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Abstract: The medical sciences are facing a major problem with the auto-detection of disease due
to the fast growth in population density. Intelligent systems assist medical professionals in early
disease detection and also help to provide consistent treatment that reduces the mortality rate. Skin
cancer is considered to be the deadliest and most severe kind of cancer. Medical professionals utilize
dermoscopy images to make a manual diagnosis of skin cancer. This method is labor-intensive and
time-consuming and demands a considerable level of expertise. Automated detection methods are
necessary for the early detection of skin cancer. The occurrence of hair and air bubbles in dermoscopic
images affects the diagnosis of skin cancer. This research aims to classify eight different types of skin
cancer, namely actinic keratosis (AKs), dermatofibroma (DFa), melanoma (MELa), basal cell carcinoma
(BCCa), squamous cell carcinoma (SCCa), melanocytic nevus (MNi), vascular lesion (VASn), and
benign keratosis (BKs). In this study, we propose SNC_Net, which integrates features derived from
dermoscopic images through deep learning (DL) models and handcrafted (HC) feature extraction
methods with the aim of improving the performance of the classifier. A convolutional neural network
(CNN) is employed for classification. Dermoscopy images from the publicly accessible ISIC 2019
dataset for skin cancer detection is utilized to train and validate the model. The performance of the
proposed model is compared with four baseline models, namely EfficientNetB0 (B1), MobileNetV2
(B2), DenseNet-121 (B3), and ResNet-101 (B4), and six state-of-the-art (SOTA) classifiers. With an
accuracy of 97.81%, a precision of 98.31%, a recall of 97.89%, and an F1 score of 98.10%, the proposed
model outperformed the SOTA classifiers as well as the four baseline models. Moreover, an Ablation
study is also performed on the proposed method to validate its performance. The proposed method
therefore assists dermatologists and other medical professionals in early skin cancer detection.

Keywords: skin cancer; medical image processing; deep learning; computer-aided diagnosis (CAD);
convolutional neural networks (CNNs); diagnostic imaging; machine learning

MSC: 68T07

1. Introduction

Skin cancer is the most prevalent form of cancer. Clinical screening initiates the
diagnostic procedure that is followed by a histological examination such as dermoscopy
and biopsy [1]. Skin cancer is ultimately caused by DNA mutations that disrupt the normal
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growth of skin cells, resulting in cancer. Ultra Violet (UV) radiations are the significant
contributor to the development of skin cancer. In addition, fair complexion, exposure to
chemicals and radiation, old age, smoking and severe skin trauma or burns contribute to
the formation of skin cancer [2]. Skin cancer is the most frequent kind of cancer diagnosed
in the United States. Among the different classes of skin cancer, melanoma is considered
the deadliest form of skin cancer [3]. Melanoma is identified in less than 1% of all cases
of skin cancer, but it is considered the primary cause of mortality associated with skin
cancer [4]. According to the American Cancer Society’s predictions, there will be approx.
110,213 new cases of melanoma and 7560 deaths from the disease in the US alone in 2024 [5].
When melanoma spreads to the lymph nodes, its five-year survival rate is almost 66%,
whereas the survival rate drops to 27% when the cancer spreads to other organs [6]. The
survival rate of a patient is almost 99 percent when melanoma is detected in the initial
stage [7]. The term non-melanoma cancers encompass a diverse range of subtypes of skin
cancer. Non-melanoma skin malignancies include basal cell carcinoma (BCCa), squamous
cell carcinoma (SCCa), and Merkel cell carcinoma (MCC). It is generally accepted that
the prognoses for skin cancers other than melanoma are less harmful [8]. SCCa and
BCCa are the most occurring types after melanoma, but these diseases are less aggressive
than melanoma [9]. Dermoscopy is a non-surgical technique employed by doctors to
identify suspicious skin lesions [10]. Dermatologists examine the affected area of the
skin for any irregularities in color, size, shape, texture, or border that may indicate the
presence of skin cancer [11]. It is utilized to magnify the lesion’s location, thus allowing the
dermatologist to more closely examine the structure. Moreover, it is difficult to detect the
various types of skin cancer accurately; therefore, it is necessary for the dermatologist to
have experience in this field [12]. The manual examination accuracy rates range from 50%
to 60% for highly skilled dermatologists, which is concerning [13]. An incorrect positive
diagnosis needs a biopsy, whereas a mistaken negative diagnosis does not need a biopsy
and the skin cancer remains undiagnosed, and the individual may die as a result of the
wrong diagnosis [14]. The emergence of noise in dermoscopic photos, such as hair, air
bubbles, and other artifacts, together with lighting effects, complicates the identification
of skin cancer [15]. This demands the development of an AI system that can reliably and
autonomously identify various types of skin cancer from dermoscopic images [16]. Pre-
processing is the first and most important stage in creating an automated detection system.
Moreover, the dermoscopic image quality is enhanced by the elimination of numerous
artifacts, such as hair and other artifacts that create hindrances in the diagnosis process [17].
In order to remove hairs, scientists developed a variety of pre-processing techniques based
on morphological operations and contrast enhancement. Image inpainting is also used to
modify the values of the hair pixels to those of neighboring pixels [18].

