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Abstract: In the supplier–retailer–consumer system, the retailer’s replenishment and pricing strategies
impact the entire transaction process, forming a comprehensive trading market. Suppliers offer
advance-cash-credit payments to retailers, while retailers provide customers with cash-credit payment
options. In the current health-conscious consumer market, purchasing decisions are influenced not
only by commodity prices but also by the freshness of products, particularly perishable goods.
Growing awareness of climate change and the advent of carbon emission policies have raised
concerns about the environmental costs of business transactions. This study focuses on perishable
products whose demand is influenced by both price and freshness. It explores the adoption of various
payment methods by suppliers and retailers, as well as the impact of carbon emission cap-and-trade
policies or carbon tax policies on management and pricing strategies. Suitable inventory models are
established to determine the optimal replenishment and pricing strategies for maximizing the current
value of total profit. We illustrate that the current value of total profit demonstrates joint concavity
concerning both the selling price and the replenishment time. Finally, we verify the proposed models
using numerical examples and present the findings of sensitivity analyses. The findings of this study
yield several valuable insights for inventory management of perishable goods.

Keywords: supply chain management; inventory; advance-cash-credit payment; carbon emissions;
deteriorating products

MSC: 90B06

1. Introduction

The growing frequency of extreme weather events in recent times has significantly
increased public awareness about global warming and the environmental effects of green-
house gases. According to the 2023 edition of the “Global Risks Report” released by the
World Economic Forum (WEF), three of the top ten most likely global risks of the future,
whether in the short term or long term, are associated with climate change and severe
weather patterns. It is widely acknowledged that carbon dioxide emissions are the main
driver of global climate change and that the severity of their effects is increasing every year.

To mitigate the impact of these phenomena, multinational organizations and gov-
ernments across the world have begun to impose stringent restrictions aimed at reduc-
ing carbon emissions in virtually all industrial processes. In terms of the “United Na-
tions Framework Convention on Climate Change” of 2015, sometimes referred to as “The
Paris Agreement,” countries have reached a consensus on reducing anthropogenic car-
bon emissions and phasing out greenhouse gas emissions in the latter part of this century.
A succession of policies and plans for net-zero greenhouse gas emissions has been proposed
following a unique report released by the Intergovernmental Panel on Climate Change
(IPCC) in 2018. The top three carbon dioxide emitters in the world, China, the United
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States (US), and the European Union (EU), have set ambitious carbon reduction targets for
2030: China aims to reduce carbon emissions by more than 65% compared with levels in
2015, the US hopes to reduce emissions by between 50% and 52% compared with levels
in 2005, and the EU’s target is to reduce net emissions by 55% compared with 1990. In
pursuit of these and analogous goals, numerous countries globally are actively involved
in diverse strategic endeavors. These encompass the establishment of novel alternative
energy sources, heightened dependence on renewables, enforcement of energy-saving and
carbon-reducing regulations, advocacy for carbon trading markets, implementation of
carbon tax collection systems, and incorporation of carbon offset mechanisms.

Implementation of these policies and measures is undoubtedly affecting the oper-
ations of most businesses. As the external costs associated with emissions can be de-
bilitating, businesses that neglect imperatives to curb emissions when making opera-
tional decisions can potentially jeopardize their survival and growth. Furthermore, re-
ducing carbon emissions not only contributes to cost savings but also enhances oper-
ational efficiency. As a result, the influence of carbon emissions on operational man-
agement has recently begun to garner increased academic attention, with the reduction
of carbon emissions emerging as a particular concern in inventory management. Con-
sequently, there is now a substantial body of literature examining production and in-
ventory models in the context of carbon emission reduction policies (see, for example,
An et al. [1], Dong et al. [2], Fu et al. [3], Hammami et al. [4], Lu et al. [5], Ma et al. [6],
Maulana et al. [7], Mishra et al. [8], Mubin et al. [9], Sabzevar et al. [10], Sarkar et al. [11],
Shi et al. [12]). Dye and Yang [13], for instance, introduced an inventory system for perish-
able goods that incorporates a range of different carbon emission policies and accounts
for the influence of trade credit risk. Their aim was to determine the best credit period
and inventory replenishment strategies to maximize the total profit per unit of time for
the retailer. Daryanto et al.’s [14] study of a three-echelon supply chain model takes into
account both carbon emissions and deteriorating items. Ma et al. [15] addressed the issue
of spoiled goods encountered by suppliers and retailers, considering market demand influ-
enced by factors such as selling price, freshness, and environmental sustainability within
the limitations of cap-and-trade regulations. Cheng et al. [16] formulated an extensive
inventory model that incorporates pricing, pre-sale incentives, advance sales, trade credit,
and carbon tax policies. With the aim of achieving sustainable development objectives, the
proposed model also integrates considerations for carbon tax policies. The objective is to
determine optimal pricing, pre-order discounts, and replenishment decisions under carbon
tax policies, thereby maximizing total profit. Jain et al. [17] proposed a three-echelon sup-
ply chain inventory model incorporating several regulatory strategies, including carbon
offset, carbon tax, and carbon cap-and-trade regulations. The objective of their study was
to identify how to minimize total cost while simultaneously reducing carbon emissions.

Despite the growing body of literature on the impacts of carbon reduction policies on
trade and industry, payment options are an aspect of inventory and operations management
and a topic worthy of exploration. In today’s highly competitive markets, sellers typically
encounter three types of payment options: (1) advance payment, also known as cash
in advance, where the buyer pays the seller for goods and services before the delivery
takes place; (2) cash payment, or cash on delivery, where the buyer settles the payment
immediately upon receiving the goods or services; and (3) credit payment, which allows
the buyer to delay payment within certain permissible terms, with the seller offering goods
or services as soon as the buyer receives them. In the traditional inventory model, the
assumed payment method is cash payment, which is inconsistent with the current business
transaction method. In actual business transactions, it is common for suppliers to request
that buyers make either full or partial payment of the purchase cost within a specified
timeframe prior to the scheduled delivery date. This practice is aimed at minimizing
the risks associated with payment defaults. Advance payment schemes are, therefore,
widely adopted and valuable in reducing estimation errors in demand. Furthermore,
suppliers often provide retailers with attractive credit terms as a means of boosting sales
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and minimizing inventory levels. Trade credit, in particular, can be viewed as an alternative
to pricing discounts as it avoids triggering pricing wars with competitors, which in turn
could lead to sustained price reductions. As a result, trade credit has gained popularity and
is now a significant strategic consideration in company financial planning and management.

Extensive research has been conducted on the interplay between inventory policies
and trade credit. Following Goyal’s [18] pioneering formulation of the initial economic or-
der quantity (EOQ) model for a constant demand rate, which takes into account permissible
delays in payments, numerous articles have explored similar or related issues, often consid-
ering more generalized assumptions. For example, Teng [19] expanded upon Goyal’s [18]
model by integrating the difference between purchase cost and selling price. This research
uncovered that, in specific situations, the economic replenishment interval and order
quantity decrease with the introduction of a permissible payment delay. Chang et al. [20]
suggested an EOQ model specifically tailored for perishable products, while Teng [21] ex-
plored scenarios where suppliers provide full trade credit to reliable customers and partial
trade credit to less dependable customers. Teng et al. [22] later developed an optimal order-
ing policy for stock-dependent demand in the context of a progressive payment scheme.
This analysis was subsequently expanded by considering shifts from constant demand to
patterns of non-decreasing demand (Teng et al. [23]). Ouyang and Chang [24] explored an
economic production quantity (EPQ) model that integrates imperfect production processes,
permissible payment delays, and complete backlogging. Sarkar et al. [25] formulated an
integrated inventory model accounting for lead time, defective units, and payment delays.
Similarly, Liao et al. [26] obtained an optimal strategy for managing perishable items with
capacity constraints by incorporating a two-level trade credit system. Chang et al. [27]
developed an inventory model for retailers, examining the impact of defective items and
trade credits on replenishment decisions. Majumder et al. [28] introduced an EPQ model
specifically tailored for deteriorating substitute items, taking into account the implemen-
tation of a trade credit policy. Panda et al. [29] introduced a method for credit policy in a
two-warehouse inventory model centered on deteriorating items, demand dependent on
price and stock, and partial backlogging.

