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Abstract: When confronted with the imminent threat of predation, the prey instinctively employ
strategies to avoid being consumed. These anti-predator tactics involve individuals acting collectively
to intimidate predators and reduce potential harm during an attack. In the present work, we propose
a state-dependent feedback control predator-prey model that incorporates a nonmonotonic functional
response, taking into account the anti-predator behavior observed in pest-natural enemy ecosystems
within the agricultural context. The qualitative analysis of this model is presented utilizing the
principles of impulsive semi-dynamical systems. Firstly, the stability conditions of the equilibria are
derived by employing pertinent properties of planar systems. The precise domain of the impulsive
set and phase set is determined by considering the phase portrait of the system. Secondly, a Poincaré
map is constructed by utilizing the sequence of impulsive points within the phase set. The stability of
the order-1 periodic solution at the boundary is subsequently analyzed by an analog of the Poincaré
criterion. Additionally, this article presents various threshold conditions that determine both the
existence and stability of an order-1 periodic solution. Furthermore, it investigates the existence of
order-k (k ≥ 2) periodic solutions. Finally, the article explores the complex dynamics of the model,
encompassing multiple bifurcation phenomena and chaos, through computational simulations.

Keywords: impulsive semi-dynamics system; bifurcation analysis; anti-predator behavior;
order-k periodic solution; chaos

MSC: 34A34; 34A37

1. Introduction

Pest control is a serious challenge facing agricultural production today, and it is also
a key factor affecting agricultural production efficiency, increasing income, ensuring the
quality of agricultural products, and the sustainable development of agriculture. A more
effective control strategy is to use the biological control method of releasing natural enemies.
Consequently, studying predator-prey systems [1] is essential to mitigate or manage the
types and quantities of pests that pose a threat to human development, thereby reducing
economic losses. However, in reality, pest outbreaks result in countless crop losses each
year. These outbreaks not only cause significant harm to agricultural production but also
facilitate the spread of diseases. Consequently, pest control has become a pressing concern
for agricultural and disease control authorities.

Integrated pest management (IPM) is currently recognized as one of the most effective
strategies for pest control [2–5]. It capitalizes on the predatory behavior of natural enemies
to regulate pest populations. In specific agricultural ecosystems, the natural enemy pop-
ulations often fall short in comparison to pest numbers. Consequently, pest populations
on farmlands tend to exhibit a natural growth trend due to the abundance of habitat and
food resources. Considering the economic significance of farmland, it becomes necessary
to artificially introduce natural enemies. Recognizing that complete eradication of pests is
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typically unattainable. Instead, efforts are focused on limiting pest populations below the
economic threshold, the point at which they cause significant economic harm [6–9].

Artificial release of natural enemies is one of the most effective pest control meth-
ods, but it also introduces complexities to the ecosystem. As pests are preyed upon by
natural enemies, they exhibit anti-predator behavior in response to these threats [10–13].
However, natural enemies are not always capable of completely suppressing pest pop-
ulations. The outcome depends on the density ratio of the two and the effectiveness of
anti-predator behavior.

One prevalent form of anti-predator behavior involves role reversals between predator
and prey, where juvenile predators may be attacked by adult prey, thus reducing the
survival rate of the predators. In this process, prey also incur losses as attacking juvenile
predators increases their own risk of predation. For instance, when left alone, Crossaster
papposus, which feeds on sea urchins, is attacked and consumed by multiple sea urchins.
The specific process of anti-predator behavior is as follows: a leading sea urchin attempts
to approach Crossaster papposus and attaches itself to one of its tentacles. However, this
process carries risks, as the leading sea urchin may become food for Crossaster papposus if
it fails. Once the first sea urchin starts chewing on the tentacle, other sea urchins also attach
themselves to the remaining tentacles, gradually consuming Crossaster papposus bit by bit.
When prey invests excessively in anti-predator behavior, the costs for both predator and
prey become significant.

During the long-term evolutionary process, the emergence of anti-predator behavior
can exacerbate the complexity of predation relationships, which poses challenges to the
study of pest-natural enemy ecosystems in farmland [14]. To capture the complexity
of these systems, a two-dimensional differential equation approach, known as the ODE
model, is employed to depict the trend of changes in the number of two populations. This
mathematical modeling technique for pest management decisions [15,16] builds upon the
classic predator-prey model, which utilizes differential equations to represent the average
growth rates of natural enemies and pests.

Furthermore, it is found that the relative growth rate described by linear function is not
adaptive; considerable attention and research have been devoted to predator-prey models
that incorporate various functional response functions [17–22]. Scholars have recognized
the significance of considering the influence of anti-predator behavior. In this regard, Ives
and Dobson [13] proposed the following predator-prey model, aiming to account for the
impact of anti-predator behavior

dx(t)
dt

= λx(t)
(

1 − x(t)
K

)
− v − e−εvqx(t)y(t)

1 + ax(t)
,

dy(t)
dt

=
ce−εvqx(t)y(t)

1 + ax(t)
− my(t).

(1)

Here, the variables x(t) and y(t) represent the density of the prey and predator popula-
tions at time t, respectively. The parameter λ represents the intrinsic growth rate of the
pest, while m represents the death rate of the predator. The carrying capacity of the pest
population is denoted by K. Additionally, the nonnegative constant v signifies the extent of
the pest’s investment in anti-predation behavior, with higher values of v resulting in lower
predation rates. The efficiency of the anti-predator behavior is represented by ε; c repre-
sents the conversion rate of prey to predators; qx

/
(1 + ax) corresponds to the Holling II

functional response.
In pursuit of optimal economic development and ecological preservation, impulsive

control techniques are employed to reduce pest populations below a specific economic
threshold. State-dependent feedback control strategies have recently emerged as a valuable
approach in integrated pest management. In many practical scenarios, the decision to apply
impulsive control is often contingent upon the state of the pest population, indicating that
control tactics are implemented only when the model reaches a certain state. When pest
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populations reach the economic threshold, measures are taken to impulsively control their
numbers to a certain extent. Subsequently, pest populations begin to grow again until
they reach the economic threshold once more. This cyclical process of applying impulsive
control is repeated to consistently keep pest populations below the economic threshold.
Consequently, both economic threshold and state feedback control are considered to offer a
rational framework for describing the dynamics of predation systems.

To gain a better understanding of the effects of anti-predator behavior on the dynamics
of two populations [23–25], we propose an impulsive semi-dynamical system [26–28]

dx(t)
dt

= λx(t)
(

1 − x(t)
K

)
− v − e−εvqx(t)y(t)

1 + ax(t)
,

dy(t)
dt

=
ce−εvqx(t)y(t)

1 + ax(t)
− my(t),

 x < ET,

x(t+) = (1 − p)x(t),

y(t+) = y(t) + τ,

 x = ET.

(2)

Here, ET represents the economic threshold. The parameter p denotes the killing rate of
pests when the pesticide is applied, with 0 < p < 1. Additionally, τ represents the number
of released predators. In the event of immediate application of control tactics, x(t) and
y(t) instantly becomes (1 − p)x(t) and y(t) + τ, respectively. In addition, to maintain the
inhibitory effect of natural enemies on pests, it is necessary to retain the number of natural
enemies as much as possible. Therefore, insecticides with no or minimal impact on natural
enemies were selected.

