⊺ A5

⊺P3
⊺ A5

⊺P4
⊺

∗ 0 0
∗ ∗ 0


(66)

are such that Ψ1 ≤ 0, Ψ2 ≤ 0, Ψ3 ≤ 0, Ψ4 ≤ 0, and Ψ5 ≤ 0 for any k1, k2, k3, and k4, γ > 0,
β > 0, P1 > 0 (symmetrically positive definite matrix). P2, P3, and P4 are slack matrices of
appropriate dimension. Symmetric elements of symmetric matrices are denoted by ∗.
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Proof. Consider the Lyapunov function:

V(χ) = χ⊺P1χ (67)

where P1 > 0. By taking the time derivative of the Lyapunov function one obtains
the following:

V̇(χ) = χ⊺P1χ̇ + χ̇⊺P1χ (68)

To guarantee the practical stability of the system dynamics defined in (47), it is required
that the condition stated in (56) in Lemma 1 be fulfilled. Following the procedure described
below, stability conditions in terms of matrix inequalities are obtained.

Using the descriptor method proposed in [37], the following null term is considered:

0 =
[
χ⊺P2 + χ̇⊺P3 + (BSξ̄)⊺P4

][
− χ̇ + A1χ +

1
∥S∥1/2 A2χ + A3

1
∥S∥χ

+A4
SS⊺

∥S∥5/2 χ + A5
SS⊺

∥S∥3 χ + BSξ̄

]
(69)

where P2, P3, and P4 are slack variables of appropriate dimension.
From Equation (54), one can see the following:

−β((BSξ̄)⊺KξBSξ̄ − 1) ≥ 0 (70)

for any β > 0.
From Equations (67), (68), and (70), one can see the following:

V̇(χ) + γV(χ)− β ≤ χ⊺P1χ̇ + χ̇⊺P1χ

+γχ⊺P1χ − β(BSξ̄)⊺KξBSξ̄ (71)

By adding the null term (69) and its transpose to the right-hand side of (71), one
obtains the following in matrix form:

V̇(χ) + γV(χ)− β ≤ ϱ⊺
(

Ψ1 +
1

∥S∥1/2 Ψ2

+
1

∥S∥Ψ3 + Ψ4
SS⊺

∥S∥5/2 + Ψ5
SS⊺

∥S∥3

)
ϱ (72)

where ϱ⊺ =
[
χ⊺ χ̇⊺ (BSξ̄)⊺

]
, and Ψ1, Ψ2, Ψ3, Ψ4, and Ψ5 are defined in (62)–(66).

From the above expression, it is easy to see that condition (56) is satisfied if the
conditions stated in Proposition 1 are fulfilled.

4. Switching Control

The path planning approach presented in Section 2.2 to develop the proposed aerobat-
ics requires the implementation of STVSMC for each path segment.

By assuming that the vehicle starts at the ground level, two additional straight-line
paths must be considered to raise the vehicle a certain distance from the ground (defined
by the surface S0), and then, after developing the proposed maneuvers, return it to the
ground (surface S8).

As explained in Section 2, the circuit includes three acrobatic maneuvers (looping,
eight on a sphere, and descending spiral) and four straight-line paths. Additionally, two
straight-line paths were considered for takeoff and landing. Therefore, nine STVSMCs
must be synthesized. Each controller is activated at a different time instant.

Figure 8 shows the reference points corresponding to each path segment, and Table 1
summarizes the data. The red points represent the start and end points of each path segment,
and the green ones represent the center of the circular trajectory generated through the
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Hopf bifurcation. As explained before, the reference points to generate the straight-line
paths are located at the end of the segment, the ones corresponding to the looping and the
spiral are located at the center of the respective circular path, and the reference point for
the eight on a sphere is given by the point where the two turns intersect.

XY 

Z

(x   , y   , z   )rb rb rb

(x   , y   , z   )r1 r1 r1

(x   , y   , z   )r2 r2 r2
(x      ,y       , z       )r3,4 r3,4 r3,4

(x   , y   , z   )r5 r5 r5

(x   , y   , z   )ra ra ra

(x   , y   , z   )r6 r6 r6

Figure 8. Path planning scheme.

Table 1. Aerobatics summary.