The ABCD rule is one of the most common methods for identifying features in der-
moscopic images. Four parameters are taken into account in this approach: the skin lesion
diameter, color change, border structure, and asymmetry [19,20]. The seven-point checklist
is another common tool for the detection of skin cancer [21].

The automated identification of skin cancer by medical imaging improves a derma-
tologist’s clinical practice. Due to the inherent complexities of the field of dermatology,
scientists are compelled to concentrate their work on the advancement and implementation
of artificial intelligence (AI)-based technologies intended for the detection of skin cancer.
The utilization of AI for the purpose of classifying skin cancer has received significant
attention recently. Researchers have achieved significant progress, predominantly in the
detection of disease patterns in medical imaging, through the implementation of AI [17].
In the field of dermatology, AI tools and apps are currently being developed with the
goal of determining the severity of various diseases [18]. These AI tools are an evolution
of a computer algorithm that can learn on its own and carry out certain tasks related to
dermatology, such as distinguishing between different types of skin cancer lesions [19,20].

Moreover, HC features are used to extract features from numerous shapes, textures,
sizes, and colors, which are used to detect skin cancer [22]. Textural attributes provide
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information about the spatial distribution of tone variations in a given area as well as the
connection between neighboring pixels. Texture is regarded as a crucial element since it
is considered both perceptive and practical [23]. The effectiveness of the image content
and visual appearance depends on how well it uses color. The color features of an image
are extracted using color histograms [24]. Currently, researchers successfully retrieve and
classify features from dermoscopic photos using deep learning (DL) algorithms. CNN uses
its deep layers as feature extractors [25]. CNN features are trained using training data,
whereas experts craft HC features to determine a particular set of attributes [26]. The need
to compute resources and the accessibility of huge training sets are the primary barriers to
using a CNN as an effective feature extractor [27].

Apart from the traditional ways of classifying dermoscopic images solely based on
features obtained by HC or DL techniques, researchers have now started classifying dermo-
scopic images utilizing hybrid features [28]. In order to generate improved feature vectors
that improve the performance of the classifier, hybrid approaches blend high-level qualities
obtained via expert consultation with low-level features retrieved using DL methods. This
leads to a more detailed explanation of the image [29].

To improve the performance of the classifier, we used inception V3 (DL method) and
HC features to extract features from dermoscopic images. Using the advantages of both DL
and HC feature extraction techniques, this method aims to extract prominent features. The
proposed model consists of three steps. In the first step, the pre-processing of dermoscopy
images is completed. In the next step, feature extraction and fusion are carried out, and
classification is performed in the last stages. In addition, HC and inception V3 are used for
feature extraction; then, feature fusion is used to combine these features, and lastly, CNN is
used to perform multiclassification using ISIC 2019. The main conclusions drawn from this
study are as follows:

• A variety of morphological operations are executed in the pre-processing phase to
remove hair and anomalies from dermoscopy images to enhance image quality.

