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Abstract: In this work, we highlight three different techniques for automatically constructing the
dataset for a time-series study: the direct multi-step, the recursive multi-step, and the direct–recursive
hybrid scheme. The nonlinear autoregressive with exogenous variable support vector regression
(NARX SVR) and the Gaussian process regression (GPR), combined with the differential evolution
(DE) for parameter tuning, are the two novel hybrid methods used in this study. The hyper-parameter
settings used in the GPR and SVR training processes as part of this optimization technique DE
significantly affect how accurate the regression is. The accuracy in the prediction of DE/GPR and
DE/SVR, with or without NARX, is examined in this article using data on spot gold prices from the
New York Commodities Exchange (COMEX) that have been made publicly available. According
to RMSE statistics, the numerical results obtained demonstrate that NARX DE/SVR achieved the
best results.

Keywords: Gaussian process regression (GPR); time-series analysis; differential evolution (DE);
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1. Introduction

The global COVID-19 health crisis has caused misery and disaster ever since it started
in early 2020. On 11 March 2020, the World Health Organization (WHO) declared this
infectious disease to be a pandemic. As a result, several countries put in place a range
of policies to try and stop the spread of the illness. Governments implemented various
precautionary measures such as social distancing, workplace closures, travel limitations,
and lockdowns, all to stop the disease from spreading.

This pandemic has had serious economic ramifications in addition to deaths, infections,
and psychological damage. This unprecedented global health crisis has threatened the
entire world and wreaked havoc on the economy by creating financial instability. The entire
financial industry, including the insurance and banking sectors and the stock markets, has
been impacted by COVID-19 [1]. Since the start of the pandemic, the financial markets
have deteriorated and grown incredibly volatile, which has led to a drop in metal prices.
The pandemic has also led to an unprecedented collapse in commodities markets, which
are typically erratic. The COVID-19 outbreak caused borders to be closed and communi-
ties to be quarantined, which slowed down activity and restricted international trade in
goods and commodities. In these circumstances, the supply of commodities frequently
vastly outweighed their demand, leading to a decrease in commodity prices. Global in-
vestors shifted their holdings to commodities markets in the wake of the crisis and the
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ensuing market panic, which was accompanied by a chaotic macroeconomic and financial
environment [2–7].

Gold has historically been the main commodity that best represents the commodities
market [8]. According to several studies [9–11], gold is essentially the most highly valued
metal. It has historically had a big impact on both politics and the economy. Therefore,
the prices of gold and oil are the two most important indicators in the global markets [12].
Like gold, silver has many applications and can even be used as a hedge against inflation.
According to metal experts, silver is perceived to be more volatile than gold [13]. The
year 2020 saw a decline in the price of metals, something closely linked to the global
economy. Due to these conditions, investors are growing more and more worried about
the rise in commodity prices. Also, the price of gold increased rapidly in spite of a rise
in COVID-19 cases [14]. In light of these modifications, the pandemic has promoted the
buying of assets that serve as a safe haven [15]. Investor and regulatory interests in this
phenomenon have caused a spike in the demand for certain commodities as investments.
Therefore, understanding the relationships among the prices of gold, oil, and silver is
crucial for investors, portfolio managers, and policymakers [16]. Many investors, especially
novices, have traditionally placed their money in gold, which is considered a safe and
trouble-free haven, to avoid complications [12]. In the years after the financial crisis, a
common alternative in a variety of investment options was gold. Because it helps investors
of all types manage their financial and economic concerns in times of crisis, gold is regarded
as a safe-haven asset [15,17–22].

With the aforementioned points in mind, the current work attempts to explore the
correlation between the price of gold and its status as a safe haven in relation to the different
commodities indices under consideration. One volatility index is of particular interest to us:
the gold price index [23,24]. Indeed, gold is one of the naturally occurring elements with
the highest atomic number. It has the chemical symbol Au, and its atomic number is 79. In
its purest form, it is reddish-yellow and bright. It is a very dense metal, ductile, malleable,
and soft. Gold is a member of group 11 in the periodic table of chemical elements, and it is a
transition metal [25]. Very unreactive, it is solid in normal circumstances. It usually appears
as nuggets in veins, alluvial deposits, and rocks in its free elemental (native) form. It can
also be found alloyed with other metals like palladium and copper, with the native element
silver in solid solution series, and as mineral inclusions like those found in pyrite [25–27].
Gold is a precious metal used as a base material for coinage, jewelry, and other forms of art.
It is not a common element. In the past, monetary policy used a gold standard, but after
the 1930s, when gold was no longer used for coins as circulating currency, the world gold
standard disappeared in favor of a flat currency system [25–28].