Based on model (2), the IPM strategy or intermittent control strategy is as follows:
When pest density increases to the threshold ET (i.e., x = ET), chemical and biological
control measures are implemented to target both populations. On the other hand, when the
pest density is updated to a value less than the prescribed threshold ET (i.e., x < ET), no
control policies are implemented, and model (2) reverts to the free model (1). The purpose
of this article is to analyze the factors affecting pest outbreaks by studying the population
dynamics of model (2) and to use reasonable pulse control to suppress the number of pests
below the economic threshold ET. Its innovation is reflected in the impact of anti-predator
behavior on both pests and natural enemies, as well as the combination of anti-predator
behavior, functional response, and pulse control.

The remaining sections of the paper are organized as follows: In Section 2, the main
properties of an ODE model (1) will be introduced. Section 3 focuses on the exact domain
of the impulsive set and phase set of model (2). Additionally, we provide the definition
of the Poincaré map. Sections 4 and 5 are dedicated to the investigation of the boundary
and internal order-1 periodic solutions, as well as the order-k periodic solution (k ≥ 2)
of the proposed model. Furthermore, we explore the complex dynamics of the model,
including multiple bifurcation phenomena and chaos, through computational simulations.
Section 6 conclude the paper by discussing our findings and their implications for pest
control strategies.

2. Basic Properties of an ODE Model (1)

To investigate the dynamics of the state-dependent feedback control model (2), it is
essential to examine the basic properties of model (1). The following are the two isoclines
of model (1)

L1 : y =
(1 + ax)(−λx2 + Kλx − Kv)

Kbqx
, L2 :

cbqx
1 + ax

− m = 0,

here we define b = e−εv. When y = 0, the natural enemies become extinct, and x satisfies
the equation −λx2 + λKx − Kv = 0. Considering the condition λK − 4v > 0, it indicates
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that the prey investment v satisfies v < λK
4 ; we obtain two boundary equilibriums: E1(x1, 0)

and E2(x2, 0). The values of x1 and x2 are

x1 =
λK −

√
λ2K2 − 4λKv

2λ
, x2 =

λK +
√

λ2K2 − 4λKv
2λ

,

it is evident that 0 < x1 < x2 < K, and x1 + x2 = K.
When y > 0, model (1) admits an internal equilibrium E3(x3, y3) with

x3 =
m

cbq − am
, y3 =

(1 + ax3)(−λx2
3 + Kλx3 − Kv)

Kbqx3
,

in order to ensure that the internal equilibrium E3(x3, y3) is positive, we need the inequality
−λx2

3 + Kλx3 − Kv > 0 to hold. The necessary and sufficient condition for this inequality
to have a solution is x1 < x3 < x2 and v < λK

4 . Thus, when x3 /∈ (x1, x2) or when the invest-
ment v > λK

4 , the system (1) does not possess an internal equilibrium. Additionally, x3 > 0
is equivalent to the condition cbq > am. To simplify calculations, we define cbq − am = h.
Therefore, the internal equilibrium E3(x3, y3) can also be expressed as follows:

x3 =
m
h

, y3 =
c(−λm2 + Kλmh − Kvh2)

Kmh2 .

In particular, when v = 0, model (1) exhibits a zero equilibrium (0, 0) and a boundary
equilibrium (K, 0). This demonstrates that without human interference, as time approaches
infinity (t → +∞), the predator population gradually tends towards extinction. Unless
stated otherwise, in order to guarantee the existence of a positive internal equilibrium, we
assume that v < λK

4 .
To perform a qualitative analysis of the dynamics of model (2) under varying values

of v, we can define it as a hybrid dynamic system that combines discrete events and
continuous system interactions. Specifically, when v = 0, the model corresponds to a
classical Lotka-Volterra predator-prey model [29] with a Holling II functional response.
This variant exhibits rich dynamics depending on the relative positions of the equilibria
and the choice of economic threshold. These dynamics may include multiple globally stable
equilibria, limit cycles, and transcritical bifurcations, among others.

On the other hand, when v > 0, the predation rate decreases due to the prey’s
investment in anti-predator behavior. This investment indirectly affects the prey’s per
capita growth rate, either positively or negatively. Based on these considerations, this paper
aims to theoretically and numerically examine the dynamics of model (2).

If v = 0, we have reformulated model (1) as
dx(t)

dt
= λx(t)

(
1 − x(t)

K

)
− qx(t)y(t)

1 + ax(t)
,

dy(t)
dt

=
cqx(t)y(t)
1 + ax(t)

− my(t),
(3)

The properties of model (3) are presented in [30]. In this paper, we primarily focus on analyz-
ing the dynamics of model (1) when v > 0. By examining the relationship between stability
and eigenvalues at equilibriums in a planar system, we obtain the following theorem.

Theorem 1. (i) If x3 > x2, model (1) admits no positive internal equilibrium. In this case, E1(x1, 0)
is unstable, and E2(x2, 0) is stable; (ii) If x1 < x3 < x2 and β < 0 and ∆ < 0, then E3(x3, y3)
is a stable focus; (iii) If x1 < x3 < x2 and β < 0, ∆ > 0, then E3(x3, y3) is a stable node. Here
we denote

β = λ − 2λm
Kh

− −λm2 + Kλmh − Kvh2

cbqKm
,
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γ =
−λm2 + Kλmh − Kvh2

cbqK
,

∆ = β2 − 4γ.

Proof. Consider equations dx(t)
dt and dy(t)

dt in the model (1) as P and Q, and take the deriva-
tive of x and y to obtain the Jacobian matrix, which is defined as

J =

 ∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

 =

 λ − 2λ
K x − bqy

(1+ax)2 − bqx
1+ax

cbqy
(1+ax)2

cbqx
1+ax − m

.

Substituting E1 into the Jacobian matrix obtains

J
∣∣E1 =

 λ − 2λ
K x1 − bqx1

1+ax1

0 cbqx1
1+ax1

− m

,

it is easy to get that λ − 2λ
K x1 =

√
λ2K2−4λKv

K > 0. If cbqx1
1+ax1

− m > 0, then trJ
∣∣E1 > 0 and

det J
∣∣E1 > 0, which indicates that E1 is an unstable focus or node. If cbqx1

1+ax1
− m < 0, then

det J
∣∣E1 < 0, which indicates that E1 is a saddle. Then substituting E2 into the Jacobian

matrix gives

J
∣∣E2 =

 λ − 2λ
K x2 − bqx2

1+ax2

0 cbqx2
1+ax2

− m

,

It is evident that λ − 2λ
K x2 = −

√
λ2K2−4λKv

K < 0. If cbqx2
1+ax2

− m > 0, then det J
∣∣E2 < 0,

indicating that E2 is a saddle. On the other hand, if cbqx2
1+ax2

− m < 0, then trJ
∣∣E2 < 0 and

det J
∣∣E2 > 0, implying that E2 is stable, as shown in Figure 1A. Analogously, the internal

equilibrium E3 is substituted into the Jacobian matrix as follows

J
∣∣E3 =

 λ − 2λm
Kh − −λm2+Kλmh−Kvh2

cbqKm −m
c

c(−λm2+Kλmh−Kvh2)
cbqKm 0

,

Here, we have γ > 0. Therefore, when x1 < x3 < x2 and β < 0 and ∆ < 0, E3(x3, y3) is a
stable focus, as illustrated in Figure 2. On the other hand, when x1 < x3 < x2 and β < 0
and ∆ > 0, E3(x3, y3) is a stable node, as shown in Figure 3.

0 10 20 30 40 50 60
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0

5

10

15

20

25

y

(A)

E
1 E

2

Figure 1. Cont.
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Figure 1. The stable boundary equilibrium of model (1). Parameters are λ = 2, K = 50, q = 0.2, a = 0.01,
c = 0.5, ε = 0.8. (A): v = 0.65, m = 2.12; (B): v = 5, m = 0.1.
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Figure 2. The stable focus of model (1) with same parameters as in Figure 1 except v = 0.24, m = 1.
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Figure 3. The stable node of model (1) with same parameters as in Figure 1 except v = 0.5, m = 2.