Aerobatic Maneuver Surface Initial
Time

Final
Time Controller Activation

Function

Straight-line path S0 t0 t1 u0 g0(t)
Straight-line path S1 t1 t2 u1 g1(t)
Looping S2 t2 t3 u2 g2(t)
Straight-line path S3 t3 t4 u3 g3(t)
Eight on a sphere S4 t4 t5 u4 g4(t)
Straight-line path S5 t5 t6 u5 g5(t)
Spiral S6 t6 t7 u6 g6(t)
Straight-line path S7 t7 t8 u7 g7(t)
Straight-line path S8 t8 t9 u8 g8(t)

The complete trajectory starts and ends at the same point, identified with the coordi-
nates (xra, yra, zra). The controller u0 allows for generating a straight-line path parallel to
the Z axis to connect the initial point to the reference point (xrb, yrb, zrb). Next, through
the controller u1, a new straight-line path parallel to the X axis is generated to reach the
position (xr1, yr1, zr1). Here, the first acrobatic maneuver (looping) takes place. To perform
the looping, the controller u2 allows the generation of a circular path defined by the limit
cycle related to the Hopf bifurcation whose center is fixed at (xr2, yr2, zr2). Note that since
the radius of the circular trajectory is

√
µ2, then (xr2, yr2, zr2) = (xr1, yr1, zr1 +

√
µ2).

Once the loop ends, the controller u3 is used to generate a straight-line path to reach
the position (xr3, yr3, zr3), where the second acrobatic maneuver (eight on a sphere) takes
place by applying the controller u4. Note that the reference position related to the eight on
a sphere (xr4, yr4, zr4) coincides with (xr3, yr3, zr3), denoted in Figure 8 as (xr3,4, yr3,4, zr3,4).

The controller u5 allows for generating the straight-line path required to reach the
position (xr5, yr5, zr5). At this point, through the controller u6, the third acrobatic maneuver
(spiral) takes place. As in the case of the looping, the trajectory is generated through a limit
cycle, but in this case, the center of the circular path is located at (xr6, yr6, zr6). The radius
of the circular path is

√
µ6, then (xr6, yr6, zr6) = (xr5 −

√
µ6, yr5, zr5).

After performing the spiral, the controller u7 generates a straight-line path to reach
the point (xrb, yrb, zrb). Finally, a straight-line path is generated through the controller u8 to
descend and reach again the point (xra, yra, zra).

The switching law ū that allows for generating the whole trajectory is proposed
as follows:

ū =
8

∑
m=0

(1 − gm(t))um (73)
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where um, m ∈ {0, ..., 8} are the controllers of the form (42); u0, u1, u3, u5, u7, and u8
allow for executing straight-line paths through the SMS defined in (12); u2 and u6 are
the controllers designed to develop the looping and spiral, respectively, that use the SMS
defined in (16); u4 is the controller that generates the eight on a sphere through the SMS (29);
and gm is the activation function defined by the following:

gm(t) =
{

e−n(tm+1−t) if tm ≤ t < tm+1
1 other case

(74)

where n ∈ R+. Figure 9 shows the behavior of the activation function (74) for different
values of n. As it can be observed, the activation function (74) allows a smoother transition
between the different STVSMCs to generate each path segment. The transition speed is
regulated through the parameter n.

0 2 4 6 8 10

t [s]

0

0.2

0.4

0.6

0.8

1

g
m

(t
)

n = 1

n = 2

n = 3

n = 4

Figure 9. Behavior of the activation function.

Next, numerical simulations allow for illustrating the performance of the proposed
path planning approach in the development of aerobatics.

5. Numerical Simulations

This section presents numerical simulation results to illustrate the performance of the
controllers defined in (42) whose objective is driving the sliding surfaces (12), (16), and (29)
to zero.

Perturbations of the form ξi = 0.35 sin(3.5t), i = {x, y, z}, which clearly satisfy
∥ξ∥ < Lξ , are considered. The controller’s gains are given by the following:

k1 = 30 k2 = 1 k3 = 0.5 k4 = 0.001 (75)

These controller gains ensure that the stability conditions stated in Proposition 1 are satisfied.
For the straight-line path segments whose SMSs are defined in (12), the parame-

ters cj = [cxj, cyj, czj], c′j = [c′xj, c′yj, c′zj] (j ∈ {1, 3, 5, 7}), and kl = [kl1, kl2, kl3] are chosen
as follows:

c′j = [2, 2, 2] cj = [2, 2, 2] kl = [1, 1, 1] (76)