• To improve the accuracy of dermoscopy-based skin cancer diagnosis, we apply HC
methods and Inception V3 for efficient feature extraction and use convolutional neural
networks (CNNs) for classification.

• The problems related to class imbalance in ISIC 2019 are effectively addressed by
employing the SMOTE Tomek.

• A comprehensive evaluation of the performance of the proposed model is carried out
through a comparison of evaluation metrics with the results of four baseline classifiers,
namely EfficientNetB0 (B1) [30], MobileNetV2 (B2) [31], DenseNet-121 (B3) [32], and
ResNet-101 (B4) [33], and SOTA classifiers. The results indicate that the effectiveness
of the proposed model is superior when compared to other modern models.

• The most significant visual features of various skin cancer classes are identified using
the Grad-CAM heat map method.

• An innovative framework is developed to diagnose and classify various types of skin
cancers in patients by utilizing dermoscopy images.

• An ablation study is performed to evaluate the practicality of the proposed model.

This paper is organized as follows: Section 2 provides a brief overview of the most
recent methods for the detection of skin cancer. Section 4 offers a brief description of the data
pre-processing, HC techniques, and InceptionV3 used in this study. The experimentation
and the results and discussions are presented in Section 5. The limitations of this study are
discussed in Section 6. Section 7 covers the conclusion as well as future work.

2. Related Work

In recent years, numerous methodologies and techniques have been proposed by
researchers to automate the detection of skin cancer using dermoscopy images. Through
the utilization of feature extraction methodologies, these approaches can be classified as
follows: (a) a fusion of HC and deep learning methods; (b) handcrafted methods; and
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(c) deep learning [34]. Table 1 provides a brief summary of the literature. Moreover,
comprehensive analyses of these methodologies are presented in the subsequent sections.

2.1. Handcrafted Features

Researchers utilize different combinations of HC features, including texture, color,
border, and shape, in order to differentiate dermoscopy images that depict malignant
lesions from benign lesions. Bakheet et al. [35] suggested that an SVM framework could be
utilized to detect the presence of malignant melanoma. This framework includes a set of
HOG features that have been optimized. During the process of HOG feature extraction,
orientation histograms are generated to represent the gradient of the local image at every
pixel within a lesion region with the purpose of computing local features. Khan et al. [36]
introduced a computer-assisted approach for noise elimination in dermoscopy images. A
Gaussian filter was incorporated by the researchers during the pre-processing phase. In
order to perform segmentation, the K-mean algorithm must be implemented. To aid in the
identification of melanoma, color attributes, in addition to local and global textural char-
acteristics, are extracted in RGB space from the skin lesion. Warsi et al. [37] presented an
innovative methodology that aims to streamline the process of feature extraction from der-
moscopy images. The approach utilizes a backpropagation multilayer neural network (NN)
for the purpose of classifying extracted features as color-texture features (CTFs) in three
dimensions. In their publication, Kumar et al. [38] introduced an innovative methodology
for the detection of skin cancer. For segmentation, the system employs a fuzzy C-means
clustering algorithm. To train the classifier, color and local and global textural features are
extracted. To improve melanoma detection, Akan et al. [39] suggested the implementation
of a novel feature descriptor (NC) based on the sample’s pigmentation abundance. The
utilization of threshold values for the number of color differences (NCD), which is an
innovative attribute in the classification of skin lesions, is required for its computation.