About 50% of the new gold produced worldwide nowadays is used for jewelry, with
40% for investments and approximately 10% in industry (see Figure 1). Due to gold’s high
ductility, malleability, resistance to most other chemical reactions, particularly to corrosion,
and high electrical conductivity, its main industrial use, as corrosion-resistant electrical
connectors in all kinds of computers, has persisted. Additionally, the production of gold
leafing, colored glass, and restoration of teeth all use gold. In medicine, specific gold salts
are utilized as anti-inflammatories. China is the major producer with 440 tons of gold
annually as of 2017.

Raw materials are essential for taking the pulse of the global economy, and these
include precious metals. Some of these resources, like fossil fuels, are scarce. The demand,
supply, and prices of precious metals have a significant influence on the production of
precious metals. The London Metal Exchange (LME), the New York Commodity Exchange
(COMEX), and the Shanghai Futures Exchange (SHFE) are the three main physical futures
trading exchanges where gold is traded as a nonferrous metal [29–31]. Prices on these
exchanges are a measure of the global situation between gold demand and supply, though
they may be significantly impacted by investment flows and currency exchange rates,
both of which could lead to volatile price swings that are at least partially correlated with
changes in the business situation [32,33].
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Figure 1. Gold metallurgy factory.

Forecasting gold prices holds significant relevance within the current economic
context due to the metal’s multifaceted roles as a safe-haven asset, a store of value,
and an indicator of market sentiment. As evidenced by numerous studies [34–36],
gold prices are closely linked to geopolitical tensions, economic uncertainties, and
investor risk aversion, making them invaluable indicators of market dynamics. Amidst
the ongoing COVID-19 pandemic and its socio-economic ramifications, the demand
for safe-haven assets like gold has surged, driving up prices and highlighting gold’s
importance in hedging against inflation and market volatility [37]. Additionally, with the
global economy facing challenges such as inflationary pressures, geopolitical conflicts,
and monetary policy shifts, forecasting gold prices has become essential for investors,
financial institutions, and policymakers to make informed decisions and effectively
manage risks in their portfolios [17]. In this context, the accurate forecasting of gold
prices provides valuable insights into market trends, aids in risk management strategies,
and facilitates better allocation of resources, thereby contributing to greater overall
financial stability and resilience.

Various methods have been employed in the past to predict metal prices. Using two
time-series forecasting methods, Dooley and Lenihan (2005) [38] concluded that ARIMA
works slightly better than the lagged forward price modeling. Multicommodity models
were proposed [39] to assist in estimating long-term silver and copper prices. Artificial
neuronal networks (ANNs) for time series were promoted by Khashei et al. (2010) [40].
The consumption and import of iron ore by China was studied [41] using a grey model
with the particle swarm algorithm (PSO). To capture this cyclical behavior that dominates
the metal market, Kriechbaumer et al. (2014) [42] broke down time series into their time
domain and frequency. Finally, Sánchez Lasheras et al. (2015) [43] used the COMEX
copper spot price as an example and contrast the forecasting abilities of two different
neuronal networks and an ARIMA model.

Two new techniques to predict the COMEX gold spot are used in this article. The
nonlinear autoregressive with exogenous variable, in this case the non-energy index,
support vector regression (NARX DE/SVR) and the Gaussian process regression hy-
bridized with the differential evolution optimizer (DE/GPR) in time-series analysis are
new methodologies that are introduced in this paper for predicting the COMEX gold spot
price [44–49]. The approach suggested successfully identifies nonlinear input features,
tuning the parameters of SVR with RBF kernel.
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This work starts with stating the importance of gold, and then it goes on to explain
the experimental dataset used in this paper. The DE/GPR and NARX DE/SVR are
described in Section 2; we compare the DE/GPR and NARX DE/SVR outcomes with
the experimental values, and Section 3 explains the results. Finally, Section 4 presents a
summary of this paper’s main findings.

2. Materials and Methods
2.1. Experimental Dataset

The monthly COMEX gold spot closing price was the primary data source for the
current study, and, in fact, the dataset includes a time series of gold prices. Using
the RBF kernel with the SVR method [47–49] and also with GPR along with DE for
the parameter tuning [44], we estimated monthly gold prices for the years 2019 and
2020. The non-energy index was utilized to obtain a better model. The World Bank
Commodity Price Data (The Pink Sheet) (2021) [50] was the source of the dataset. The
goal of this project is to predict monthly gold prices for the full calendar years of 2019
and 2020.