Considerable academic research has been conducted on the specific topic of advance
payment. Following Zhang’s [30] advance payment scheme that incorporates a fixed per-
payment cost to enhance time and cost savings, Maiti et al. [31] proposed an inventory
model that incorporates stochastic lead time and advance payment, as well as a modified
version that also considers price-dependent demand. A novel approach to addressing
the joint-replenishment inventory control problem for multiple products was presented
by Taleizadeh et al. [32], whose model considers partial payment in advance for raw
materials imported from another country. Thangam [33] examined strategies for optimal
price discounting and lot-sizing policies specifically tailored for deteriorating items within
a supply chain, focusing particularly on the implementation of an advance payment
scheme with two-echelon trade credits. Taleizadeh et al. [34] proposed an EOQ model that
allows for limited backordering in scenarios where buyers are required to make partial
prepayments in multiple installments. Taleizadeh [35] later offered two distinct EOQ
models for managing deteriorating items in the context of multiple prepayments, one that
considers shortages and another that does not. In these two models, the prepayments are
structured as consecutive equal-sized payments. With the aim of analyzing the effects of
advance payment on a firm’s inventory policy, Zhang et al. [36] developed an inventory
model that incorporates various types of advance payment terms.

Several noteworthy studies have considered the implications of lot sizing in inven-
tory management. For example, Teng et al. [37] examined lot-size policies for managing
perishable items with expiration dates, and Taleizadeh et al. [38] considered a lot sizing
model that incorporates advance payment and planned backordering. Feng et al. [39] in-
vestigated an inventory system that incorporates several factors, including a demand curve
influenced by unit price, displayed volume, and sell-by date. This study also considered
the adoption of an advance-cash-credit (ACC) payment scheme by the supplier and the
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retailer. The primary objective for the retailer is to maximize total profit by determining the
optimal price and order cycle simultaneously. Recently, Tsao et al. [40] established a single
supplier–manufacturer chain where the manufacturer received an ACC payment from a
supplier. The model incorporates imperfect EPQ for deteriorating products, with predictive
maintenance applied by the manufacturer. This study aims to identify the optimal replen-
ishment cycle time and predictive maintenance effort to minimize the present value of the
total cost. Several other noteworthy and pertinent studies on advance payment have been
conducted, including those by Li et al. [41], Wu et al. [42], Chang et al. [43], Shi et al. [12],
Taleizadeh et al. [44], and Shi et al. [45].

It is widely recognized in traditional marketing and economic theory that an inverse
relationship exists between price and demand, with the result that higher prices tend to
produce lower demand. Selling price, therefore, plays a pivotal role in influencing consumer
demand and has a significant impact on purchasers’ decision-making processes. Against a
backdrop of increasingly health-conscious consumer preferences, there is a clear inclination
towards purchasing perishable goods that are fresh and far from their sell-by expiration
dates. In view of this, the aging of perishable goods detrimentally impacts demand as it
leads to a loss of product freshness. Several works have addressed inventory management
of fresh produce. Wu et al. [46] investigated inventory management in situations where
time-varying demand is influenced by stock level, product freshness, and expiration date.
Chen et al. [47] expanded on this by considering shelf space as another decisive variable.
Li and Teng [48] examined pricing and lot-sizing strategies in scenarios where demand is
influenced by reference price, selling price, product freshness, and displayed stocks, while
Shi et al. [12] formulated a supply chain model suitable for situations where the demand for
perishable goods is contingent on both stock age and selling price. Other notable studies
which consider the relationship between product freshness and expiration date include the
works of Wang et al. [49], Wu et al. [42], Taleizadeh et al. [50], and Shi et al. [45]. With this
literature in mind, it is reasonable to assume that the demand for perishable goods can be
modeled as a function of both unit price and stock age.

It is evident from the preceding discussion that trade credit plays a significant role in
shaping inventory policies, affecting both the costs for suppliers and the benefits for buyers.
Credit is clearly an integral and unavoidable component of contemporary trade transactions,
and its influence cannot be overlooked. Advance payment schemes are widely prevalent
and highly favored as a payment method, particularly for mitigating the risk of default.
Considering the joint impact of selling price and stock age on the demand for perishable
products, the influence of carbon emission reduction policies on pricing, credit terms, and
operational management practices has become increasingly crucial in today’s landscape. To
address the practical challenges of inventory management and real-world market dynamics,
this paper examines the impacts of the ACC payment scheme and carbon emission policies
on the pricing and replenishment decisions of retailers who deal with perishable goods.
Given that the primary distinction between different payment types lies in the timing of
payments, which in turn affects the time value of money associated with purchasing costs,
discounted cash-flow analysis is a suitable approach for evaluating the impact of these
payment types. This paper thus develops EOQ models for perishable products that account
for the influence of both ACC payment schemes and carbon emission policies. Given that
the demand for perishable goods depends on both unit price and stock age, these models
will be crafted utilizing a discounted cash-flow analysis methodology. The primary aim is
to determine the optimal selling price, order quantity, and replenishment time for a retailer
to maximize the current value of total annual profit. A summary comparison of the relevant
models is presented in Table 1.

The subsequent parts of this paper are segmented into seven sections. Section 2
presents the notations and assumptions utilized in this study, while Section 3 formulates var-
ious mathematical models. Theoretical findings are presented in Section 4, followed by the
illustration of the proposed models through numerical examples in Section 5. In Section 6,
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a sensitivity analysis is conducted, and practical insights for management processes are
provided. Section 7 outlines the study’s conclusions.

Table 1. A brief review of the related literature.

References Demand Function Payment Type Carbon Policy

Chang et al. [43] Price ACC X

Cheng et al. [16] Price Advance-Credit Carbon tax

Feng et al. [39] Price, Stock Age,
and Level ACC X

Jain et al. [17] Constant X Cap-and-trade, Carbon
tax, and Carbon offset

Li and Teng [48] Price, Stock Age,
and Level Cash X

Li et al. [51] Price and Stock Age ACC X

Li et al. [52] Price ACC X

Ma et al. [6] Price and Freshness X Cap-and-trade

Mishra et al. [8] Price and Stock X Cap-and-trade

Roy and Sana [53]) Stochastic Credit X

Sabzevar et al. [10] Price X Cap-and-trade

Shi et al. [12] Constant ACC Carbon tax

Shi et al. [45] Time ACC X

Taleizadeh et al. [44] Constant Advance-Credit X

Tsao et al. [40] Constant ACC X

Wu et al. [42] Constant ACC X

This paper Price and Stock Age ACC Cap-and-trade and
Carbon tax

X: none.