For the looping whose path planning uses the Hopf-bifurcation-based surface defined
in (16), a unitary radius and a negative rotation direction with respect to the inertial
reference frame shown in Figure 8 are assumed. The parameters of the surface are chosen
as follows:

µ2 = 1 γ2 = −3 c′y2 = 2 cy2 = 2 kly2 = 1 (77)
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For the descending spiral, it is considered a unitary radius and a negative rotation direction
with respect to the inertial reference frame shown in Figure 8. Then, the constants are
proposed as follows:

µ6 = 1 γ6 = 2 c′z6 = 0.2 cz6 = 0.2 klz6 = 1 (78)

For the eight on a sphere, which uses Viviani’s window-based surface defined in (29),
it is considered a unitary radius of the sphere; then, the parameters are chosen
as follows:

α = −3 rv = 1 (79)

In the simulation, the whole trajectory is completed in 19.85 s. Figure 10 shows the
evolution of the position of the punctual mass (representing an aerial vehicle) defined by
the Cartesian coordinates x, y, and z. Table 2 shows the simulation data.
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Figure 10. Position.

Table 2. Path planning simulation data.

Path Initial Final Initial Final
Segment Time (s) Time (s) Position Position

1. Straight line 0 2 (0, 0, 0) (0, 0, 5)
2. Straight line 2 2.5 (0, 0, 5) (0.8, 0, 5)
3. Looping 2.5 4.4 (0.8, 0, 5) (0.2, 0, 5.3)
4. Straight line 4.4 5.4 (0.2, 0, 5.3) (3.9, 0, 5)
5. Eight on a sphere 5.4 7.5 (3.9, 0, 5) (3.8, 0.1, 5)
6. Straight line 7.5 8.6 (3.8, 0.1, 5) (4, −5.8, 5)
7. Spiral 8.6 16.6 (4, −5.8, 5) (2, −5.9, 2.2)
8. Straight line 16.6 18 (2, −5.9, 2.2) (0, 0, 5)
9. Straight line 18 19.85 (0, 0, 5) (0, 0, 0)

In Figure 10, the nine path segments of the proposed circuit can be identified as follows.

1. Straight line parallel to the Z axis (take off). During the first 2 s, the violet and yellow
curves are in zero.

2. Straight line parallel to the X axis. From 2 s to 2.5 s, the curves in violet and red take
the zero value.

3. Looping executed on the XZ plane. The violet curve is at zero from 2.5 s to 4.4 s.
4. Straight line parallel to the X axis. From 4.4 s to 5.4 s, the violet and red curves do not

present variations.
5. Eight on a sphere executed on the 3D space. From 5.4 s to 7.5 s, the three curves

exhibit oscillations.
6. Straight line parallel to the Y axis. From 7.5 s to 8.6 s, the yellow and red curves

remain constant.
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7. Descending spiral. From 8.6 s to 16.6 s, the yellow and violet curves present the
expected oscillations, while the red one is descendent.

8. Straight-line path connecting the end point of the spiral to the initial point of the second
segment. From 16.6 s to 18 s, the violet, red, and yellow curves present variations.

9. Straight line parallel to the Z axis (landing). From 18 s to 19.85 s, the violet and yellow
curves are in zero.

Figure 11 shows the error behavior corresponding to the three axes. Remember that,
in the proposed path planning approach, the objective is not to drive the error towards
zero; the approach aims at controlling the error dynamics in such a way that the evolution
of the punctual mass’s position allows for developing the predefined aerobatics. For this
reason, the error curves have similar shapes to those corresponding to the position.
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Figure 11. Error.

Figure 12 shows the whole trajectory of the punctual mass in the plane XY. The initial
position is set at (0, 0, 0); for takeoff, a straight line along the Z axis connects the initial point
to the point (0, 0, 5). Note that a straight-line path in the X axis allows for reaching the
point (3.9, 0, 5). In this figure, one can identify the eight on a sphere. During this maneuver,
the maximum value in the Y axis is 1.07, and the minimum value is −0.92, while, in the X
axis, the movement takes place between 3.5 and 4.5. After developing the eight on a sphere,
a straight-line path is defined to reach the point (4,−5.8, 5). At this point, the figure shows
a circle representing the execution of the spiral with the center at (3,−6, 5) and a unitary
radius. Finally, a straight-line path allows for connecting the end point of the spiral to the
initial point.
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Figure 12. Position evolution (2D): XY plane.