2.2. Time-Series Analysis: Computational Procedures
2.2.1. Support Vector Machines Regression (SVR)

Here ε−SVR is presented [48,49]. If we have time-series data, we can extract
a training set that consists of a predicted variable yi ∈ R, ∀i = 1, 2, . . . , m that is
continuous and independent variables xi ∈ Rp , ∀i = 1, 2, . . . , m that can be built using
p lags of yi . As a result, the support vector regression (ε−SVR) technique creates
f (x) = wTx + b where w ∈ Rn denotes the hyperplane’s perpendicular vector, also
known as the director vector and b/∥w∥ denotes the distance between the hyperplane,
with b ∈ R and the origin of the coordinates. Additionally, for all xi training cases,
this approximation must give rise to a maximum deviation from the true value yi
of ε and at the same time, must also be as flat as possible. The problem is modeled
imposing a penalty on the sum of differences that exceeds ε, and flatness is attained
finding the minimal Euclidean norm ∥w∥2. In fact, the SVR approach aims to resolve
the problem [51–53]:

min
w,b,ξ+ ,ξ−

1
2
∥w∥2 + C

m

∑
i=1

(
ξ+i + ξ−i

)
(1)

that meets the conditions
yi −

(
wTxi + b

)
≥ ε + ξ+i i = 1, . . . , m(

wTxi + b
)
− yi ≥ ε + ξ−i i = 1, . . . , m

ξ+i , ξ−i ≥ 0 i = 1, . . . , m

 (2)

ξ+ , ξ− ∈ Rm are the slack variables, and C is the regularization constant. The
penalty imposed on points that are not inside the interval ε is restrained by C in
Equation (1) that is positive, which helps to prevent overfitting. This quantity measures
the model complexity versus the function where we are optimizing horizontality [54–57].
For each training vector, slack variables are provided, allowing deviations that are
greater than ε, while penalizing the deviations in the function. The area that yi ± ε,
∀i encloses is called an ε− insensitive tube (see Figure 2).

We employed the kernelization method to address problems like this one that are
highly nonlinear. The foundation of this approach is the mapping of the initial dataset
to a higher-dimensional space H, referred to as the feature space. For this, we used the
kernel function K

(
xi, xj

)
for the dot product in H. This way, we formulated the primal

optimization problem given by Equation (1) in its dual form to solve it. Applying the
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Karush–Kuhn–Tucker (KKT) conditions resulted in the dual formulation of the optimization
problem [48,49,54–57]:

max
α+ ,α−

[
m

∑
i=1

yi
(
α+i − α−i

)
− ε

m

∑
i=1

(
α+i + α−i

)
− 1

2

m

∑
j=1

(
α+i − α−i

)(
α+j − α−j

)
K
(
xi, xj

)]
(3)

constricted to 
m

∑
i=1

(
α+i − α−i

)
= 0,

0 ≤ α+i ≤ C, i = 1, . . . , m
0 ≤ α−i ≤ C, i = 1, . . . , m

 (4)

We calculated the prediction for a new observation x [48,49,54–57] using:

f (x) =
m

∑
j=1

(
α+i − α−i

)
K
(
xi, xj

)
+ b (5)

The radial basis function (RBF) is also called Gaussian kernel. This is one of the available
kernel functions and is preferred in this study because of its better performance [48,49,54–57]:

K
(
xi, xj

)
= e−σ∥xi−xj∥2

(6)

so that the RBF kernel’s typology is determined by the σ parameter.
The model was created with SVR–ε. LIBSVM [58] was used, and the tuning of the

parameters was achieved with DE optimizer [44,59–61].
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2.2.2. Gaussian Process Regression (GPR)

A Gaussian process is a stochastic process, where a set of random variables is defined
with indices corresponding to time or space. For any finite linear combination, these random
variables follow a multivariate normal distribution. The Gaussian process distribution,
encompassing functions defined over a continuous domain such as space or time, represents
the collective distribution of all these random variables [47–49].

Using lazy learning and the kernel function, the algorithm that employs a Gaussian
process obtains a prediction for an unknown training data point. This estimation, which is
a one-dimensional Gaussian distribution, is more than a prediction; it also provides its level
of uncertainty. Multivariate Gaussian processes can be used for multi-output predictions,
and the multivariate Gaussian distribution for these processes is the marginal distribution
at each point [51].
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Suppose that the training dataset is D = {(xi, yi)/i = 1, 2, . . . , N}. The vectors xi ∈ Rn

include the relevant segregation parameters as well as the extracted or combined features.
The observed values give the filtered volume and outlet turbidity of the filtration process.
X = {xi}N

î=1 is the matrix of the training dataset, which is used as input for obtaining the
output vector y = {yi}N

i=1. Once we have some data, we can transform the prior over
functions that a Gaussian process f (x) converts into posterior over functions.