2.2. Deep Learning and Handcrafted Feature Fusion

Codella et al. [40] introduced a system for the detection of melanoma. Several HC
features, including a multi-scale variant color histogram, an edge histogram, and a color
histogram, are incorporated into the system. Additionally, the system employs sparse
coding strategies and features derived from multiple DLMs, namely a deep residual
network, a Caffe convolutional neural network, and a fully convolutional U-Net. With
the application of the extracted properties, both the segmented skin lesion and the entire
image were incorporated into a specially delineated region. Li et al. [41] created a two-step
process to classify dermoscopy images of the ISIC 2018 dataset by integrating HC and DL
features based on clinical criteria. The segmentation of lesions is achieved through the
implementation of an enhanced UNet. For the extraction of global features, DenseNet201
and ResNet50V2 DLMs are utilized. Morphological, pigment, and textural attributes are a
few examples of HC features. The ideal ensemble parameters are determined by combining
these features using LightGBM. Khan et al. [42] proposed a hybrid approach for cutaneous
lesion identification, which integrates a deep CNN with an optimized color feature (OCF).
Lesions are divided using the procedure that was previously described. The technique
examination incorporates three datasets. Almaraz et al. [43] recommend the utilization of a
computer-aided design (CAD) system for the classification of dermoscopy images using the
ISIC 2018 dataset. The aforementioned approach combines DL characteristics that utilize
Mutual Information (MI) measurements with HC characteristics that are associated with the
ABCD rule. A variety of classifiers are employed to accomplish classification tasks, such as
support vector machines (SVMs), Relevant Vector Machines (RVMs), and linear regression
(LR). Jayapriya et al. [44] devised a two-stage framework with the objective of detecting
and categorizing skin lesions for the purpose of melanoma diagnosis. For segmentation,
the VGG16 and GoogLeNet models are implemented, whereas for classification, the deep
residual network and HC techniques are utilized to integrate features. For data analysis, the
ISBI 2016 and ISIC 2017 datasets are utilized. In order to classify the data, Kumar et al. [45]
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mixed a CNN and neural networks in a hybrid way. A neural network is supplied with
features extracted from HOSMI-LBP to aid in the process of categorization. Additionally,
CNN facilitates the direct classification of images. In determining the ultimate result, the
sum of the NN and CNN’s contributions is calculated. The pre-processing step conceals
crucial information associated with the border, shape, and texture of the skin lesion, which,
in turn, affects the visibility of the information in dermoscopy images. The implementation
of this approach enhances the overall precision of feature extraction and classification.

2.3. Deep Learning Features

DL methods are increasingly being utilized by experts in medical imaging as a result
of their dual functionality as classifiers and feature extractors. Salido et al. [46] eliminated
hair from the images of the PH2 dataset through pre-processing prior to classifying and
extracting features with AlexNet. Four categories of skin cancer were categorized by Dorj
et al. [47] by applying ECOC SVM with AlexNet. The photos included in the ISIC 2018
dataset were classified by Shahin et al. [48] utilizing a fusion of Inception V3 and ResNet-50.
Dascalu et al. [49] used sound analysis and deep learning techniques for the diagnosis of
skin cancer. Dermoscopy images from the ISIC 2017 dataset were segmented by Pham
et al. [50] utilizing several segmentation techniques, such as U-Net, U-Net ensemble, and
U-Net with a VGG16 encoder. As classifiers, the deep CNNs DenseNet-161, ResNet-152,
and Inception-v4 are applied to segmented images. It was discovered that DenseNet-
161 achieves the highest accuracy rate of 86%. Bisla et al. [51] created a DL technique
for data augmentation and cleansing. The statistical examination conducted by Brinker
et al. [52] revealed that the DL network outperformed the dermatologists’ classification. The
HAM10000 dataset was classified by Carcagn et al. [53] by utilizing SVM and a DenseNet
architecture. In order to improve categorization, innovative multilayer fine-tuning methods
and specialized network architecture provide exceptionally discriminative features. Sarkar
et al. [54] employed a deep depthwise convolutional technique for the binary classification
of disease. Melanoma was automatically identified by El-Khatib et al. [55] utilizing DL-
based techniques. In their study, Adegun et al. [56] introduced a DenseNet framework that
utilized FCN to classify and segment skin lesions. In order to assist in the localization of
lesion boundaries and the refinement of contours, the system integrates a CRF module.
This module employs paired edge potentials, which are generated by linearly combining
Gaussian kernels. A comprehensive examination of the application of DLMs in binary
classification for the detection of malignant melanoma was conducted by Naeem et al. [27].
In their 2021 study, Kumar et al. [57] employed DL methods to determine the incidence
of skin cancer. Ali et al. [58] developed a deep CNN and denoised the HAM10000 dataset
to eliminate unwanted features, such as air bubbles and artifacts, with the intention of
diagnosing skin cancer. Sevli et al. [59] presented a CNN model that can detect the seven
distinct forms of skin lesions found in the HAM10000 dataset. Acosta et al. [60] presented
the two-step categorization approach in which a reduced skin lesion is classified utilizing
ResNet152 after the Mask R_CNN-based skin lesion classifier. In the study by Brinker
et al. [61], the efficiency of dermatologists at various stages of the hierarchy was compared
to the DL algorithm that was trained to employ open-source images. A CNN is more
precise than dermatologists in detecting melanoma.