In addition, for the case of x3 < x1, as shown in Figure 1B, due to the small value of x1,
the trajectory of the system is not completely in the first quadrant, which is clearly not in
line with the actual biological significance, so it will not be discussed.
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3. Establishment of Poincaré Map

Define R2
+ = {(x, y)|x ≥ 0, y ≥ 0}. Considering its biological significance, the

subsequent research will focus on the values of x and y within this set. Moreover, given
the condition ET < K, we define an open set Λ = {(x, y)|0 < x < ET, y > 0} ⊂ R2

+.
Now, based on the third and fourth equations of model (2), we can proceed with the
following definitions

L3 : x = (1 − p)ET, L4 : x = ET.

By combining L1 and L3, we can find their intersection point, denoted as Q1 = ((1 −
p)ET, yQ1), here

yQ1 =
(1 + a(1 − p)ET)

(
−λ[(1 − p)ET]2 + Kλ(1 − p)ET − Kv

)
Kbq(1 − p)ET

.

Analogously, we can obtain the intersection point of L1 and L4, denoted as Q2 = (ET, yQ2), here

yQ2 =
(1 + aET)(−λET2 + KλET − Kv)

KbqET
.

The impulsive set
M = {(x, y) ∈ R2

+|x = ET, 0 ≤ y ≤ yQ2},

M is a closed subset of R2
+; we can define I : (x, y) ∈ M → (x+, y+) = ((1 − p)ET, y + τ)

based on model (2). Consequently, the phase set can be defined as follows

N = I(M) = {(x+, y+) ∈ Λ|x+ = (1 − p)ET, y+ ∈ Y0},

where Y0 = [τ, yQ2 + τ]; an impulsive point of (x, y) is denoted as (x+, y+). We assume
that the initial value (x+0 , y+0 ) belongs to N in this paper.

Next, we discuss the precise domain of the pulse and phase sets; this can be achieved
by excluding the points in the impulsive set M that do not experience impulsive effects.
Since the impulsive set M represents the largest interval in the ordinate, we can obtain the
exact domain of the impulsive set by removing those points.

In Case (i) of Theorem 1, model (2) possesses a unique stable boundary equilibrium,
denoted as E2(x2, 0), as illustrated in Figure 4A. If ET < x2 < K, a trajectory Γ2 within
the system touches the line x = (1 − p)ET, and the point of tangency is denoted as
Q1((1 − p)ET, yQ1), which represents the intersection of L1 and L3. It is evident that
trajectory Γ2 will also intersect the line x = ET at a certain point, denoted as T(ET, yT). It
is worth noting that 0 < yT < yQ2 is satisfied. Based on these considerations, the impulsive
set is

M1 =
{
(x, y) ∈ R2

+|x = ET, 0 ≤ y ≤ yT

}
,

and the phase set is

N1 =
{
(x+, y+) ∈ R2

+

∣∣x+ = (1 − p)ET, y+ ∈ Y1

}
,

where Y1 = [τ, yT + τ]. After such a definition, any solutions of model (2) that originate
from the interior of trajectory Γ2 will either not reach the impulsive set or intersect with
it, leading to a mapping to the phase set N after a single impulsive effect. If x2 < ET, the
solution starting from the phase set may directly approach the stable equilibrium E2(x2, 0)
without reaching the impulsive set. In this case, the exact domain of the impulsive set and
phase set cannot be determined.
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Figure 4. Impulsive set and phase set. (A) Case (i) of Theorem 1, i.e., there is no interior equilibrium
of system (1). All parameters are identical to those in Figure 1; (B) Case (ii) of Theorem 1, i.e., there is
a stable focus of system (1). All parameters are identical to those in Figure 2.

In Case (ii) of Theorem 1, model (2) possesses an unique stable focus, we consider two cases

C1 : x3 < ET; C2 : x3 > ET.

Case C1, as shown in Figure 4B, the trajectory Γ1 is tangent to L4, as observed in the phase
portrait. It can be seen that the point of tangency Q2(ET, yQ2) represents the intersection of
L1 and L4. The intersection of trajectory Γ1 and L1 on the left side is denoted as E4(x4, y4).
If (1 − p)ET < x4, employing the same analysis method as in case (i), we can define M1
and N1. On the other hand, if (1 − p)ET > x4, the trajectory Γ1 must intersect the line
x = (1 − p)ET at two points, marked as P1 = ((1 − p)ET, yP1) and P2 = ((1 − p)ET, yP2)
respectively. When yP2 < y+ < yP1 , any solutions of the system originating from (x+, y+) ∈
N will not reach the impulsive set. Therefore, in this scenario, the impulsive set can be
defined as M and

N2 =
{
(x+, y+) ∈ R2

+

∣∣x+ = (1 − p)ET, y+ ∈ Y2

}
,

where Y2 = {[0, yP2 ] ∪ [yP1 ,+∞)} ∩ Y0. For Case C2, similar to Case (i), we can derive the
impulsive set M1 and the phase set N1.

In Case (iii) of Theorem 1, it is also discussed in two cases, C1 and C2. In case C1, if
(1 − p)ET < x3 < ET, it is impossible to determine whether the solution of the system will
reach the impulsive set. Therefore, the impulsive set and phase set cannot be defined in
this case. In case C2, if (1 − p)ET < ET < x3, then we derive the impulsive set M1 and the
phase set N1.

Based on the above analysis, we have determined the exact domains of the impulsive
set and phase set for model (2) in all cases. The results are summarized in Table 1. In the
table, the cases of the same pulse set and phase set are defined as Ai(i = 1, 2, 3). Note that
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since the pulse set of case A3 cannot be determined, this case will not be discussed in the
following sections.

Table 1. Impulsive and phase sets of model (2).

Case Case ET (1 − p)ET Ms Ns

A1 (i) ET < x2 < K (1 − p)ET < ET M1 N1
A3 (i) x2 < ET (1 − p)ET < x2 × ×
A1 (ii) C1 (1 − p)ET < x4 M1 N1
A2 (ii) C1 (1 − p)ET > x4 M N2
A1 (ii) C2 (1 − p)ET < ET M1 N1
A3 (iii) C1 (1 − p)ET < x3 × ×
A1 (iii) C2 (1 − p)ET < ET M1 N1

Here, × denotes there exists no pulse set or phase.

Consider an arbitrary solution Ψ(t, t0, (1− p)ET, y+0 ) with an initial value (x+0 , y+0 ) ∈ N.
This solution undergoes a single impulsive effect at time t = t1, a second impulsive effect
at time t = t2, and so on, until the kth impulsive effect at time t = tk. We denote the points
associated with these impulsive effects as pi = (ET, yi) ∈ M and p+i = ((1− p)ET, y+i ) ∈ N.
Thus, we can express p+i as a continuous function: p+i = I(pi). Consequently, we have
y+i = yi + τ. Since p+i and pi+1 lie on the same trajectory, pi+1 can be uniquely determined
by p+i , and yi+1 can be uniquely determined by y+i . Specifically, we can express yi+1 as
yi+1 = f (y+i ). According to the Cauchy-Lipschitz theorem, the function f is continuously
differentiable in cases A1 and A2.