The mean m(x) and covariance function k(x, x′) of a Gaussian process are the way to
describe it. Then, the Gaussian process is [62,63]:

f (x) : GP
(
m(x), k

(
x, x′

))
(7)

and
m(x) = E[ f (x)]
k(x, x′) = E

[
( f (x)− m(x))( f (x′)− m(x′))T

] (8)

The function m(x) is the predicted value of f (x) for the point X. The covariance
function k(x, x′) measures the confidence level for m(x). The kernel k(·, ·) must be a
positive definite. To keep things simple, the mean function is typically set to zero, but
when there is no prior knowledge of the mean variable, as is the case in this work, it is also
reasonable to do so.

For the Gaussian process, the covariance function selection is crucial. It also goes by
the name “prior” because it contains the assumptions made about the latent regression
model [64]. The RBF covariance function and the affine mean function are expressed in this
study as follows [49,65]:

kSE
(
x, x′

)
= σ2

f exp

(
−∥x − x′∥2

2l2

)
(9)

where l is the length scale and σ2
f the signal variance. The performance of the Gaussian

process is directly impacted by the SE covariance function parameter. In this case, l controls
the function’s change in horizontal scale, while σ2

f controls its change in vertical scale. Most
applications cannot achieve the function values f (x). In actual use, only the noisy inputs
are provided by [62–65]:

y = f (x) + ε (10)

We assumed that Gaussian noise is independent and has an identical distribution
such that ε : N

(
0, σ2

n
)
, and that σn is this noise’s standard deviation. This will make ε the

additive white noise. An individual Gaussian process can also be made up of any finite
number of the input values, as shown by [62–65]:

y : GP
(

m(x), k
(
x, x′

)
+ σ2

nδij

)
= GP

(
0, k
(
x, x′

)
+ σ2

nδij

)
(11)

so that δij is the Kronecker delta function indicated below as:

δij =

{
1 i f i = j
0 otherwise

}
The goal is to predict, given the new point x∗, the function f

∗
and its variance COV( f ∗).

In this context, X∗ represents the test dataset’s input matrix and N∗ its size. The observed
and predicted values for a new point follow a joint Gaussian previous distribution [62–65]:[

y
f ∗

]
: N
(

0,
[

K(X, X) + σ2
n I K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(12)

where
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• K(X, X) is the training dataset covariance matrix and K(X∗, X∗) is the test dataset
covariance.

• K(X, X∗) is the training and test dataset covariance matrix and K(X∗, X) = K(X, X∗)T .

Because y and f* are jointly distributed, it is possible to condition the prior on the
inputs and investigate how likely estimations for the f* are. That is [49,62–65]:

f*
∣∣∣X∗, X, y : N

(
f*

, cov
(

f*
))

(13)

where
f*
= E

[
f*|X∗, X, y

]
= K(X∗, X)

[
K(X, X) + σ2

n I
]−1

y (14)

cov
(

f*
)
= K(X∗, X∗)− K(X∗, X)

[
K(X, X) + σ2

n I
]−1

K(X, X∗) (15)

The prediction of new points can then be made using the ensuing distribution. In fact,

the GPR model-predicted output value for the test point is f*
. Additionally, the variance

cov
(

f*
)

is used to compute the confidence interval (CI) of the predicted output value.

For example, the 95% CI is
[

f* − 2 ×
√

cov
(

f*
)

, f*
+ 2 ×

√
cov
(

f*
)]

. As a result, the GPR

model provides both the estimated values as well as the confidence level.
Finally, because the forecasted outputs of the GPR model only depend on the inputs

xi and the values of y, this is a nonparametric model. Θ =
{

l, σf σn

}
are the GPR model

hyperparameters. The final regression model was constructed using the Gpy module from
the Gaussian process framework in Python [66].

2.2.3. Differential Evolution (DE) Optimizer

This is an approach used to optimize problems by making multiple attempts to
improve the quality of a potential solution. DE was first presented by Storn and Price in
the 1990s [44]. They are metaheuristic techniques because they have the ability to explore
extensive solution spaces without relying on specific assumptions about the problem [52].
In contrast to conventional optimization methods, such as gradient descent, which rely
on differentiability of the optimization problem, DE utilizes multidimensional real-valued
functions instead of the problem’s gradient to solve it [53,54,59–61,67]. DE keeps a group
of potential solutions and uses straightforward formulae to combine existing solutions
to produce new ones. Subsequently, it retains the candidate solution that possesses the
highest score, thus eliminating the need for a gradient. It also offers a quality estimation of
the possible solution [53,54,61,67].

Differential Evolution (DE) can be employed to optimize a problem by iteratively
enhancing the fitness of a possible solution. The efficiency of the Differential Evolution
(DE) optimizer extends to multidimensional real-valued data, as it can successfully handle
non-differentiable optimized functions. Additionally, the DE optimizer can be applied
to dynamic, noisy, or non-continuous problems, showcasing its versatility across various
challenging scenarios. DE optimization involves managing a potential solution population,
combining it through straightforward formulae. The method optimizes by retaining the
fittest solution for the given optimization problem [44]. The technique encapsulates the
variables of the optimization problem, representing them as a vector. The population
comprises NP vectors, representing the actual population, where the length of each vector,
n, is the input variable number for the problem at hand.