Khan et al. [62] proposed a method that employs the decorrelation approach to pre-
process dermoscopy images prior to delivering them to the MASK-RCNN for lesion seg-
mentation. At present, the segmented RGB images extracted from the ground truth images
of the ISBI2016 and ISIC2017 datasets are being utilized to train the MASK RCNN model.
The images are segmented prior to feature extraction; the DenseNet deep model is then
cognized of the results. Two distinct layers are utilized in the feature extraction process: a
fully connected layer and an average pool. The proposed methods achieve accuracies of
94.8%, 88.5%, and 96.3% on HAM10 0 0 0, ISBI2016, and ISBI2017.

Khan et al. [63] constructed a model using Resnet50 and the feature pyramid network
(FPN) as its foundational components. The most optimal CNN features are acquired by
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employing softmax classifiers for the final classification. To validate the segmentation
method’s accuracy, the following three datasets are applied: PH2, ISBI2016, and ISIC2017.
The classification task is performed using the HAM10000 dataset based on the selected
metrics (86.5% accuracy, 85.57% sensitivity, 87.01% precision, and 86.28% F1 score).

He X et al. [64] implemented a CAFNet in which two branches are used to extract
properties from dermoscopy images, and a hyper-branch is employed to augment and
integrate these properties at each network level. The hyper-branch is composed specifically
of several co-attention fusion (CAF) modules. To enhance the dependability of the predic-
tion outcome, we additionally propose the incorporation of a combination of prediction
and deep-supervised loss methodology with a mean accuracy of 76.8% when applied to a
dataset consisting of seven-point criteria. Nawaz et al. [65] present fuzzy k-means cluster-
ing (FKM), a fully automated deep learning approach, combined with RCNN to facilitate
the segmentation of melanoma in its early stages. The proposed method pre-processes
the images of the dataset in order to enhance the visibility of the details and reduce noise.
The efficacy of the proposed methodology is evaluated through the utilization of three
well-established datasets. The described methodology attains an average accuracy of 95.6%
when implemented on the PH2 dataset, 93.1% when implemented on the ISIC-2017 dataset,
and 95.40% when implemented on the ISIC-2016 dataset.

A fully convolutional encoder–decoder network (FCEDN) was introduced by Mo-
hakud et al. [66] for segmenting dermoscopy images. The achievement of hyper-parameter
optimization for networks can be accomplished through the implementation of a distinctive
methodology known as Exponential Neighborhood Grey Wolf Optimization (EN-GWO).
The assessment is conducted using the datasets associated with 2016 and 2017 that were
obtained from the International Skin Imaging Collaboration (ISIC). The effectiveness of the
proposed model in partitioning images representing skin cancer is demonstrated with an
accuracy of 98.32% on ISIC 2016 and 87.23% on ISIC 2017. Mukadam et al. [67] utilized a
CNN to classify the seven distinct classifications that were discovered in the HAM10000
database, and a model based on Convolutional Neural Networks (CNNs) was constructed.
The experimental model that has been proposed attains an accuracy of 98.89% to categorize
different types of skin cancer. Afza et al. [68] utilized deep learning and two-dimensional
superpixels. An initial contrast enhancement is applied to the dermoscopy photos. To
obtain feature information, the mapped images are inputted into a transfer learning-trained
deep learning model (ResNet-50). After the features have been restored, they are subjected
to an enhanced grasshopper optimization procedure prior to being categorized utilizing
the Naïve Bayes classifier. Three datasets (containing three, two, and seven skin cancer
classifications, respectively) were utilized to assess the proposed hierarchical method. The
accuracy ratings achieved through the implementation methodology were 85.50%, 95.40%,
and 91.1% on the Ph2, ISBI2016, and HAM1000 datasets.