In order to determine the domain of the Poincaré map, we need to establish the condi-
tion under which a solution initiating from p+0 ∈ Nj(j = 1, 2) does not experience impulsive
effects. In case A1, it is straightforward to determine the domain and range of the Poincaré
map as [0,+∞) and Y1 = [τ, yT + τ), respectively. In Case A2, we observe that when
yP2 < y+0 < yP1 , the initial point lies within the trajectory Γ1. In this scenario, the trajectory
originating from the initial point p+0 will not reach the impulsive set. Consequently, the
domain is [0, yP2) ∪ (yP1 ,+∞), and the range is [τ, yQ2 + τ). To ensure the continuous
occurrence of impulsive effects, it suffices to select the initial point p+i from N2.

Therefore, except for the condition yP2 < y+0 < yP1 in case A2, any solutions of model (2)
initiating from p+i ∈ Nj will reach pi+1 ∈ M after a single impulsive effect. We can therefore
obtain the domain and range of the Poincaré map as follows:

y+i+1 = f (y+i ) + τ
.
= φ(y+i ), i = 1, 2, · · · , k. (4)

The lemma regarding the Poincaré map within the phase set domain for cases A1 and
A2 is presented.

Lemma 1. The Poincaré map generated by the sequence of impulsive points in model (2) can be
defined as follows:

y+i+1 = φ(y+i ), y+i ∈ Y1 or Y2,

where φ(y+i ) is defined by Formula (4).

For Cases A1 and A2, since the function f is continuously differentiable with y+i , φ(y+i )
is also continuously differentiable with y+i . Therefore, the fixed point of φ(y+i ) corresponds
to an order-1 periodic solution within model (2).

4. Existence and Stability of Boundary Order-1 Periodic Solution

When τ = 0, φ(y+i ) has only one fixed point, which is y = 0. This fixed point
corresponds to the unique boundary order-1 periodic solution of model (2) initiated
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from ((1 − p)ET, 0). In fact, substituting y(t) = 0 and τ = 0 into model (2), we obtain
the subsystem 

dx
dt

= λx(t)
(

1 − x(t)
K

)
− v, x < ET,

x(t+) = (1 − p)x(t), x = ET.
(5)

It follows from model (5) with x(0+) = (1 − p)ET that we can find the solution with
period T. In order for the value of x to increase from (1 − p)ET to ET, we require dx

dt > 0.
Thus, we have −λx2 + λkx − kv > 0, which implies v < λK

4 . Additionally, the value of x
must satisfy x1 < x < x2. To ensure the existence of the period T, we need ET to satisfy
x1 < (1 − p)ET < ET < x2.

After performing the calculation, we have determined that the solution to model (5) is

x =
x1 + x2Ceh1t

1 + Ceh1t , (6)

where h1 = λ
K (x2 − x1) and C = x1−(1−p)ET

(1−p)ET−x2
.

Referring to Equation (6), let’s define ET = x1+x2Ceh1T

1+Ceh1T . Now, if we consider T as a
variable, we obtain

T =
1
h1

In
(ET − x1)[x2 − (1 − p)ET]
[(1 − p)ET − x1](x2 − ET)

.

Therefore, model (2) admits the boundary order-1 periodic solution with a period of T,
which is given by

(xT(t), 0) =

(
x1 + x2Ceh1t

1 + Ceh1t , 0

)
.

In the following, the local stability of solution (xT(t), 0) is analyzed using the analogue
of the Poincaré criterion. This criterion indicates that if the Floquet multiplier u2 satisfies
condition |u2| < 1, then (xT(t), yT(t)) is orbitally asymptotically stable, where

u2 = ∆1 exp
(∫ T

0

[
∂P
∂x

(
xT(t), yT(t)

)
+

∂Q
∂y

(
xT(t), yT(t)

)]
dt
)

,

∆1 =
P+
(

∂β
∂y

∂ϕ
∂x − ∂β

∂x
∂ϕ
∂y + ∂ϕ

∂x

)
+ Q+

(
∂α
∂x

∂ϕ
∂y − ∂α

∂y
∂ϕ
∂x + ∂ϕ

∂y

)
P ∂ϕ

∂x + Q ∂ϕ
∂y

.

Here yT(t) = 0, P+ = P(xT(T+), yT(T+)), Q+ = Q(xT(T+), yT(T+)) and P, Q, ∂α
∂x , ∂α

∂y , ∂β
∂x ,

∂β
∂y , ∂ϕ

∂x , ∂ϕ
∂y is calculated at point (xT(t), yT(t)).

Theorem 2. The solution (xT(t), 0) of model (2) is asymptotically stable if and only if

r < 0, θr <

(
ω + C
ω + Cθ

) Kcbq
λ(1+ax1)(1+ax2)

, (7)

where r = 1
x2−x1

(
cbqx1K

(1+ax1)λ
− mK

λ

)
, ω = 1+ax1

1+ax2
, θ = (ET−x1)[x2−(1−p)ET]

[(1−p)ET−x1](x2−ET) .

Proof. For τ = 0, we define

P(x, y) = λx
(

1 − x
K

)
− v − e−εvqxy

1 + ax
= − λ

K
(x − x1)(x − x2)−

e−εvqxy
1 + ax

,

Q(x, y) =
ce−εvqxy

1 + ax
− my, α(x, y) = −px, β(x, y) = τ, ϕ(x, y) = x − ET,
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(
xT(T), yT(T)

)
= (ET, 0),

(
xT(T+), yT(T+)

)
=
(
(1 − p)ET, 0

)
.

Since b = e−εv, we can determine the value by performing the calculation

∂P
∂x

= λ − 2λ

K
x − bqy

(1 + ax)2 ,
∂Q
∂y

=
cbqx

1 + ax
− m,

∂α

∂x
= −p,

∂ϕ

∂x
= 1,

∂α

∂y
=

∂β

∂x
=

∂β

∂y
=

∂ϕ

∂y
= 0,

then

∆1 =
P+
(

∂β
∂y

∂ϕ
∂x − ∂β

∂x
∂ϕ
∂y + ∂ϕ

∂x

)
+ Q+

(
∂α
∂x

∂ϕ
∂y − ∂α

∂y
∂ϕ
∂x + ∂ϕ

∂y

)
P ∂ϕ

∂x + Q ∂ϕ
∂y

=
P
(
xT(T+), yT(T+)

)
P(xT(T), yT(T))

=
[(1 − p)ET − x1][(1 − p)ET − x2]

(ET − x1)(ET − x2)
.

Additionally, let’s discuss∫ T

0

[
∂P
∂x

(
xT(t), yT(t)

)
+

∂Q
∂y

(
xT(t), yT(t)

)]
dt

=
∫ T

0

[
λ − m − 2λ

K
xT(t) +

cbqxT(t)
1 + axT(t)

]
dt

= (λ − m)T −
∫ T

0

2λ

K
xT(t)dt +

∫ T

0

cbqxT(t)
1 + axT(t)

dt,

where∫ T

0

2λ

K
xT(t)dt =

2λx1

K

∫ T

0

1
1 + C exp(h1t)

dt +
2λx2

K

∫ T

0

C exp(h1t)
1 + C exp(h1t)

dt

=
2λx1

K

∫ T

0

(
1 − C exp(h1t)

1 + C exp(h1t)

)
dt +

2λx2

K

∫ T

0

C exp(h1t)
1 + C exp(h1t)

dt

=
2λx1

K

(
T − 1

h1
In(1 + C exp(h1t))

∣∣∣T0 )
+

2λx2

K
1
h1

In(1 + C exp(h1t))
∣∣∣T0

=
2λx1

K
T +

2λ

Kh1
(x2 − x1)In

1 + C exp(h1T)
1 + C

and ∫ T

0

cbqxT(t)
1 + axT(t)

dt = I1 + I2,
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let I1 and I2 be denoted as