2. Notations and Assumptions

This article will employ the subsequent notations and assumptions.
Notations:

f1 the portion of the procurement cost that must be paid upfront, 0 ≤ f1 ≤ 1
f2 the portion of the procurement cost payable upon delivery, 0 ≤ f2 ≤ 1
f3 the portion of the procurement cost that allows for an acceptable delay from the supplier to the retailer, 0 ≤ f3 ≤ 1 and f1 + f2 + f3 = 1
kl the duration of credit extended by the retailer to customers, i.e., the downstream credit period, kl ≥ 0
ku the duration of credit offered by the supplier to the retailer, i.e., the upstream credit period, ku ≥ 0
ρ the proportion of sales revenue that allows for an acceptable delay from the retailer to customers, 0 ≤ ρ ≤ 1
γ the annual compound interest paid per dollar
t0 the duration over years for which prepayments are made, t0 > 0
c the procurement cost per unit in dollars, c > 0
h the holding cost per unit per year in dollars, excluding interest charges, h > 0
b carbon emissions generated during the purchase of a single unit of the product
he carbon emissions resulting from inventory holding per unit over a given timeframe
oe carbon emissions generated by an order
ce unit carbon trading emission price or unit carbon tax
B carbon emission cap for the retailer
Ip the annual interest charged by the supplier per dollar
Ie the annual interest earned per dollar
x the duration until the expiration date or shelf life, i.e., the stock age, measured in years, x > 0
o the cost of ordering, expressed in dollars per order, o > 0
S the selling price per unit in dollars, S > c > 0 (decision variable)
t the time in years, t ≥ 0

D(t, S) the annual demand rate, D(t, S) = f (S)(x − t)/x , f (S) > 0, f ′(S) < 0 and f ′′ (S) > 0
θ(t) the deteriorating rate at time t, 0 ≤ θ(t) ≤ 1, θ′(t) ≥ 0 and θ(x) = 1
I(t) the inventory level in units at time t
Q the order quantity
T the duration of the cycle period, measured in years, T ≤ x (decision variable)

PTP the current value of the overall annual profit in dollars
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IC1 the current value of interest incurred for advance payment per cycle period T
IC2 the current value of interest incurred for cash payment per cycle period T
IC3 the current value of interest incurred for credit payment per cycle period T
IE1 the current value of interest accrued for credit payment per cycle period T
CC the current value of capital cost per cycle period T

Assumptions:

(1) Shortages are prohibited.
(2) The ending inventory is zero.
(3) The freshness and demand of perishable products are absolutely related to the stock age;

hence, the demand rate is assumed as a function of selling price S and stock age x, that
is, D(t, S) = f (S)(x − t)/x , 0 ≤ t ≤ x, where f (S) > 0, f ′(S) < 0 and f ′′ (S) > 0.

(4) During the credit period ku provided by the upstream supplier, the unsettled account
allows for the generated sales revenue to be deposited into an interest-bearing ac-
count. Once the permissible delay period elapses, the retailer settles the remaining
procurement cost and proceeds to pay the accrued interest charges on the items in
stock. The downstream credit period, kl , is offered by the retailer. Consequently, the
retailer can amass revenue in an account and acquire earned interest when ku ≥ kl .
There is no interest earned for the retailer when ku < kl . Because the product cannot
be sold after the expiration date, it is assumed that kl ≤ x and ku ≤ x.

(5) The supplier asks that the retailer (i) prepay f1 percentage of procurement cost in
t0 years prior to the time of delivery, (ii) pay another f2 percentage of procurement
cost at the time of delivery, and (iii) offer a credit period of ku years on the remaining
f3 percentage of procurement cost (i.e., 0 ≤ f1, f2, f3 ≤ 1, and f1 + f2 + f3 = 1).
Similarly, the retailer extends partial trade credit to customers, allowing them a
credit period of kl years for ρ proportion of sales, while the remaining portion
(i.e., 1 − ρ proportion of sales) is paid in cash.

(6) Two main policy approaches apply to carbon emission reduction: the carbon cap-
and-trade policy and the carbon tax policy. Within the framework of the carbon
cap-and-trade policy, the retailer is assigned an initial cap for carbon emissions and
has the flexibility to trade or exchange emission rights within this established cap. If
the retailer exceeds its carbon cap B, it must purchase extra carbon allowances from the
compliance carbon trading market to offset the difference between its actual emissions
and the established cap. In the scenario where the retailer’s carbon emissions fall
below its carbon cap, however, the retailer will have the opportunity to trade its
surplus carbon allowances with other businesses on the compliance carbon trading
market. In the carbon tax policy, the focus is solely on the amount of tax imposed
on total carbon emissions, without considering other factors or mechanisms such
as trading or allowances. The carbon emissions of the retailer primarily originate
from various operational activities, encompassing tasks such as ordering, purchasing,
and storage.

The purpose of this paper is to determine the optimal selling price, order quantity,
and replenishment time for a retailer to maximize the current value of total annual profit
when an ACC payment scheme is adopted by the supplier, the retailer offers customers a
cash-credit (CC) payment method, and the carbon emissions cap-and-trade or carbon tax is
considered. We, therefore, assume that the supplier agrees to an ACC payment scheme, the
retailer likewise offers customers a CC payment method, and either the carbon emissions
cap or carbon tax policy is included. The demand rate is considered to be dependent on
both the selling price and the age of the stock (i.e., D(t, S)). The discounted cash-flow
approach is adopted to discuss the current value of total annual profit for a retailer.
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3. Mathematical Model Formulation

According to the above notations and assumptions, the inventory level at time t is
given by the following differential equation:

dI(t)
dt

= −D(t, S)− θ(t)I(t) = −
[

x − t
x

f (S)
]
− θ(t)I(t), 0 ≤ t ≤ T ≤ x (1)

with boundary condition I(T) = 0. Solving Equation (1) with boundary condition I(T) = 0,
we obtain

I(t) = e−
∫ t

0 θ(u)du
∫ T

t

[
x − v

x
f (S)

]
e
∫ v

0 θ(u)dudv, 0 ≤ t ≤ T ≤ x (2)

Using (2), the order quantity delivered at time 0 is obtained as follows:

Q = I(0) =
∫ T

0

[
x − v

x
f (S)

]
e
∫ v

0 θ(u)dudv =
∫ T

0
D(v, S)e

∫ v
0 θ(u)dudv (3)

Hence, excluding the consideration of the time value of money, the total procurement
cost is given by

cQ = cI(0) = c f (S)
∫ T

0

x − v
x

e
∫ v

0 θ(u)dudv (4)

Since the ACC payment scheme is adopted by the supplier, the total procurement
cost is subdivided into three payments as delineated below: (1) the advance payment at
t0 years before time 0, (2) the cash payment at time 0, and (3) the credit payment at time ku.
Therefore, the current value of total procurement cost per cycle time T is given as

PC = f1(cQ)eγt0 + f2(cQ) + f3(cQ)e−γku

=
(

f1eγt0 + f2 + f3e−γku
)

c f (S)
∫ T

0
x−v

x e
∫ v

0 θ(u)dudv
(5)

As the retailer’s ordering occurs t0 years before the delivery time 0, the current value
of order cost at time −t0 is described as

OC = oeγt0 (6)

The current value of the holding cost, excluding the interest charged, per cycle time T
is shown as follows:

HC = h
∫ T

0 I(t)e−γtdt

= h
∫ T

0 e−
∫ t

0 θ(u)du∫ T
t D(v, S)e

∫ v
0 θ(u)dudve−γtdt

= h f (S)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

(7)

The retailer offers customers a partial downstream credit period kl on ρ proportion of
sales. The customer receives items at time t and is required to pay 1 − ρ proportion of sales
in cash, while the ρ proportion of sales is paid at time t + kl . Hence, the retailer’s current
value of sales revenue per cycle time T is as follows:

SR = ρS f (S)
∫ T+kl

kl

x − t + kl
x

e−γtdt + (1 − ρ)S f (S)
∫ T

0

x − t
x

e−γtdt (8)

When the carbon cap-and-trade policy is applied, the retailer’s amount of carbon
emissions includes carbon emissions from the buying, holding, and ordering process. In
addition, the retailer’s carbon emission cap is B. Therefore, the carbon emissions cost is
equal to the unit carbon trading price ce multiplied by the difference between the retailer’s
amount of carbon emissions and the carbon emission cap. So, the quantity of carbon
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emissions and the current value of carbon emissions cost per cycle time T can be calculated,
respectively, as follows:

AE = oe + bQ + he

∫ T

0
I(t)dt (9)

and

CE = ce

{
oeeγt0 + bQ + he

∫ T

0
I(t)e−γtdt − BT

}
(10)

Note: In Equation (10), if B = 0, then CE is the current value of the carbon emissions
tax per cycle time T and the carbon tax policy is adopted.