If p denotes the index of a vector within the population (p = 1, . . . , NP) and g repre-
sents the generation, we defined the vector as xg

p. The components of this vector represent
the input variables, denoted as xg

p,m, and m is the index (m = 1, . . . , n). The parameters
in the problem are constrained within intervals limited by xmin

m and xmax
m , representing
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the minimum and maximum bounds, respectively. The steps of the DE algorithm are as
follows [59–61,67]:

• Initialization;
• Mutation;
• Recombination;
• Selection.

After the initialization, the search begins. The mutation–recombination–selection
phases conclude when a stopping criterion, such as a specified number of generations, a
time threshold, or a desired level of solution attainment, is satisfied.

Initialization

During the initialization of the population in the first generation, each variable is
assigned a random value within its respective minimum and maximum bounds [59–61,67]:

x1
p,m = xmin

m + rand (0, 1)·
(

xmax
m − xmin

m

)
for p = 1, . . . , NP and m = 1, . . . , n (16)

where the random number within the interval [0, 1] is rand (0, 1).

Mutation

Creating the mutation involves selecting three individuals, randomly referred to as
target vectors xa, xb, and xc. These individuals are then used to generate NP new vectors.
The process for creating the nt

p new vectors is outlined below [59–61,67]:

nt
p = xc + F·(xa − xb) for p = 1, . . . , NP (17)

with the distinct individuals labeled as a, b, c, and p, the mutation rate is controlled by F,
which falls within [0, 2].

Recombination

After generating the NP new vectors, we obtained the trial vectors tg
m that are formed

by applying recombination in a random way and by comparing the outcomes with the
previous vectors xg

p [59–61,67]:

tg
p,m =

{
ng

p,m i f rand (0, 1) < GR

xg
p,m otherwise

}
for p = 1, . . . , NP and m = 1, . . . , n (18)

Regulated by the rate of recombination GR, the creation of trial vectors involves a
combination of updated and original vectors. This is performed individually for each variable.

Selection

To select the vectors for the subsequent generation, determined by the best values
obtained from the fitness function, a straightforward comparison is made between the test
vectors and the original vectors [59–61,67]:

xg+1
p =

tg
p i f f it

(
tg

p

)
> f it

(
xg

p

)
xg

p otherwise

 (19)

2.3. Accuracy of This Approach

The COMEX gold spot price is the variable we tried to predict. To ensure a reliable
forecast of the COMEX gold spot price using the selected input variables, we needed to
find the best model. Subsequently, we compared the observed values ti with the model-
estimated values yi. In this study, three criteria were examined to estimate fit quality:
the root mean square error (RMSE) [68], the mean absolute error (MAE), and the mean
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absolute percentage error (MAPE) [69,70]. These statistical measures are commonly utilized
to compute the accuracy of a mathematical model as well. Their expressions are [69,70]:

RMSE =

√
∑n

i=1(ti − yi)
2

n
(20)

MAE =
∑n

i=1|ti − yi|
n

(21)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ti − yi
ti

∣∣∣∣ (22)

If the RMSE is null, there is an exact match between the observed and predicted
values, implying no difference between them. MAE is the average of the absolute difference
between the target variable ti and the predicted variable yi. Finally, MAPE is frequently
employed as a loss function for regression problems and in the evaluation of models. This
is due to its highly intuitive interpretation in relation to relative error. Finally, R2 was also
calculated for the three models considered of the most interest [70].

2.4. Numerical Schemes

The monthly prices that were predicted began in January 2019 and ended in December
2019, and subsequently started in January 2020 and finished in December 2020. The dataset
used for training included information ranging from January 1960 to March 2021. Therefore,
in this specific instance, we needed to predict twelve future steps. As a result, we executed
a multi-step forecast. The following three methods are used to create the training data:

1. Direct multi-step;
2. Recursive multi-step;
3. Direct–recursive hybrid.

Since the beginning, we used only one variable, namely, the gold price in the previous
years. The non-energy index was added as an exogenous variable after this model was
created, resulting in the NARX model. Following that, we went over the three different
approaches to this multi-step forecasting problem. Here, the variables were standardized.