I1 = cbqx1

∫ T

0

1
(1 + ax1) + (1 + ax2)C exp(h1t)

dt

=
cbqx1

1 + ax2

∫ T

0

1
(1 + ax1)

/
(1 + ax2) + C exp(h1t)

dt

=
cbqx1

1 + ax2

1 + ax2

1 + ax1

(
T − 1

h1
In
(
(1 + ax1)

/
(1 + ax2) + C exp(h1t)

)∣∣∣T0 )
=

cbqx1

1 + ax1

(
T − 1

h1
In

(1 + ax1)
/
(1 + ax2) + C exp(h1T)

(1 + ax1)
/
(1 + ax2) + C

)

and

I2 = cbqx2

∫ T

0

C exp(h1t)
(1 + ax1) + (1 + ax2)C exp(h1t)

dt

=
cbqx2

1 + ax2

∫ T

0

C exp(h1t)
(1 + ax1)

/
(1 + ax2) + C exp(h1t)

dt

=
cbqx2

1 + ax2

1
h1

In
(
(1 + ax1)

/
(1 + ax2) + C exp(h1t)

)∣∣∣T0
=

cbqx2

(1 + ax2)h1
In

(1 + ax1)
/
(1 + ax2) + C exp(h1T)

(1 + ax1)
/
(1 + ax2) + C

,

respectively. Let θ = (ET−x1)[x2−(1−p)ET]
[(1−p)ET−x1](x2−ET) , ω = 1+ax1

1+ax2
; this yields

exp
(∫ T

0

[
∂P
∂x

(
xT(t), yT(t)

)
+

∂Q
∂y

(
xT(t), yT(t)

)]
dt
)

= θ
1

x2−x1

(
x2−x1− mK

λ +
cbqx1K

(1+ax1)λ

)(
1 + C
1 + Cθ

)2(ω + Cθ

ω + C

) Kcbq
λ(1+ax1)(1+ax2)

,

Thus, the Floquet multiplier

u2 = ∆1 exp
(∫ T

0

[
∂P
∂x

(
xT(t), yT(t)

)
+

∂Q
∂y

(
xT(t), yT(t)

)]
dt
)

,

after calculation

∆1θ

(
1 + C
1 + Cθ

)2
= 1,

thus

u2 = θ
1

x2−x1

(
cbqx1K

(1+ax1)λ
− mK

λ

)(
ω + Cθ

ω + C

) Kcbq
λ(1+ax1)(1+ax2)

.

To determine the domain of u2, we consider θ as a function of p. Since 0 ≤ p < 1,
when p = 0, we have θ = 1 and u2 = 1. When 0 < p < 1, based on the inequality
x1 < (1− p)ET < ET < x2, we can deduce that θ > 1 and ω+Cθ

ω+C > 1. Since Kcbq
λ(1+ax1)(1+ax2)

> 0,

we have
(

ω+Cθ
ω+C

) Kcbq
λ(1+ax1)(1+ax2) > 1. In order to satisfy |u2| < 1, we need r < 0 and

θr <
(

ω+C
ω+Cθ

) Kcbq
λ(1+ax1)(1+ax2) . Therefore, for all p ∈ (0, 1), we have 0 < u2 < 1. Under the

conditions of Theorem 2, any solution trajectory of model (2) will eventually approach
solution (xT(t), 0) infinitely, indicating that solution (xT(t), 0) is asymptotically stable.

For the global attractivity of solution (xT(t), 0), when x1 < x < x3, the sequence
of impulsive point y+k of any solutions originating from the (x+, y+) ∈ N monotoni-
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cally decreases with increasing k, so we have dy
dt < 0. Additionally, Figure 5 shows that

limk→∞ y+k = y∗ = 0, indicating the global attractivity of the solution (xT(t), 0). On the
side, when x3 < x < x2, the sequence of impulsive points y+k monotonically increases with
increasing k, leading to the solution (xT(t), 0) becoming unstable, as depicted in Figure 6.
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Figure 5. Stability of boundary order-1 periodic solution (xT(t), 0) of model (2) with parameters
λ = 1, K = 100, q = 0.2, c = 0.5, v = 0.434, ε = 0.8, m = 1, ET = 20, a = 0.34, p = 0.6.
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Figure 6. Instability of boundary order-1 periodic solution (xT(t), 0) with a = 0.01, p = 0.2. All other
parameters are identical to those in Figure 5.

5. Existence and Stability of Order-k Positive Periodic Solution

The previous section has systematically described the boundary solution of the model (2),
and our primary focus of this section is on examining the properties of the internal solution
when τ > 0, especially the existence and stability of the order-1 periodic solution as well as
the existence of the order-k periodic solution. This aim can be achieved by demonstrating
the presence and stability of the fixed point of the Poincaré map φ(y+i ).
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Firstly, there is a threshold condition for the existence of order-1 periodic solution in
case A1.

Theorem 3. In case A1, φ(y+i ) possesses a fixed point. As a result, the model (2) exhibits an
order-1 periodic solution.

Proof. For this particular case, the trajectory Γ2 starting from Q1
(
(1 − p)ET, yQ1

)
crosses

x = ET, and the point where they intersect is labeled as T
(
ET, yT1

)
. Where Q1 is the

tangent point between curve Γ2 and line x = (1 − p)ET. Since both point Q1 and point T
lie on the same curve, it can be concluded that yT = f (yQ1).

When a single impulsive effect occurs, T is mapped to Q+
1 ((1− p)ET, yQ+

1
), and obtain

yQ+
1
= yT + τ from the pulse function. Accordingly, since yQ+

1
is determined by τ, we

assume the existence of τ0 such that yT + τ0 = yQ1 . Then, when τ = τ0, the point Q1 and
the point Q+

1 coincide, establishing a fixed point for φ(y+i ). Consequently, the trajectory
Q̂1T is treated as an order-1 periodic solution for model (2).

If τ > τ0, as illustrated in Figure 7A, the position of the impulsive point Q+
1 is higher

than that of point Q1. Consequently, we have φ(yQ1)− yQ1 = yQ+
1
− yQ1 > 0. This leads to

the following inequality:
φ(yQ1) > yQ1 . (8)

The trajectory originating from Q+
1 crosses x = ET, and the point where they intersect

is labeled as T1(ET, yT1). Since any two trajectories of the plane system cannot intersect,
it follows that the position of point T1 is lower than that of point T. After undergoing a
pulse effect, T1 is mapped to T+

1 ((1 − p)ET, yT+
1
). As yT1 < yT , we have yT+

1
= yT1 + τ <

yT + τ = yQ+
1

. Consequently, the position of point T+
1 is lower than that of point Q+

1 .
Hence, φ(yQ+

1
)− yQ+

1
= yT+

1
− yQ1 < 0. This leads to the following inequality:

φ(yQ+
1
) < yQ+

1
. (9)

By combining (8) and (9), we conclude that there possesses a fixed point within the interval
(yQ1 , yQ+

1
) for φ(y+i ).
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Figure 7. (A) Location of the periodic solution of system (2) for case A1; (B) Location of the periodic
solution of system (2) for case A2. All parameter values are fixed as follows: λ = 2, K = 50,
q = 0.2, a = 0.04, c = 0.5, v = 0.12, ε = 0.8, m = 1.
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If τ < τ0, the position of the impulsive point Q+
1 is lower than that of point Q1. Conse-

quently, we have φ(yQ1)− yQ1 = yQ+
1
− yQ1 < 0. This leads to the following inequality:

φ(yQ1) < yQ1 . (10)

Select a point H+((1 − p)ET, yH+) on the line x = (1 − p)ET that satisfies the condition
0 < yH+ < τ. The trajectory originating from H+ crosses x = ET, and the point where
they intersect is labeled as H1(ET, yH1), where yH1 = f (yH+). After undergoing a pulse
effect, H1 is mapped to H+

1 ((1 − p)ET, f (yH+) + τ). Now, considering φ(yH+)− yH+ =
f (yH+) + τ − yH+ > 0, we obtain the following inequality:

φ(yH+) > yH+ . (11)

Combining (10) and (11), we conclude that there possesses a fixed point within the interval
(yH+ , yQ1) for φ(y+i ).