Figure 13 shows the whole trajectory of the punctual mass in the XZ plane. For takeoff,
a straight-line path segment is defined along the Z axis; it connects the point (0, 0, 0) to
the point (0, 0, 5). Then, another straight-line path allows for reaching the point (0.8, 0, 5)
where a circle with the center at (1, 0, 5) and a unitary radius representing the looping
can be identified. A straight-line path connects the points (0.2, 0, 5.3) and (3.9, 0, 5). Here,
another circle with the center at (3.9, 0, 5.5) and a radius of 0.5 representing the eight on



Mathematics 2024, 12, 1047 22 of 25

a sphere is shown. The path descends to the point (2,−5.9, 2.2) through a wavy path
segment corresponding to the spiral. A straight-line trajectory allows for connecting the
point (2,−5.9, 2.2) with the one fixed at (0, 0, 5). Finally, a straight-line path is set to reach
the initial point (0, 0, 0). The above description can also be identified in Figures 14 and 15,
where the whole trajectory in the 3D space is shown.
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Figure 13. Position evolution (2D): XZ plane.

Animation videos of the aerobatics circuit can be found at https://youtu.be/o4ySj6
CL1Sgandhttps://youtu.be/K8EM7LjIL2c (accessed on 20 February 2024).

Figure 14. Position evolution (3D).

Figure 15. Position evolution (3D).

Figure 16 shows the behavior of the control signals. Note that the magnitude of the
controllers is increased when the difference between the current position and the reference
position is significant.

https://youtu.be/o4ySj6CL1Sg and https://youtu.be/K8EM7LjIL2c
https://youtu.be/o4ySj6CL1Sg and https://youtu.be/K8EM7LjIL2c
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Figure 16. Sliding mode control signals.

6. Conclusions

This paper proposes a novel path planning approach to develop aerobatics that takes
advantage of specific mathematical structures. The Hopf bifurcation properties are ex-
ploited to generate a stable limit cycle that allows for developing the looping and spiral.
Viviani’s curve is parameterized to generate the eight on a sphere maneuver. Straight-line
path segments are generated by using the properties of the logarithm function.

The proposed path planning approach is based on the construction of different types
of nonlinear SMSs. Following this design approach, different 3D parameterized curves can
be transformed to an SMS to develop the path planning for executing other maneuvers.

To guarantee the execution of aerobatics, the proposed approach requires the conver-
gence of the surfaces to zero. To this end, the use of STVSMC is proposed, and a stability
analysis is developed. A Lyapunov-based practical stability analysis that allows for han-
dling perturbations bounded in norm is proposed. The descriptor method is exploited
here to reduce the inherent conservatism of the obtained conditions in terms of matrix
inequalities. Once stability is guaranteed, STVSMC allows for reaching in finite time the
predefined set of paths to perform the considered aerobatics. Numerical simulations were
presented to illustrate the execution of aerobatics.

In order to apply the proposed method to execute any other predefined maneuver,
the general process can be summarized as follows:

1. Define the circuit of 3D trajectories to be executed.
2. Characterize each path segment in terms of equations defining its geometry in the 3D

space.
3. Based on these equations, define a sliding mode surface S representing the desired

behavior of the system.
4. Write each surface in the general form given in Equation (38).
5. Use Proposition 1 to determine the controller gains.
6. Use a switching control of the form (73) and (74) to connect the path segments.

The proposed path planning method requires building up all of the fixed surfaces
with their corresponding parameters, as well as the control gains, before the flight, that is,
offline. Nevertheless, it could be possible to change certain parameters online, such as the
shapes’ size, speed, direction, and initial position of the aerobatics.

The proposed path planning strategy presents the following limitations: the vehicle
orientation is not considered, the bound on the disturbance is required to be known,
and the presence of in-flight failures and objects obstructing the path of the vehicle is
not considered.

As a direction for future work, a comprehensive mathematical model of a UAV (quadro-
tor), including the position and orientation dynamics, will be considered. Then, the pro-
posed approach will be extended to control also the vehicle’s orientation using the geometric
approach. Another research line that will also be explored is collision avoidance through
the combination of the proposed path planning approach with other classical strategies,
such as the conventional potential field method.
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