Direct multi-step (DM)

Under this approach, we built separate models for each prediction. If p stands for
prediction, o for observation, and m for model:

p(t + 1) = m1(o(t), o(t − 1), . . . , o(t − r))

p(t + 2) = m2(o(t), o(t − 1), . . . , o(t − r))
· · ·
p(t + 12) = m12(o(t), o(t − 1), . . . , o(t − r))

(23)

The training dataset remained the same across all models, as is evident. However,
twelve distinct models were created, with each model dedicated to a specific prediction.
Four variables affected how these models perform. The first is the lag, or the length of time
between observations. We employed r + 1 observations for each model in this situation.
One or more variables may be present in the observations at any given time. The gold price
was our sole variable when we began. The final three variables were those that relate to the
chosen method, SVR with an RBF kernel and/or GPR with an RBF kernel in this situation.
These four parameters were optimized using the DE optimizer.

Recursive multi-step (RM)

In this instance, we created a model that is potentially identical to the first model in
the previous technique. Then, we simply predicted the subsequent value at each step. We
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then took into account the predicted value, discarded the most recent value, and forecasted
the following value. Thus, following the model construction, if p stands for prediction, o
for observation, and m for model, the following prediction procedure is indicated as:

p(t + 1) = m(o(t), o(t − 1), . . . , o(t − r))

p(t + 2) = m(p(t + 1), o(t), o(t − 1), . . . , o(t − r + 1))

p(t + 3) = m(p(t + 2), p(t + 1), o(t), o(t − 1), . . . , o(t − r + 2))
· · ·
p(t + 12) = m(p(t + 11), p(t + 10), . . . , o(t − r + 12))

(24)

Indeed, we have a distinctive model, as is evident. When making predictions one
step forward, we took the most recent prediction into account and discarded the earliest
observation. The same factors applied as in the prior instance.

Direct–recursive hybrid (DH)

The two previous numerical systems were combined in this numerical scheme. For
each prediction, we developed a unique model, but during the prediction phase, the
models incorporated the forecasted values. In this instance, as we moved closer to the
prediction, the lag for each model grew. In other words, if the first model started with
r + 1 observations, the second model utilized an additional data point as it incorporated
the newly predicted value during the forecasting phase. If p stands for prediction, o for
observation, and m for model:

p(t + 1) = m1(o(t), o(t − 1), . . . , o(t − r))

p(t + 2) = m2(p(t + 1), o(t), o(t − 1), . . . , o(t − r))

p(t + 3) = m3(p(t + 2), p(t + 1), o(t), o(t − 1), . . . , o(t − r))
· · ·
p(t + 12) = m12(p(t + 11), p(t + 10), . . . , o(t − r))

(25)

In this instance, we did not discard earlier observations as we moved closer to
the prediction.

3. Results and Discussion

The methods for building the dataset used two distinct sets of variables: the gold price
and the non-energy index that is the exogenous variable.

The first 600 months were eliminated because they did not alter the outcomes. This
could be due to the fact that prices during a specific timeframe generally align with patterns
observed in the preceding cycles. The price of gold is influenced by numerous political,
social, and economic variables. They evolve over time, and similar situations from the past
do not recur today. The dataset used for training was built from the recorded monthly
gold prices spanning from January 1960 to March 2021. The lag affects how many training
samples are used. A smaller lag implies a higher number of samples with identical data,
as each sample encompasses a shorter time period and incorporates fewer observations.
During the training phase, no data pertaining to the forecasted period (including the
subsequent period) were employed. The objective was to predict monthly prices specifically
for the 12 months of 2019 and the 12 months of 2020.

Tables 1 and 2 present the mean absolute percentage error (MAPE) for the four distinct
models during the years 2019 and 2020.
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Table 1. The year 2019 MAPE error.

Method DH RM DM

DE/SVR 7.80 7.63 7.80
DE/GPR 8.06 8.69 5.06
NARX DE/SVR 7.61 6.72 5.92
NARX DE/GPR 7.51 6.72 7.48

Table 2. The year 2020 MAPE error.

Method DH RM DM

DE/SVR 22.60 20.61 19.80
DE/GPR 22.82 21.82 10.12
NARX DE/SVR 20.77 20.86 22.94
NARX DE/GPR 20.23 20.44 16.16

Tables 1 and 2 show the following:

• For 2020, the year of the pandemic, the MAPEs are the worst. It seems reasonable
to attribute this to the atmosphere of unpredictability brought on by the pandemic’s
numerous, unprecedented, and unexpected changes.

• The results obtained with only one variable are generally improved by the NARX
models, though this is not always the case.

• The best models were obtained by using strategy 1.

Next, we will now choose the two best models for 2019 and the best model for 2020,
and we will go into detail about their development and outcomes. The three top models
are presented in Table 3 with the ideal parameters chosen by DE.

Table 3. The best models from the years 2019 and 2020.