The above process illustrates that no matter what value τ takes, the system (2) always
has an order-1 periodic solution.

Next, explain the conditions for the existence of an order-1 periodic solution in case A2.
Before that, define a key point Q+

2 (xQ+
2

, yQ+
2
), which is the impulsive point that appears on

the trajectory and initiates from point P1((1 − p)ET, yP1) after a single impulsive effect.

Theorem 4. In case A2, if yQ+
2
≥ yP1 or yQ+

2
≤ yP2 , it can be observed that the Poincaré map

φ(y+i ) possesses a fixed point. As a consequence, model (2) exhibits an order-1 periodic solution.

Proof. For this situation, let’s mark E5(x5, y5) as the second intersection of Γ1 and L2. If
(1 − p)ET ≥ x5, as depicted in Figure 7B, since y(t) is increasing on the right area of L2, the
position of Q2 is higher than that of P2. In addition, Q2 is mapped to Q+

2 ((1 − p)ET, yQ+
2
)

after undergoing a pulse effect. Considering τ > 0, it follows that the position of point Q+
2

is also higher than that of point P2.
If yQ+

2
= yP1 , then the trajectory P̂1Q2 forms an order-1 periodic solution of the

system (2). If yQ+
2

> yP1 , we have φ(yP1) − yP1 = yQ+
2
− yP1 > 0. This leads to the

following inequality:
φ(yP1) > yP1 . (12)

Furthermore, the trajectory originating from Q+
2 crosses x = ET, and the point where they

intersect is labeled as Q3
(
ET, yQ3

)
. By virtue of the uniqueness of the solution, we deduce

that the position of Q3 is lower than that of Q2. After undergoing a pulse effect, Q3 is
mapped to Q+

3 ((1 − p)ET, yQ+
3
). Clearly, the position of Q+

3 is also lower than that of Q+
2 ,

hence φ(yQ+
2
)− yQ+

2
= yQ3

+ − yQ+
2
< 0. This yields

φ(yQ+
2
) < yQ+

2
. (13)

Combining (12) and (13), we conclude that there possesses a fixed point within the interval
(yP1 , yQ+

2
) for φ(y+i ).

If x4 < (1− p)ET < x5, two cases arise based on the relative positions of points P2 and
Q2. In the first case, when yQ2 > yP2 , the point Q2 is positioned above P2. As demonstrated
in the previous proof, φ(y+i ) possesses a fixed point in this case.

In the second case, when yQ2 ≤ yP2 , two sub-cases can be considered. If yQ+
2
≥ yP1 ,

the conclusion is evidently valid. On the other hand, if yQ+
2
≤ yP2 , the proof process from

case τ ≤ τ0 in Theorem 3, indicates φ(y+i ) possesses a fixed point for this case.
In summary, the order-1 periodic solution of model (2) always exists.

Theorems 3 and 4 have confirmed the existence of the order-1 periodic solution in the
system (2), and then we will prove the stability of this periodic solution.
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Define (ξ(t), η(t)) to represent an order-1 periodic solution with a period of T. The
points where this periodic solution intersects with the lines L3 and line L4 are denoted
as follows:

N+
(
ξ(T+), η(T+)

)
= ((1 − p)ET, yN + τ), N(ξ(T), η(T)) = (ET, yN),

then it can be calculated.

∆1 =
P+((1 − p)ET, yN + τ)

P(ET, yN)

=
λ(1 − p)ET

(
1 − (1−p)ET

K

)
− v − e−εvq(1−p)ET(yN+τ)

1+a((1−p)ET)

λET
(

1 − ET
K

)
− v − e−εvqETyN

1+aET

,

and ∫ T

0

(
∂P
∂x

+
∂Q
∂y

)
dt

=
∫ T

0

(
λ − m − 2λξ(t)

K
− bqη(t)

(1 + aξ(t))2 +
cbqξ(t)

1 + aξ(t)

)

=
∫ T

0
H(t)dt.

Hence, the Poincaré criterion serves as a valuable tool to analyze the stability of the order-1
periodic solution (ξ(t), η(t)) in model (2).

Theorem 5. The solution (ξ(t), η(t)) of model (2) is asymptotically stable when∣∣∣∣∆1 exp
(∫ T

0
H(t)dt

)∣∣∣∣ < 1. (14)

Proof. For case A1, considering the proof methodology of Theorem 2, u2 can be expressed as

u2 = ∆1 exp
(∫ T

0

(
∂P
∂x

+
∂Q
∂y

)
dt
)
= ∆1 exp

(∫ T

0
H(t)dt

)
.

Looking back at Theorem 3, it is evident when τ = τ0, yT + τ0 = yQ1 holds, which implies
that the points Q+

1 and Q1 coincide. Consequently, we obtain |u2| = 0 < 1, indicating that
(ξ(t), η(t)) is stable in this case.

When τ > τ0, point Q+
1 lies above Q1, and it is evident that point N+ is also positioned

above Q1. Moreover, yQ1 < yN + τ. Thus, for τ > τ0, we have λ(1 − p)ET
(

1 − (1−p)ET
K

)
−

v − e−εvq(1−p)ET(yN+τ)
1+a((1−p)ET) < 0 and exp

(∫ T
0 H(t)dt

)
> 0. Thus, it holds true that u2 < 0.

Similarly, when τ < τ0, we have u2 > 0.
In summary, when Formula (14) is satisfied, i.e., |u2| < 1. Regardless of the initial value,

the solution of system (2) will approach solution (ξ(t), η(t)), so the solution (ξ(t), η(t))
is asymptotically stable. Similarly, under the conditions of Theorem 4, (ξ(t), η(t)) is also
asymptotically stable for case A2.

Next, we will investigate the existence of order k (k ≥ 2) periodic solutions for model (2).

Theorem 6. In Case A1, if yQ+
1
≤ yQ1 , then model (2) only possesses an order-1 periodic solution.

However, if yQ+
1
> yQ1 and yT+

1
≥ yQ1 , then the system (2) can have either an order-1 periodic

solution or an order-2 periodic solution.



Mathematics 2024, 12, 1043 17 of 25

Proof. If yQ+
1

≤ yQ1 , according to Theorem 3, a fixed point must exist in φ(y+i ). The

trajectory originating from Q+
1 crosses x = ET, and the point where they intersect is labeled

as T1. Since any two trajectories cannot intersect, the position of T1 is lower than that of
T, and T1 will be mapped to T+

1 ((1 − P)ET, yT+
1
) after undergoing a pulse effect. Since

yT1 < yT , the impulsive point T+
1 of point T1 satisfies yT+

1
= yT1 + τ < yT + τ = yQ+

1
, and

thus, the position of point T+
1 is lower than that of point Q+

1 . After undergoing another
pulse effect, the next impulsive point, T+

2 , is obtained, and the position of T+
2 is lower

than that of T+
1 . By analogy, the position of point T+

i+1 is lower than that of point T+
i

(i = 1, 2, . . . , n). Therefore, the sequence of impulsive points monotonically decreases and
gradually approaches the point N+, yielding

yN + τ < yT+
n
< · · · < yT+

i
< · · · < yT+

1
< yQ+

1
.