The current value of capital cost consists of (i) the interest charged for advance pay-
ment, (ii) the interest charged for cash payment, and (iii) the interest charged or earned for
credit payment. Figure 1 shows the current values of interest charged for advance payment
and cash payment.
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For the advance payment, the interest charged is shown in both areas (−t0, F1, F2, kl)
and (kl , F2, T + kl) of Figure 1. So,

IC1 = Ipc f (S) f1
∫ kl
−t0

e−γtdt
(∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

+ f1cIp f (S)
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

(11)

For the cash payment, the interest charged is shown in both areas (0, F3, F4, kl) and
(kl , F4, T + kl) of Figure 1. Hence,

IC2 = Ipc f (S) f2
∫ kl

0 e−γtdt
(∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

+ f2cIp f (S)
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

(12)

For the credit payment, according to the values of upstream credit period ku and
downstream credit period kl , there are two potential cases for interest charged or earned:
(i) kl ≤ ku and (ii) kl ≥ ku. Each is discussed separately below.

Case 1: kl ≤ ku
With the retailer offering partial trade credit to customers, T + kl represents the point

in time when the retailer receives the final payment from the customer for ρ proportion of
sales. Based on the values of ku, T, and T + kl , there exist three potential sub-cases.

Case 1.1: kl ≤ ku and ku ≤ T ≤ T + kl
The interest charged is shown in both areas (−ku, F2, T + kl) and (ku, F4, T) of

Figure 2. Thus,
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IC3 = f3cIp f (S)
[

ρ
∫ T+kl

ku
e−γt

(∫ T+kl

t

x − v
x

dv
)

dt + (1 − ρ)
∫ T

ku
e−γt

(∫ T

t

x − v
x

dv
)

dt
]

(13)
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The interest earned is presented in both areas (kl , F1, ku) and (0, F3, ku) of Figure 2. Hence,

IE3 = f3SIe f (S)
[

ρ
∫ ku

kl

e−γt
(∫ t

kl

x − v
x

dv
)

dt + (1 − ρ)
∫ ku

0
e−γt

(∫ t

0

x − v
x

dv
)

dt
]

(14)

From (11)–(14), the current value of capital cost per cycle time T is obtained as

CC1 = IC1 + IC2 + IC3 − IE3 (15)

Using (4)–(8), (10) and (15), the current value of total annual profit is obtained by

PTP1(S, T) = 1
T (SR − OC − PC − HC − CC1 − CE)

= 1
T

{
ρS f (S)

∫ T+kl
kl

x−t+kl
x e−γtdt

+(1 − ρ)S f (S)
∫ T

0
x−t

x e−γtdt − eγt0 (o + ceoe)

−
[(

f1eγt0 + f2 + f3e−γku
)

c + ceb
]

f (S)
∫ T

0
x−v

x e
∫ v

0 θ(u)dudv

−(h + cehe) f (S)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

−Ipc f (S)
(

f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

−( f1 + f2)cIp f (S)
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

− f3cIp f (S)
[
ρ
∫ T+kl

ku
e−γt

(∫ T+kl
t

x−v
x dv

)
dt + (1 − ρ)

∫ T
ku

e−γt
(∫ T

t
x−v

x dv
)

dt
]

+ f3SIe f (S)
[
ρ
∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt + (1 − ρ)

∫ ku
0 e−γt

(∫ t
0

x−v
x dv

)
dt
]

+ceBT}

(16)

Case 1.2: kl ≤ ku and T ≤ ku ≤ T + kl
In Figure 3, the cumulative sales volume per cycle time T is shown as

∫ T

0
D(t, S)dt =

∫ T

0

x − t
x

f (S)dt = f (S)
(

T − T2

2x

)
(17)
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The interest charged is shown in the area (ku, F3, T + kl) of Figure 3. Hence,

IC3 = f3cIp f (S)
[

ρ
∫ T+kl

ku
e−γt

(∫ T+kl

t

x − v
x

dv
)

dt
]

(18)

Using (17) as well as both areas (kl,, F2, ku) and (0, F1, F4, ku) of Figure 3, we obtain

IE3 = ρ f3SIe f (S)
[∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt
]

+(1 − ρ) f3SIe f (S)
[∫ T

0 e−γt
(∫ T

t
x−v

x dv
)

dt +
(

T − T2

2x

)∫ ku
T e−γtdt

] (19)

From (11), (12), (18) and (19), the current value of capital cost per cycle time T is
yielded as

CC2 = IC1 + IC2 + IC3 − IE3 (20)

Using (4)–(8), (10) and (20), the current value of total annual profit is obtained by

PTP2(S, T) = 1
T (SR − OC − PC − HC − CC2 − CE)

= 1
T

{
ρS f (S)

∫ T+kl
kl

x−t+kl
x e−γtdt

+(1 − ρ)S f (S)
∫ T

0
x−t

x e−γtdt − eγt0(o + ceoe)

−
[(

f1eγt0 + f2 + f3e−γku
)

c + ceb
]

f (S)
∫ T

0
x−v

x e
∫ v

0 θ(u)dudv

−(h + cehe) f (S)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

−Ipc f (S)
(

f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

−( f1 + f2)cIp f (S)
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

− f3cIp f (S)
[
ρ
∫ T+kl

ku
e−γt

(∫ T+kl
t

x−v
x dv

)
dt
]

+ f3SIe f (S)
[
ρ
∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt
]

+(1 − ρ) f3SIe f (S)
[∫ T

0 e−γt
(∫ T

t
x−v

x dv
)

dt +
(

T − T2

2x

)∫ ku
T e−γtdt

]
+ceBT}

(21)

Case 1.3: kl ≤ ku and ku ≥ T + kl
All revenue is received by the retailer at time T + kl , and the supplier is paid the

f3 percentage of the procurement cost at time ku, as outlined in Figure 4.
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Therefore, the interest charge is not incurred for credit payment. The interest earned is
shown in both areas (kl,, F3, F4, ku) and (0, F1, F2, ku) of Figure 4. Thus,

IE3 = ρ f3SIe f (S)
[∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt +

(
T − T2

2x

)∫ ku
T+kl

e−γtdt
]

+(1 − ρ) f3SIe f (S)
[∫ T

0 e−γt
(∫ T

t
x−v

x dv
)

dt +
(

T − T2

2x

)∫ ku
T e−γtdt

] (22)

From Equations (11), (12) and (22), the current value of capital cost per cycle time T is
shown as

CC3 = IC1 + IC2 − IE3 (23)

Combining (4)–(8), (10) and (23), the current value of total annual profit is obtained as

PTP3(S, T) = 1
T (SR − OC − PC − HC − CC3 − CE)

= 1
T

{
ρS f (S)

∫ T+kl
kl

x−t+kl
x e−γtdt

= +(1 − ρ)S f (S)
∫ T

0
x−t

x e−γtdt − eγt0(o + ceoe)

= −
[(

f1eγt0 + f2 + f3e−γku
)

c + ceb
]

f (S)
∫ T

0
x−v

x e
∫ v

0 θ(u)dudv

= −(h + cehe) f (S)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdv dt

= −Ipc f (S)
(

f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

= −( f1 + f2)cIp f (S)
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

= +ρ f3SIe f (S)
[∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt +

(
T − T2

2x

)∫ ku
T+kl

e−γtdt
]

= +(1 − ρ) f3SIe f (S)
[∫ T

0 e−γt
(∫ T

t
x−v

x dv
)

dt +
(

T − T2

2x

)∫ ku
T e−γtdt

]
= +ceBT}

(24)

Case 2: kl ≥ ku
The interest earned for credit payment is not incurred, as indicated in Figure 5. The

interest charged is shown in both areas (ku, F2, F3, T + kl) and (ku, F1, T) of Figure 5. Thus,

IC3 = f3cIp f (S)
{

ρ
[(

T − T2

2x

)∫ kl
ku

e−γtdt +
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt
]

+(1 − ρ)
∫ T

ku
e−γt

(∫ T
t

x−v
x dv

)
dt
} (25)
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The interest earned is shown as the area (0, F1, ku) in Figure 5. Hence,