Type Year Optimal Parameters

Model 1 NARX DE/SVR 2019 Lag = 5, C = 9.2785 × 100

ε = 1.0297 × 100, σ = 7.0995 × 10−3

Model 2 DE/GPR 2019
Lag = 4, σ2

f = 6.1384 × 10−5

l = 1.7375 × 10−1, σ2
n = 9.1358 × 10−5

Model 3 DE/GPR 2020
Lag = 5, σ2

f = 1.5520 × 10−5

l = 1.1629 × 100, σ2
n = 3.2258 × 102

The accuracy for these models is shown in Table 4.

Table 4. Accuracy of the best models.

Model MAE MAPE (%) RMSE R2

Model 1 83.841 5.92 92.700 0.152
Model 2 73.654 5.06 95.873 0.389
Model 3 177.32 10.12 192.68 0.301

Finally, Figure 3 displays the predicted and observed COMEX gold spot price values
for the years 2019 (Model 1), 2020 (Model 3), and 2021 (Model 2) using the NARX DE/SVR,
DE/GPR, and DE/GPR predictor methods, respectively.
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Figure 3. The COMEX gold spot price values, both observed and predicted, for three models:
(a) Model 1 (NARX DE/SVR in the year 2019); (b) Model 2 (DE/GPR in the year 2019); and
(c) Model 3 (DE/GPR in the year 2020).
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The outcomes of the gold price forecasting models hold significant implications for
both investors and policymakers within the realm of the gold market. For investors,
the accuracy and reliability of these models can serve as invaluable tools for decision-
making processes, particularly in portfolio diversification and risk management strategies.
By utilizing such forecasting models, investors can gain insights into potential future
movements in gold prices, enabling them to adjust their investment positions accordingly to
thereby optimize returns and mitigate risks. Moreover, the ability to anticipate fluctuations
in gold prices can aid investors in identifying opportune moments for buying or selling
gold assets, thus enhancing their overall investment performance.

On the other hand, for policymakers, the findings from these forecasting models offer
insights into the dynamics and drivers of gold price movements, which can inform policy
decisions related to economic stability and monetary policy formulation. Understanding
anticipated trends in gold prices can help policymakers assess their potential impact on
inflation, currency valuations, and overall market sentiment. Additionally, by incorporating
these forecasts into their policy frameworks, policymakers can adopt proactive measures
to mitigate adverse effects stemming from volatile gold prices, thereby fostering greater
economic resilience and stability. Overall, the integration of gold price forecasting models
into both investment and policymaking practices represents a critical advancement in
navigating the complexities of the gold market, ultimately enhancing decision-making
processes and fostering more robust market outcomes.

Taking into account the results obtained in this paper, it can be said that DE/GPR
leverages the robustness of GPR in handling noisy data and providing uncertainty estimates
alongside predictions. Through the incorporation of DE, an optimization algorithm inspired
by natural selection, DE/GPR efficiently adapts model parameters to fit complex data
distributions, offering enhanced robustness and flexibility. The synergy between GPR and
DE results in a computationally efficient approach with fewer hyperparameters to tune,
making DE/GPR particularly appealing for tasks where accurate modeling of uncertainty
and adaptability to diverse datasets are paramount.

In the case of NARX DE/SVR, this methodology combines the nonlinear modeling
capabilities of SVR with the efficiency and adaptability of DE. Please also note that SVR
excels in capturing intricate nonlinear relationships while maintaining robustness against
overfitting by means of implicit feature selection and structural risk minimization. When
coupled with Differential Evolution, NARX DE/SVR achieves superior generalization
performance and tolerance to outliers, rendering it suitable for diverse applications where
accurate predictions on unseen data instances are imperative. This amalgamation stands as
a good example of the effectiveness of combining evolutionary optimization with robust
regression techniques for addressing complex real-world problems.

But the proposed methodologies also have certain limitations that must be taken into
account. These limitations can profoundly influence their outcomes in diverse applications.
Firstly, DE/GPR’s utilization of GPR, while advantageous for handling noisy data and
providing uncertainty estimates, faces computational complexity challenges, particularly
with large datasets due to its time complexity. Despite the incorporation of DE for param-
eter optimization, this computational burden may limit scalability. Furthermore, GPR’s
sensitivity to hyperparameters like kernel choice and parameters can significantly impact
model performance, necessitating careful tuning. Additionally, the inherent complexity of
GPR models may hinder interpretability, posing challenges in understanding the reasoning
behind predictions, especially in domains where interpretability is crucial. On the other
hand, NARX DE/SVR’s amalgamation of SVR with DE introduces complexities in model
interpretation and parameter sensitivity. SVR’s tendency to produce complex models,
especially with high-dimensional or nonlinear data, poses interpretability challenges, and
tuning hyperparameters such as the regularization parameter and kernel parameters is
crucial for optimal performance. However, these constraints can influence outcomes by
necessitating trade-offs among model complexity, computational efficiency, and predictive
performance. Striking the right balance requires careful consideration of hyperparame-
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ter tuning, computational resources, and interpretability needs, ultimately impacting the
performance and suitability of DE/GPR and NARX DE/SVR for specific tasks and datasets.