Furthermore, since each trajectory does not intersect with others, the system (2) only
possesses an order-1 periodic solution and does not have an order-2 periodic solution.

If yQ+
1
> yQ1 and yT+

1
= yQ1 , it is evident that the conclusion is valid. If yT+

1
> yQ1 ,

The trajectory originating from T+
1 crosses x = ET, and the point where they intersect is

labeled as T2, satisfying the inequality yT1 < yT2 < yT . The point T2 is mapped to the point
T+

2 after undergoing a pulse effect and satisfies the inequality yT+
1
< yT+

2
< yQ+

1
. Repeat

the above steps as the control strategy is implemented multiple times. It can be observed
that the position of Ti is between Ti−1 and Ti−2, and the position of T+

i is between T+
i−1 and

T+
i−2 (i = 3, 4, . . . , k). If the series of impulsive points is divided into odd and even series,

two possibilities arise.

(a) yQ1 < yT+
1
< yT+

3
< · · · < yT+

2n−1
< yT+

2n+1
< · · · < yQ+

1
,

(b) yQ1 < · · · < yT+
2n
< yT+

2n−2
< · · · < yT+

4
< yT+

2
< yQ+

1
.

Based on (a) and (b), the odd series yT+
2n+1

and even series yT+
2n

are increasing and decreasing,

respectively, on the interval (yQ1 , yQ+
1
). Both series are also convergent. Furthermore, since

all impulsive segments do not intersect each other, either has a fixed point or exhibits a
stable period two-point cycle for φ(y+i ). This corresponds to the order-1 or order-2 periodic
solutions of the model (2), respectively.

According to the aforementioned analysis, we can also conclude that for case A2,
if yQ+

2
< yP2 , then model (2) only possesses an order-1 periodic solution. If yQ+

2
> yP1

and yQ+
3

≥ yP1 , then model (2) has either an order-1 periodic solution or an order-2
periodic solution.

Now, we will proceed to discuss the conditions under which the order-3 periodic
solution exists.

Theorem 7. Let ym = min
{

y+ ∈ N1
∣∣φ(y+) = yQ1

}
. In case A1, if yQ+

1
> yQ1 and yT+

1
< ym,

then the order-3 periodic solution of model (2) exists.

Proof. According to Theorem 3, when yQ+
1

> yQ1 , the φ(y+i ) possesses a fixed point
on (yQ1 , yQ+

1
). To prove the model (2) admits an order-3 periodic solution, it should be

demonstrated that there is a y on interval N1 makes φ(y) ̸= y and φ3(y) = y. According to
the requirements stipulated, yield

φ3(0) = φ2(τ) > 0,

and
φ3(ym) = φ2(yQ1

)
= φ(yQ+

1
) = yT+

1
< ym.
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Considering the property of φ(y+i ) being continuous, we can say that there is a number
ȳ in the interval (0, ym) that makes φ3(ȳ) = ȳ. Hence, model (2) has an order-3 periodic
solution.

Theorem 7 indicates that a discrete mapping φ(y+i ) has a periodic point with a min-
imum period of 3. According to the Period Three theorem and the Sarkovskii theorem,
it is shown that mapping φ(y+i ) also has periodic points with a minimum period of any
positive integer. The reason is as follows: From the reasoning process of the Sarkovsskii
theorem, it can be inferred that there is such a sequence rearranged by all positive integers:

3, 5, 7, 9, 11, · · ·
3 × 2, 5 × 2, 7 × 2, 9 × 2, 11 × 2, · · ·
3 × 22, 5 × 22, 7 × 22, 9 × 22, 11 × 22, · · ·
3 × 23, 5 × 23, 7 × 23, 9 × 23, 11 × 23, · · ·

· · ·
25, 24, 23, 22, 21, 20.

This sequence is called the Sarkovsskii sequence; periodic points will operate in the order
of the sequence. The Sarkovsskii theorem states that when m is sorted before n in the
Sarkovsskii sequence, if there are periodic points with period m, then there must be
periodic points with period n, and 3 is the first digit of the Sarkovsskii sequence, before
all positive integers. According to the Sarkovsskii theorem, if there is a period of 3 in the
mapping φ(y+i ) during the iteration process, there must be a period point with a period of
any positive integer.

This means the existence of order-k periodic solutions (k ≥ 3) in model (2). This
observation suggests the presence of chaos in model (2). Compared with reference [13], our
study not only emphasizes the phase diagrams and sets of each equilibrium point but also
highlights the existence and stability of periodic solutions under pulse control.

For cases A1 and A2, we have established the existence and stability of the order-
1 periodic solution, as well as the conditions for the existence of the order-k periodic
solution (k ≥ 2), in model (2). However, to enhance our understanding of model dynamics,
numerical simulations are performed to validate the accuracy of our theoretical findings.

As shown in Figure 8, we observe a bifurcation behavior of model (2) by selecting
parameter p as bifurcation parameter. It is evident that as p increases, the system undergoes
abrupt transitions from an order-(k + 1) periodic solution to an order-k periodic solution
(k ≥ 2) through period-decreasing bifurcations accompanied by chaotic regions. Further-
more, when p > 0.61, period-halving bifurcations occur, leading to the emergence of an
order-1 periodic solution. This demonstrates the significant influence of the key parameter
p on the dynamics of model (2). Moreover, it indicates that the growth patterns and quantity
trends of pests are dependent on the initial quantity (x+0 , y+0 ).

The bifurcation diagram of the parameter τ reveals the intricate dynamics of model (2),
as illustrated in Figure 9. When 0 < τ < 0.6582, it does not show the solution of model (2).
However, at τ = 0.6582, a transcritical bifurcation occurs, giving rise to an order-1 periodic
solution. In addition, this solution will become unstable in pace as the parameter τ
increases further, leading to a period-doubling bifurcation and the subsequent generation
of an order-2 periodic solution in model (2). As there is a continued increase in τ, the period-
doubling bifurcations drive the system (2) into a chaotic regime. Notably, the system (2)
demonstrates distinct transitions from an order-k periodic solution to an order-(k + 1)
periodic solution (where k ≥ 2) through period-adding bifurcations involving chaotic
regions. These solutions validate that both populations can coexist in different states, thus
further corroborating the conclusions of the above theorems.
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Figure 8. Bifurcation diagram of model (2) with p. Here the parameters are: λ = 1, K = 50, a =

0.19, c = 0.45, m = 0.36, v = 0.03, ε = 3.513, q = 0.211, ET = 25, τ = 4.1.

Figure 9. Bifurcation diagram of model (2) with τ. Here the parameters are: λ = 1, K = 50, a =

0.19, c = 0.45, m = 0.36, v = 0.03, ε = 3.513, q = 0.211, ET = 25, p = 0.054.

Figure 9 clearly illustrates the transition from regular dynamics to chaos, where a
period-doubling bifurcation occurs as the bifurcation parameter values increase. The
originally stable periodic orbit constantly becomes unstable, and new stable orbits appear,
but the emergence of new stable orbits does not mean that the original orbit disappears. It
can only be said that the original orbit exists in an unstable form in the new stable state.
As the number of iterations increases, a blurry area eventually appears, indicating that the
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system has entered a completely chaotic state. And Figure 8 can be seen as the inverse
process of the period-doubling bifurcation.