IE3 = f3SIe f (S)
[
(1 − ρ)

∫ ku

0
e−γt

(∫ t

0

x − v
x

dv
)

dt
]

(26)

From (11), (12), (25) and (26), the current value of capital cost per cycle time T is
obtained as

CC4 = IC1 + IC2 + IC3 − IE3 (27)

Hence, using (4)–(8), (10) and (27), the current value of total annual profit is as follows:

PTP4(S, T) = 1
T (SR − OC − PC − HC − CC4 − CE)

= 1
T

{
ρS f (S)

∫ T+kl
kl

x−t+kl
x e−γtdt

+(1 − ρ)S f (S)
∫ T

0
x−t

x e−γtdt − eγt0(o + ceoe)

−
[(

f1eγt0 + f2 + f3e−γku
)

c + ceb
]

f (S)
∫ T

0
x−v

x e
∫ v

0 θ(u)dudv

−(h + cehe) f (S)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdv dt

−Ipc f (S)
(

f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

−( f1 + f2)cIp f (S)
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

− f3cIp f (S)
{

ρ
[(

T − T2

2x

)∫ kl
ku

e−γtdt +
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt
]

+(1 − ρ)
∫ T

ku
e−γt

(∫ T
t

x−v
x dv

)
dt
}

+ f3SIe f (S)
[
(1 − ρ)

∫ ku
0 e−γt

(∫ t
0

x−v
x dv

)
dt
]

+ceBT}

(28)

4. Theoretical Findings

We now discuss the cases of kl ≤ ku and kl ≥ ku. Because of the intricacy of the
problem, demonstrating the joint concavity of the current value of total annual profit over
S and T does not appear straightforward. We use the first-order derivative of PTPi(S, T),
i = 1, 2, 3, and 4 to determine the optimal solution. We then check the sufficient condition
that the Hessian is negative-definite by applying the software Mathematica 13.1 to nu-
merical examples. In addition, the graphs of PTPi(S, T), i = 1, 2, 3, and 4, as shown in
Figures 6–11 below, indicate that PTPi(S, T), i = 1, 2, 3, and 4 are jointly concave over
both S and T.
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4.1. Case 1: kl ≤ ku

Case 1.1: kl ≤ ku and ku ≤ T ≤ T + kl
In order to optimize the current value of total annual profit, we take the first-order

derivative of PTP1(S, T) in (16) with respect to T and S, respectively, set the results to zero,
and re-arrange terms. The optimal replenishment time T1 and selling price S1 are then
determined as follows:

ρS f (S)
(

xT−T2

x e−γ(T+kl ) −
∫ T+kl

kl

x−t+kl
x e−γtdt

)
+(1 − ρ)S f (S)

(
xT−T2

x e−γT −
∫ T

0
x−t

x e−γtdt
)
+ (o + ceoe)eγt0

−
[(

f1eγt0 + f2 + f3e−γku
)
c + ceb

]
f (S)

(
xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−(h + cehe) f (S)
(

T
∫ T

0
x−T

x e
∫ T

t θ(u)du−γtdt −
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

)
−cIp f (S)

(
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)(

xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−( f1 + f2)cIp f (S)
[

T
∫ T+kl

kl
e−γt

(
x−T−kl

x

)
dt −

∫ T+kl
kl

e−γt
(∫ T+kl

t
x−v

x dv
)

dt
]

− f3cIp f (S)
[
ρ
∫ T+kl

ku
e−γt

(
T x−T−kl

x −
∫ T+kl

t
x−v

x dv
)

dt + (1 − ρ)
∫ T

ku
e−γt

(
xT−T2

x −
∫ T

t
x−v

x dv
)

dt
]

− f3SIe f (S)
[
ρ
∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt + (1 − ρ)

∫ ku
0 e−γt

(∫ t
0

x−v
x dv

)
dt
]
= 0

(29)

and [
f (S) + S f ′(S)

]
U1 − f ′(S)W1 = 0 (30)

where
U1 = ρ

∫ T+kl
kl

x−t+kl
x e−γtdt + (1 − ρ)

∫ T
0

x−t
x e−γtdt

+ f3 Ie

[
ρ
∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt + (1 − ρ)

∫ ku
0 e−γt

(∫ t
0

x−v
x dv

)
dt
] (31)

and
W1 =

[(
f1eγt0 + f2 + f3e−γku

)
c + ceb

]∫ T
0

x−t
x e

∫ t
0 θ(u)dudt

+(h + cehe)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

+cIp

[
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
]∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

+( f1 + f2)cIp
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

+ f3cIp

[
ρ
∫ T+kl

ku
e−γt

(∫ T+kl
t

x−v
x dv

)
dt + (1 − ρ)

∫ T
ku

e−γt
(∫ T

t
x−v

x dv
)

dt
]

(32)

Note that because ku ≤ T1 ≤ x, the optimal replenishment time T*
1 = T1 if ku ≤ T1 ≤ x;

T*
1 = x if T1 ≥ x; and T*

1 = ku if T1 ≤ ku.
Case 1.2: kl ≤ ku and T ≤ ku ≤ T + kl
Taking the first-order derivative of PTP2(S, T) in (21) with respect to T and S, respec-

tively, the optimal replenishment time T2 and selling price S2 are determined as follows:

ρS f (S)
(

xT−T2

x e−γ(T+kl) −
∫ T+kl

kl

x−t+kl
x e−γtdt

)
+(1 − ρ)S f (S)

(
xT−T2

x e−γT −
∫ T

0
x−t

x e−γtdt
)
+ (o + ceoe)eγt0

−
[(

f1eγt0 + f2 + f3e−γku
)

c + ceb
]

f (S)
(

xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−(h + cehe) f (S)
(

T
∫ T

0
x−T

x e
∫ T

t θ(u)du−γtdt −
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdv dt

)
−cIp f (S)

(
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)(

xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−( f1 + f2)cIp f (S)
[

T
∫ T+kl

kl
e−γt

(
x−T−kl

x

)
dt −

∫ T+kl
kl

e−γt
(∫ T+kl

t
x−v

x dv
)

dt
]

− f3cIp f (S)
[
ρ
∫ T+kl

ku
e−γt

(
T x−T−kl

x −
∫ T+kl

t
x−v

x dv
)

dt
]

− f3SIe f (S)
[
ρ
∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt
]

+(1 − ρ) f3SIe f (S)
(∫ T

0 e−γt
(

xT−T2

x −
∫ T

t
x−v

x dv
)

dt − T2

2x
∫ ku

T e−γtdt −
(

T2 − T3

2x

)
e−γT

)
= 0

(33)

and [
f (S) + S f ′(S)

]
U2 − f ′(S)W2 = 0 (34)
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where
U2 = ρ

∫ T+kl
kl

x−t+kl
x e−γtdt + (1 − ρ)

∫ T
0

x−t
x e−γtdt

+ f3 Ie

[
ρ
∫ ku

kl
e−γt

(∫ t
kl

x−v
x dv

)
dt
]

+ f3 Ie(1 − ρ)
[∫ T

0 e−γt
(∫ T

t
x−v

x dv
)

dt +
(

T − T2

2x

)∫ ku
T e−γtdt

] (35)

and
W2 =

[(
f1eγt0 + f2 + f3e−γku

)
c + ceb

]∫ T
0

x−t
x e

∫ t
0 θ(u)dudt

+(h + cehe)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

+cIp

[
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
]∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

+( f1 + f2)cIp
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

+ f3cIp

[
ρ
∫ T+kl

ku
e−γt

(∫ T+kl
t

x−v
x dv

)
dt
]

(36)

Note that because ku − kl ≤ T2 ≤ ku, the optimal replenishment cycle time T*
2 = T2 if

ku − kl ≤ T2 ≤ ku; T*
2 = ku′ if T2 ≥ ku; and T*

2 = ku − kl if T2 ≤ ku − kl .
Case 1.3: kl ≤ ku and ku ≥ T + kl
Taking the first-order derivative of PTP3(S, T) in (24) with respect to T and S, respec-

tively, the optimal replenishment time T3 and selling price S3 are determined as follows:

ρS f (S)
(

xT−T2

x e−γ(T+kl ) −
∫ T+kl

kl

x−t+kl
x e−γtdt

)
+(1 − ρ)S f (S)

(
xT−T2

x e−γT −
∫ T

0
x−t

x e−γtdt
)
+ (o + ceoe)eγt0

−
[(

f1eγt0 + f2 + f3e−γku
)
c + ceb

]
f (S)

(
xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−(h + cehe) f (S)
(

T
∫ T

0
x−T

x e
∫ T

t θ(u)du−γtdt −
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

)
−cIp f (S)

(
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)(

xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−( f1 + f2)cIp f (S)
[

T
∫ T+kl

kl
e−γt

(
x−T−kl

x

)
dt −

∫ T+kl
kl

e−γt
(∫ T+kl

t
x−v

x dv
)

dt
]

+ρ f3SIe f (S)
[∫ T+kl

kl
e−γt

(
T x−T−kl

x −
∫ T+kl

t
x−v

x dv
)

dt − T2

2x

∫ ku
T+kl

e−γtdt −
(

T2 − T3

2x

)
e−γ(T+kl )

]
+(1 − ρ) f3SIe f (S)

(∫ T
0 e−γt

(
xT−T2

x −
∫ T

t
x−v

x dv
)

dt − T2

2x

∫ ku
T e−γtdt −

(
T2 − T3

2x

)
e−γT

)
= 0

(37)

and [
f (S) + S f ′(S)

]
U3 − f ′(S)W3 = 0 (38)

where
U3 = ρ

∫ T+kl
kl

x−t+kl
x e−γtdt + (1 − ρ)

∫ T
0

x−t
x e−γtdt

+ f3 Ieρ
[∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt +

(
T − T2

2x

)∫ ku
T+kl

e−γtdt
]

+ f3 Ie(1 − ρ)
[∫ T

0 e−γt
(∫ T

t
x−v

x dv
)

dt +
(

T − T2

2x

)∫ ku
T e−γtdt

] (39)

and
W3 =

[(
f1eγt0 + f2 + f3e−γku

)
c + ceb

]∫ T
0

x−t
x e

∫ t
0 θ(u)dudt

+(h + cehe)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

+cIp

[
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
]∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

+( f1 + f2)cIp
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

(40)

Note that because T3 ≤ ku − kl , the optimal replenishment time T*
3 = T3 if T3 ≤ ku − kl ;

otherwise, T*
3 = ku − kl .
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4.2. Case 2: kl ≥ ku

Utilizing a similar rationale as in Case 1, the subsequent outcomes are derived. Taking
the first-order derivative of PTP4(S, T) in (28) with respect to T and S, respectively, the
optimal replenishment time T4 and selling price S4 are determined as follows:

ρS f (S)
(

xT−T2

x e−γ(T+kl) −
∫ T+kl

kl

x−t+kl
x e−γtdt

)
+(1 − ρ)S f (S)

(
xT−T2

x e−γT −
∫ T

0
x−t

x e−γtdt
)
+ (o + ceoe)eγt0

−
[(

f1eγt0 + f2 + f3e−γku
)

c + ceb
]

f (S)
(

xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−(h + cehe) f (S)
(

T
∫ T

0
x−T

x e
∫ T

t θ(u)du−γtdt −
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

)
−cIp f (S)

(
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
)(

xT−T2

x e
∫ T

0 θ(u)du −
∫ T

0
x−t

x e
∫ t

0 θ(u)dudt
)

−( f1 + f2)cIp f (S)
[

T
∫ T+kl

kl
e−γt

(
x−T−kl

x

)
dt −

∫ T+kl
kl

e−γt
(∫ T+kl

t
x−v

x dv
)

dt
]

− f3cIp f (S)
{

ρ
[
−T2

2x
∫ kl

ku
e−γtdt +

∫ T+kl
kl

e−γt
(

T x−T−kl
x −

∫ T+kl
t

x−v
x dv

)
dt
]

+(1 − ρ)
∫ T

ku
e−γt

(
xT−T2

x −
∫ T

t
x−v

x dv
)

dt
}

− f3SIe f (S)(1 − ρ)
∫ ku

0 e−γt
(∫ t

0
x−v

x dv
)

dt = 0

(41)

and [
f (S) + S f ′(S)

]
U4 − f ′(S)W4 = 0 (42)

where
U4 = ρ

∫ T+kl
kl

x−t+kl
x e−γtdt + (1 − ρ)

∫ T
0

x−t
x e−γtdt

+ f3 Ie(1 − ρ)
∫ ku

0 e−γt
(∫ t

0
x−v

x dv
)

dt
(43)

and
W4 =

[(
f1eγt0 + f2 + f3e−γku

)
c + ceb

]∫ T
0

x−t
x e

∫ t
0 θ(u)dudt

+(h + cehe)
∫ T

0

∫ T
t

x−v
x e

∫ v
t θ(u)du−γtdvdt

+cIp

[
f1
∫ kl
−t0

e−γtdt + f2
∫ kl

0 e−γtdt
]∫ T

0
x−t

x e
∫ t

0 θ(u)dudt

+( f1 + f2)cIp
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt

+ f3cIp

{
ρ
[(

T − T2

2x

)∫ kl
ku

e−γtdt +
∫ T+kl

kl
e−γt

(∫ T+kl
t

x−v
x dv

)
dt
]

+(1 − ρ)
∫ T

ku
e−γt

(∫ T
t

x−v
x dv

)
dt
}

(44)

Note that because 0 < T4 ≤ x, the optimal replenishment time T∗
4 = T4 if T4 ≤ x,

otherwise T∗
4 = x.

5. Numerical Examples

This section presents numerical examples to elucidate the two potential cases kl ≤ ku
and kl ≥ ku. Results when the carbon cap-and-trade policy is applied are presented in
Examples 1 and 2. Results based on the carbon tax policy are shown in Examples 3 and 4.

Example 1. The annual demand rate is f (S) = 3000e−0.03S and deteriorating rate is
θ(t) = 0.03, given the other parameter values are f1 = 0.3, f2 = 0.3, f3 = 0.4, ρ = 0.4,
γ = 0.07, kl = 0.15, ku = 0.25, c = $30, h = $5, t0 = 0.15, x = 0.6 years, o = $250, Ip = 0.07,
Ie = 0.05, b = 5, oe = 400, he = 3, ce = 0.2, and B = 4000.

Solving (29), (30), (33), (34), (37) and (38), the optimal solutions to PTP1(S, T) in (16),
PTP2(S, T) in (21), and PTP3(S, T) in (24) are yielded, respectively, as follows:
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For Case 1.1: kl ≤ ku and ku ≤ T ≤ T + kl , S1 = $65.68, T1 = 0.25 years, and
PTP1(S, T) = $10, 387.60. The Hessian matrix of PTP1(S, T) at (S1, T1) is derived as follows:∣∣∣∣ −9.8294 39.4736

39.4736 −36113

∣∣∣∣ = 353410.96 > 0

This proves that PTP1(S, T) is maximized at (S1, T1). Furthermore, the graph of
PTP1(S, T) in (16), which is shown in Figure 6, clearly demonstrates that PTP1(S, T) exhibits
joint concavity with both S and T.

For Case 1.2: kl ≤ ku and T ≤ ku ≤ T + kl , S2 = $65.07, T2 = 0.15367 years,
and PTP2(S, T) = $11, 000.90. The Hessian matrix of PTP2(S, T) at (S2, T2) is derived
as follows: ∣∣∣∣−11.1339 52.5866

52.5866 −177051

∣∣∣∣ = 1968502.78 > 0

This proves that PTP2(S, T) is maximized at (S2, T2). It is evident from the graph of
PTP2(S, T) in (21) in Figure 7 that PTP2(S, T) exhibits joint concavity with both S and T.