4. Conclusions

The hybrid models constructed in this study utilized variables configured in three
different ways. The output variable of this proposed hybrid models, based on support
vector machines (SVM) [71] and GPR, is the COMEX gold spot price. The metaheuristic
optimizer differential evolution (DE) [44,59–61,67] was employed to obtain the optimal
parameters for SVM and GPR.

Based on the numerical results obtained from publicly available data on gold in the
COMEX market, it can be concluded that Model 1 (NARX DE/SVR technique) is the most
accurate predictor, as indicated by the RMSE statistic. Models 2 and 3 follow in terms of
accuracy. However, when considering the MAPE and MAE statistics, Model 2 emerges as
the best predictor, followed by Models 1 and 3. Additionally, it should be noted that the
direct multi-step scheme yields the most optimal models. In the case of the R2 metric, the
most accurate model is Model 1, followed by Model 3 and Model 1. Please also note that
although R2 values are low, the good MAE, MAPE, and RMSE obtained suggest the model
can make accurate predictions in terms of the magnitude and direction of the forecasted
values. In such cases, the model can be considered accurate for forecasting purposes,
especially if the primary goal is to minimize forecasting errors rather than explaining the
variance in the data.

The forecasted gold prices generated by the DE/GPR and NARX DE/SVR models hold
significant implications for all the stakeholders in the gold market. For example, investors
and traders can utilize these forecasts to strategize their buying, selling, or holding decisions
regarding gold assets. Through an analysis of the predicted price movements, investors
can devise trading strategies, leveraging the timing of purchases or sales based on expected
trends. Moreover, the forecasts empower traders to identify potential opportunities for
arbitrage or speculation within the gold markets, optimizing their investment portfolios
and capitalizing on market dynamics.

For gold mining companies, the forecasted gold prices offer invaluable insights for
optimizing production strategies. By anticipating future price trends, mining companies
can adjust production levels to maximize profitability. During periods of anticipated price
increases, ramping up production can capitalize on higher prices, while during downturns,
scaling back production helps minimize losses. Financial institutions, including banks
and investment firms, can integrate the forecasted gold prices into their risk management
and portfolio optimization strategies. By managing exposure to gold-related assets more
effectively and hedging against price fluctuations, financial institutions can offer gold-
linked financial products, such as exchange-traded funds (ETFs), tailored to client needs,
enhancing portfolio performance and risk mitigation.

Also, central banks and governments can leverage forecasted gold prices to inform
monetary policy decisions and reserve management practices. As gold prices often reflect
broader economic trends and market sentiment, monitoring these forecasts enables poli-
cymakers to adjust gold reserve holdings and implement policies effectively, stabilizing
economies and managing inflationary pressures. Jewelry and industrial manufacturers
relying on gold as a raw material can optimize procurement and production processes
through forecasted price insights. By negotiating better prices with suppliers and hedging
against price fluctuations with forward contracts or options, manufacturers minimize costs
and enhance operational efficiency. In essence, the forecasted gold prices derived from the
DE/GPR and NARX DE/SVR models provide invaluable guidance across the gold market
landscape, enabling stakeholders to make informed decisions and mitigate risks associated
with gold price volatility.

In conclusion, we hold the belief that there is a bright outlook for research endeavors
that merge hybrid models capable of harnessing the full potential of SVR and GPR models.
Such models have the potential to combine various machine learning techniques, paving
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the way for innovative advancements in the field. Furthermore, these innovative techniques
based on statistical machine learning have proven to be better than classical time-series
techniques such as the ARIMA model at foretelling the price of other metals such as
copper [43] and thermal coal [72] or even the forecasting of pollution incidents [73].

Finally, it can be said that researchers can explore various methodologies to develop
more accurate and reliable forecasting models for gold prices, including long short-term
memory (LSTM) [74], Prophet [75], ensemble methods, hybrid models, deep learning archi-
tectures [76], etc. LSTM is a type of recurrent neural network and is effective at capturing
long-term dependencies in sequential data, making it promising for forecasting tasks in
financial markets. Prophet, developed by Facebook, is tailored to handle time-series data
with strong seasonal patterns, making it suitable for forecasting gold prices, which exhibit
complex seasonal and cyclical patterns. Ensemble methods combine multiple models to
improve predictive performance, while hybrid models integrate different techniques to
leverage their complementary strengths. Deep learning architectures like convolutional
neural networks [77] and transformer-based models [78], offer additional avenues for
exploring and understanding gold price dynamics, enabling researchers to develop more
informed decision-making tools for the gold market.
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