Next, the correctness of the above theorems is verified, and schematic diagrams of
the order-1, order-2, order-3, and even order-4 periodic solutions of the system (2) are
presented in conjunction with the bifurcation diagram. Here, we mainly discuss case A2.
As shown in Figures 10–13. In addition, in order to further understand the population
dynamics of prey and predators, we have also provided the phase portrait and time series.
This also once again demonstrates the complex, dynamic behavior of the system. Here, we
choose the order-2 and order-4 periodic solutions as examples to illustrate.
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Figure 10. An order-1 periodic solution of model (2) with p = 0.7, τ = 4.7, ET = 17; the other
parameters are identical to those in Figure 9.
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Figure 11. An order-2 periodic solution of model (2) with p = 0.2, τ = 8.5, ET = 12; the other
parameters are identical to those in Figure 9.
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Figure 12. An order-3 periodic solution of model (2) with p = 0.3, τ = 5.8, ET = 19; the other
parameters are identical to those in Figure 9.
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Figure 13. An order-4 periodic solution of model (2) with p = 0.13, τ = 4, ET = 12; the other
parameters are identical to those in Figure 9.

For the given parameter values, it can be observed from Figure 11 that the order-2
periodic solution exhibits distinct characteristics. It consists of an active period with short
trajectories and a quiescent period with long trajectories. During the long stretches of
trajectory where both populations reside, the pest population undergoes a period of rapid
growth until an outbreak occurs, as the number of predators is relatively low. However,
with the introduction of predators, a quiescent period comes to an end, and the active
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period begins following a single impulsive effect. The population density of the pest
immediately adjusts to (1 − p)ET and experiences rapid growth until reaching ET on
short notice. At this point, control tactics are implemented, causing the quantities of both
populations to return to their long stretches of trajectory, thus initiating a new cycle.

Similarly, by varying the values of the key parameters p and τ, we can obtain the
order-4 periodic solution of model (2), as illustrated in Figure 13. The phase portrait
and time series exhibit a more intricate pattern, featuring two quiescent periods and
two active periods with long trajectories and short trajectories, respectively. These active
and quiescent periods alternate, giving rise to highly complex dynamics. It is evident
that random perturbations play a vital role in the occurrence of pest outbreaks. Small
changes in the key parameters can directly impact the population dynamics and outbreak
patterns of the pests. This further emphasizes the sensitivity of the system to variations
in parameter values, highlighting the need for effective control measures to mitigate and
manage pest outbreaks.

The above descriptions of bifurcation and chaos all emphasize that the complex dy-
namics of the model pose challenges to the comprehensive control strategy of pests. This
also indicates that analyzing biological problems and explaining biological phenomena and
related conclusions from a mathematical perspective is still extremely difficult. In addition
to using predatory models to describe and analyze the common biological activity of pest
control, other biological activities such as virus outbreaks and vaccination can also be
explained using SIR mathematical models. For example, in an improved SIR model in [31],
the author and his team linked the classical SIR model with pulse vaccination, analyzed
the dynamic properties of disease-free periodic solution and stable positive T-periodic
solution, and described the bifurcation phenomenon and chaos in the pulse model. In
addition, there are also models in [32,33] that combine mathematics with biology, which
reveal that biological systems can be simplified into computable models, thereby helping
us understand and predict biological processes.

6. Conclusions

To enhance the efficacy of pest control, impulsive tactics such as releasing natural
enemies and using insecticides are employed when the pest density increases to ET. In
light of this, these control strategies dependent on pest status prove more suitable for
practical implementation. However, in previous models, the detrimental impacts of pests’
anti-predator behavior on themselves were often disregarded. Recognizing the significance
of this aspect, the Lotka-Volterra model incorporates the effect of anti-predator behavior on
both parties, and its primary objective is to offer more rational pest control strategies and
illustrate the dynamics of pest-natural enemy ecosystems more accurately.

The phase portrait of different equilibria was examined as the parameters m and v
underwent changes. Subsequently, the relationship between the equilibrium E3 and the
line x = ET was utilized to discuss the precise domain of the phase set and impulsive set
in cases (i) to (iii). So as to facilitate the analysis of the periodic solution in subsequent
studies, these cases where the domain is identical are defined as Ai(i = 1, 2, 3), as illustrated
in Table 1. Building upon the threshold control process outlined in the impulsive semi-
dynamical system, it was observed that the ordinates of two adjacent impulsive points
satisfy y+i+1 = f (y+i ) + τ, leading to the establishment of the corresponding Poincaré map.

The stability condition about the boundary order-1 periodic solution (xT(t), 0) is
determined by Theorem 2. For the given parameters, an illustration depicting the global
stability of solution (xT(t), 0) when τ = 0 is provided. In this scenario, the number of
pests will exhibit periodic oscillations, while predators will gradually approach 0. This
behavior is depicted in Figure 5. As the parameters a and p are altered, (xT(t), 0) is no
longer stable, leading to the coexistence of pests and natural enemies in a stable focus; see
Figure 6 for details.

Where τ ̸= 0, we provide the threshold conditions sequentially for the existence of
order-k (k = 1, 2, 3) periodic solutions; this suggests the presence of chaos within the system.
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Notably, these conditions also indicate that pests and natural enemies can coexist under
specific parameter values. Numerical results demonstrate that the system exhibits diverse
and intricate dynamic properties, including transcritical bifurcations, period-decreasing
bifurcations, period-adding bifurcations, chaotic regions, and more.

One of the highlights of this article is the bifurcation and chaos of the model (2). When
related to other biological models [14], it can be found that we all express the stability and
threshold conditions of the periodic solution and also elaborate on the switching process of
the periodic solution under different bifurcations. However, the innovation of this article is
to discuss chaos under different sensitivity parameters and provide periodic solutions to
various orders of the system in combination with chaos.

Significant development has been achieved in the theoretical exploration of predator-
prey systems [34–37] over recent years. However, this paper introduces several innovative
contributions that set it apart from previous research. The key distinctions are emphasized
in the following aspects: (1) Consideration of the reciprocal influence of anti-predator
behavior on both populations. By acknowledging the strategic actions taken by pests to
minimize predation rates, the dynamics of both populations are affected, establishing a
symbiotic relationship between the species; (2) Precise delineation of the domains of the
phase set and impulsive set based on distinct threshold conditions. This enables a more
accurate understanding of when impulsive control strategies should be employed and
how the system behaves accordingly; (3) Provision of multiple bifurcation diagrams for
essential parameters. These diagrams provide a comprehensive depiction of the intricate
and diverse dynamics exhibited by system (2), facilitating a deeper comprehension of its
behavior across varying parameter values; (4) Illustration of order-k periodic solutions,
specifically focusing on order-2 and order-4 solutions. These solutions shed light on the
periodic behavior exhibited by the system, contributing to a comprehensive understanding
of its temporal patterns.

Collectively, these distinct characteristics presented in this article contribute to the
progress in our comprehension of predator-prey systems and provide valuable insights into
the intricate dynamics of model (2). However, there are still some areas for improvement
in the article, such as assuming that harvesting has a meaning. In such a situation, if the
harvesting can be either a constant number, a proportional number, or a periodic number
of the density of the prey over a given time interval, what can change in the system’s
behavior? Additionally, this study did not account for the impact of limited resources, and
the utilization of linear pulse control fails to optimize the economic conditions of farmland.
Exploring the impact of resource constraints and investigating alternative control strategies
to enhance the economic viability of agricultural settings will be key research objectives in
the future.
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