For Case 1.3 of kl ≤ ku and ku ≥ T + kl , S3 = $65.02, T3 = 0.10 years, and
PTP3(S, T) = $10, 435.50. The Hessian matrix of PTP3(S, T) at (S3, T3) is derived as follows:∣∣∣∣−11.6733 56.8985

56.8985 −660751

∣∣∣∣ = 7709907.21 > 0

This proves that PTP3(S, T) is maximized at (S3, T3). As is evident from Figure 8
PTP3(S, T) in (24) exhibits joint concavity with respect to both S and T.

Because PTP*(S, T) = max{PTP1(S, T), PTP2(S, T), PTP3(S, T)} = max{10, 387.60,
11, 000.90, 10, 435.50} = $11, 000.90, the optimal solution to this problem is as follows: the opti-
mal selling price is S∗ = S2 = $65.07, the optimal replenishment time is
T∗ = T2 = 0.15367 years, and the optimal current value of the total annual profit is
PTP∗(S, T) = PTP2(S, T) = $11, 000.90. Furthermore, the optimal order quantity is
Q∗ = Q2 = 57.20 units, and the amount of total annual carbon emissions is
TCE∗ = AE∗/T∗ = 4545.60 units. Since 4545.58 > 4000, the retailer will purchase carbon emis-
sions exceeding the cap (545.58 units) on the compliant carbon trading market.

Example 2. It is presumed that all parameters align with those in Example 1, except
that the downstream credit period is kl= 0.25 years and the upstream credit period is
ku = 0.15 years.

Solving (41) and (42), the optimal solution to PTP4(S, T) in (28) is determined as follows:
The optimal selling price is S∗ = $65.65, the optimal replenishment time is

T∗ = 0.15712 years, and the optimal current value of the total annual profit is
PTP∗(S, T) = $10, 667.20. Furthermore, the optimal order quantity is Q∗ = 57.28 units,
and the amount of total annual carbon emissions is TCE∗ = AE∗/T∗ = 4450.23 > 4000.
Therefore, the retailer will purchase carbon emissions exceeding the cap (450.23 units) on
the compliant carbon trading market.

The Hessian matrix of PTP4(S, T) at the critical point (S∗, T∗) is derived as follows:∣∣∣∣−10.7907 47.4058
47.4058 −165175

∣∣∣∣ = 1780106.56 > 0

This demonstrates that PTP4(S, T) is maximized at the critical point (S∗, T∗). Figure 9,
which presents the graph of PTP4(S, T) as shown in Equation (28), illustrates the joint
concavity of PTP4(S, T) with regard to both the selling price S and the replenishment
time T.

Example 3. It is presumed that all parameters align with those in Example 1, except
that the unit carbon tax is ce = 0.5 and B = 0. The solution process is the same as in
Example 1. Because PTP∗(S, T) = max{PTP1(S, T), PTP2(S, T), PTP3(S, T)} = max {8, 583.12,
8, 919.78, 7, 832.27} = $8, 919.78, the optimal solution to the problem is the optimal selling price
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of S∗ = S2 = $66.79, the optimal replenishment time is T∗ = T2 = 0.18402 years, the optimal
current value of the total annual profit is PTP∗(S, T) = PTP2(S, T) = $8, 919.78, and the optimal
order quantity is Q∗ = 63.18 units. In addition, the carbon tax per year is CE∗/T∗ = $2000.92.
The Hessian matrix of PTP∗(S, T) at the critical point (S∗, T∗) is derived as follows:∣∣∣∣−10.2519 51.8709

51.8709 −139112

∣∣∣∣ = 1423471.72 > 0

This demonstrates that PTP∗(S, T) = PTP2(S, T) is maximized at the critical point
(S∗, T∗). In addition, the graph of PTP2(S, T) in Equation (21) shows the joint concavity of
PTP2(S, T) with regard to both the selling price S and the cycle time T.

Example 4. It is presumed that all parameters align with those in Example 2, except
the unit carbon tax is ce = 0.5 and B = 0. The solution process is also the same. Here, the
optimal selling price is S∗ = $67.39, the optimal replenishment time is T∗ = 0.18830 years,
the optimal current value of the total annual profit is PTP∗(S, T) = $8, 613.43, the optimal
order quantity is Q∗ = 63.24 units, and the carbon tax per year is CE∗/T∗ = $1957.25. The
Hessian matrix of PTP∗(S, T) at the critical point (S∗, T∗) is derived as follows:∣∣∣∣−9.9257 46.6570

46.6570 −129554

∣∣∣∣ = 1283737.26 > 0

This demonstrates that PTP4(S, T) is maximized at the critical point (S∗, T∗). The
graph of PTP4(S, T) in Figure 11 indicates the joint concavity of PTP4(S, T) in regard to
both the selling price S and the replenishment time T.

6. Sensitivity Analysis

In this section, the parameter values from Example 1 are employed to examine the
sensitivity of the optimal solution to variations in input parameters. The numerical results
of the sensitivity analysis and the trends of each parameter’s influence on the decision
variable are depicted in Table 2.

Table 2. Analysis of sensitivity and the trends in each parameter’s impact on the decision variable.

Parameter

Decision
S* T* Q* PTP* TCE*

o = 200 65.01 0.14111 53.24 11,343.70 4797.41
o = 250 65.07 0.15367 57.20 11,000.90 4545.60
o = 300 65.12 0.16538 60.78 10,684.10 4342.41
trend ↗ ↗ ↗ ↘ ↘
c = 25 59.97 0.14276 62.56 13,038.40 5082.61
c = 30 65.07 0.15367 57.20 11,000.90 4545.60
c = 35 70.18 0.16551 52.25 9271.16 4069.54
trend ↗ ↗ ↘ ↘ ↘

γ = 0.05 65.02 0.15432 57.49 11,059.10 4536.50
γ = 0.07 65.07 0.15367 57.20 11,000.90 4545.60
γ = 0.09 65.12 0.15303 56.91 10,942.80 4554.47

trend ↗ ↘ ↘ ↘ ↗
ku = 0.20 65.14 0.15393 57.16 10,965.60 4536.65
ku = 0.25 65.07 0.15367 57.20 11,000.90 4545.60
ku = 0.30 65.00 0.15338 57.23 11,036.90 4554.96

trend ↘ ↘ ↗ ↗ ↗
kl = 0.10 64.96 0.15034 57.19 11,061.90 4563.57
kl = 0.15 65.07 0.15367 57.20 11,000.90 4545.60
kl = 0.20 65.18 0.15426 57.20 10,942.60 4528.62

trend ↗ ↗ ↗ ↘ ↘
ρ = 0.3 64.99 0.15313 57.16 11,058.50 4560.09
ρ = 0.4 65.07 0.15367 57.20 11,000.90 4545.60
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Table 2. Cont.

Parameter

Decision
S* T* Q* PTP* TCE*

ρ = 0.5 65.15 0.15422 57.24 10,943.40 4531.09
trend ↗ ↗ ↗ ↘ ↘

t0 = 0.10 65.00 0.15325 57.18 11,032.20 4557.21
t0 = 0.15 65.07 0.15367 57.20 11,000.90 4545.60
t0 = 0.20 65.13 0.15410 57.22 10,969.60 4534.00

trend ↗ ↗ ↗ ↘ ↘
h = 4 65.00 0.15444 57.56 11,028.10 4535.59
h = 5 65.07 0.15367 57.20 11,000.90 4545.60
h = 6 65.14 0.15291 56.84 10,973.90 4555.57
trend ↗ ↘ ↘ ↘ ↗

x = 0.5 65.04 0.14261 52.23 10,628.10 4710.01
x = 0.6 65.07 0.15367 57.20 11,000.90 4545.60
x = 0.7 65.09 0.16331 61.56 11,292.90 4422.22
trend ↗ ↗ ↗ ↗ ↘

Ip = 0.06 65.02 0.15368 57.29 11,019.40 4548.37
Ip = 0.07 65.07 0.15367 57.20 11,000.90 4545.60
Ip = 0.08 65.12 0.15366 57.11 10,982.40 4542.85

trend ↗ ↘ ↘ ↘ ↘
Ie = 0.04 65.13 0.15427 57.29 10,959.70 4531.37
Ie = 0.05 65.07 0.15367 57.20 11,000.90 4545.60
Ie = 0.06 65.01 0.15308 57.11 11,042.20 4559.84

trend ↘ ↘ ↘ ↗ ↗
b = 4 64.87 0.15322 57.40 11,075.60 4191.14
b = 5 65.07 0.15367 57.20 11,000.90 4545.60
b = 6 65.27 0.15413 57.00 10,926.70 4895.31
trend ↗ ↗ ↘ ↘ ↗

oe = 350 65.06 0.15123 56.44 11,067.20 4260.84
oe = 400 65.07 0.15367 57.20 11,000.90 4545.60
oe = 450 65.08 0.15607 57.94 10,935.60 4822.01

trend ↗ ↗ ↗ ↘ ↗
he = 2 65.05 0.15382 57.27 11,006.30 4516.39
he = 3 65.07 0.15367 57.20 11,000.90 4545.60
he = 4 65.08 0.15352 57.13 10,995.50 4574.74
trend ↗ ↘ ↘ ↘ ↗

ce = 0.1 64.50 0.14286 54.65 11,070.20 4790.71
ce = 0.2 65.07 0.15367 57.20 11,000.90 4545.60
ce = 0.3 65.64 0.16408 59.44 10,954.50 4333.59

trend ↗ ↗ ↗ ↘ ↘
Note: ↗ is increasing; ↘ is decreasing.

Table 2 suggests the following managerial insights:

(1) When any of the parameters (o, c, γ, kl , ρ, t0, h, x, Ip, b, oe, he, or ce) increases, the opti-
mal selling price (S∗) also increases. Conversely, the optimal selling price
(S∗) decreases when the parameters (ku or Ie) increase. Furthermore, the ordering
cost (o) and the procurement cost (c) exert a notable positive influence on the optimal
selling price (S∗). However, the impact of other parameters on the optimal selling
price (S∗) is relatively limited.

(2) The influence of parameters (o, c, kl, ρ, t0, x, b, oe, or ce) on the optimal replenishment
time (T∗) is positive, indicating that an increase in any of these parameters results
in a longer optimal replenishment time (T∗). Conversely, the influence of parame-
ters

(
γ, ku, h, Ip, Ie, or he

)
on (T∗) is negative, suggesting that an increase in any of

these parameters leads to a shorter optimal replenishment time (T∗). Also impor-
tant to highlight is that the ordering cost (o), procurement cost (c), stock age (x),
carbon emissions from an order (oe), and carbon trading price (ce) all exert a notable
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positive effect on the optimal replenishment time (T∗). Conversely, the holding cost
(h) exhibits a substantial negative impact on the optimal replenishment time (T∗). The
impact of other parameters on the optimal replenishment time (T∗) is relatively modest.

(3) A higher value of parameters (o, ku, ρ, t0, x, oe, or ce) results in a higher optimal order
quantity (Q∗), while a higher value of parameters

(
c, γ, h, Ip, b, Ie, or he

)
leads to a

lower (Q∗). Moreover, the ordering cost (o), stock age (x), carbon emissions from an
order (oe), and carbon trading price (ce) all have a considerable positive impact on the
optimal order quantity (Q∗). Conversely, the procurement cost (c) has a substantial
negative effect on the optimal order quantity (Q∗). The influence of other parameters
on the optimal order quantity (Q∗) is relatively minor.

(4) The parameters (ku, x, or Ie) positively influence the optimal current value of the total
annual profit (PTP∗), whereas the parameters (o, c, γ, kl , ρ, t0, h, Ip, b, oe, he, or ce)
negatively affect (PTP∗). Furthermore, the stock age (x) exerts a notable positive
impact on the optimal current value of the total annual profit (PTP∗). Conversely,
both the ordering cost (o) and procurement cost (c) have a considerable negative
effect on the optimal current value of the total annual profit (PTP∗). The impact of
other parameters on the optimal current value of the total annual profit (PTP∗) is
relatively minor.

(5) The impact of parameters (γ, ku, h, Ie, b, oe, or he) on the optimal amount of total
annual carbon emissions (TCE∗) is positive, indicating that an increase in any of
these parameters results in a higher (TCE∗). Conversely, the effect of parameters(
o, c, kl , ρ, t0, x, Ip, or ce

)
on (TCE∗) is negative, suggesting that an increase in any

of these parameters leads to a lower (TCE∗). It is worth noting that the carbon
emissions from buying a product (b) and the carbon emissions from an order (oe)
have a substantial positive impact on the optimal amount of total annual carbon
emissions (TCE∗). Conversely, the ordering cost (o), procurement cost (c), stock age
(x), and carbon trading price (ce) all exert a significant negative effect on the optimal
amount of total annual carbon emissions (TCE∗). The influence of other parameters
on the optimal (TCE∗) is relatively limited.

7. Conclusions

This paper has attempted to formulate suitable EOQ models for perishable products
based on demand, which is influenced by the interplay of selling price and stock age. In-
ventory models for perishable goods have been established for several scenarios, including
suppliers’ adoption of ACC payment schemes, use of CC payment schemes for customers,
and incorporation of carbon emission cap-and-trade or carbon tax policies. To obtain the
optimal solution, the first-order derivative of the current value of the total annual profit
was set to equal zero. Using Mathematica 13.1, we then examined the sufficient condition
that the Hessian matrix is negative-definite. Graphs depicting the current value of the total
annual profit were presented to show the joint concavity of both the selling price and the
replenishment time. Lastly, numerical examples were provided, and sensitivity analysis
was conducted to illustrate the problem and highlight the following management insights
generated by the study:

(1) When facing an increase in ordering or procurement costs, the retailer is required to
elevate the selling price and prolong the replenishment time. Nevertheless, in this
scenario, the optimal current values of total annual profit and the optimal amount of
total annual carbon emissions both diminish.

(2) As the stock age rises, the retailer needs to elongate the replenishment time and
augment the order quantity. Consequently, the optimal current values of total annual
profit are expected to rise, while the optimal amount of total annual carbon emissions
is anticipated to decrease.

(3) As carbon emissions increase, the retailer must raise the selling price and extend
the replenishment time. Consequently, the optimal amount of total annual carbon
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emissions will increase, while the optimal current values of the total annual profit
will decrease.

(4) When the carbon trading price rises, the retailer needs to raise the selling price, extend
the replenishment time, and increase the order quantity. Consequently, both the
optimal amount of total annual carbon emissions and the optimal current values of
the total annual profit will decline.

This study offers valuable insights for the retailers of perishable goods in the context
of carbon emission reduction policies. Its findings have the potential to inform their
adoption of optimal replenishment and pricing strategies and help them to maximize
profits. Future research directions can be categorized into two sections: advancing the
research topic and model and exploring practical applications. Subsequent research in the
first section could explore the following directions: First, the range of carbon emission
policies investigated could be expanded to encompass other policies that might similarly
impact retailers’ pricing and ordering choices. Second, given that advertising significantly
shapes product demand in the contemporary marketing environment, the product demand
function could be expanded to encompass not just the selling price and stock age but also
the effects of advertising campaigns. Lastly, the scope of the study could be expanded to
consider how other variables and factors, such as non-perishable items and shortages, may
influence inventory management models. Subsequent research on practical applications
may explore the following avenues: First, case studies can be employed or real-world
data and empirical evidence can be utilized to validate the developed model. Second, a
simplified version of the model or a decision support tool that practitioners can utilize
without needing extensive knowledge of the underlying mathematics can be created.
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