Additionally, a novel hybrid architecture was suggested by Sayed et al. [69] in which
the optimization of bald eagle search (BES) is incorporated with a convolutional neural
network. This study proposes a data augmentation method that employs a random over-
sampling strategy. After evaluation, the proposed model for predicting melanoma skin
cancer achieved an overall accuracy of 98.37%. A multi-stage framework for melanoma
identification was proposed by Alenezi et al. [70]. In order to show features in dermoscopy
photos and eliminate hair details, this model devises a useful pre-processing technique that
involves dilatation and pooling layers. The feature extractor for the processed photos was
a deep residual neural network. Ultimately, the support vector machine (SVM) classifier
received these chosen characteristics as inputs. The ISIC-2019 and ISIC-2020 datasets were
utilized to assess the performance of the proposed model. Consequently, the suggested
model had a 99% accuracy rate when identifying benign or malignant skin lesions from
the image data. Jasil et al. [71] introduced the Densenet and residual network, a novel
convolutional neural network (CNN) architecture that utilizes contextual information. The
efficacy of the classifier is enhanced by up-sampling the data and adding more information
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to it. The outcomes of the experiments demonstrate that the method achieves 95% accuracy
in the automated categorization of skin lesions using the Ham10000 dataset.

A novel classification network (MFEC net) was proposed by Bindhu et al. [72], which
operates on the principle of multi-stage feature extraction. The fuzzy U-net is utilized to
segment the lesion, while the PCA is utilized to derive the structure-based features. The
color-level co-occurrence matrix is employed to extract color features from the photos,
while the gray-level co-occurrence matrix is utilized to retrieve texture features from the
photos. The deep belief network is used to differentiate between benign and malignant
stages in skin lesion images. The MFEC net technique attains an average accuracy of 98.79%.
Tabrizchi et al. [73] presented a novel approach for the early detection of skin cancer based
on image processing derived from dermoscopy. The model is constructed by utilizing the
widely recognized VGG-16 network. This analysis was conducted using the ISIC dataset.
The results indicate that the accuracy of the proposed model is superior to that of the
alternative techniques that were assessed.

Alam et al. [74] employed the convolutional deep neural network S2C-DeLeNet. It can
classify individual images according to the particular medical condition illustrated in each
image, and it segments lesion-based regions from dermoscopy images in comparison to the
undamaged skin tissue. The segmentation employs the EfficientNet-B4 as a core network
instead of the encoder. On the other hand, the classification sub-network forecasts lesions
through the utilization of learned segmentation feature maps and a “Classification Feature
Extraction” strategy. Similarly, the classification process attains a mean accuracy of 0.9103.
A CNN model was trained using the HAM10000 dataset in order to classify seven unique
types of cutaneous lesions. A total of 91.51% of the data were classified with precision by
the model. The model underwent two evaluations by seven board-certified dermatologists
before being incorporated into an online program. In the initial phase, the model achieved
an accurate classification of skin lesions in 90.28% of the cases. In the succeeding phase, the
model corrected the mistaken diagnosis made by the specialists by 11.14 percent [59].

An evaluation was conducted on the classification accuracy of the DL and ML models.
In terms of accuracy, this work demonstrates that the DL methods outclass the ML algo-
rithms utilized in the proposed study [75]. Dong et al. [76] utilized the CNN model, and
the proposed system was able to attain the highest level of accuracy (95.18 percent). To en-
hance the efficacy of the classification network and reveal latent discriminative features, we
propose the implementation of Cross-Modality Collaborative Feature Exploration (CMC).
The proposed method is assessed using four publicly available datasets of skin lesions:
ISIC 2018 and PH2 for segmentation purposes and ISIC 2019&2020 for classification. The
method achieves an accuracy of 92.63% in skin lesion classification.

Qureshi et al. [77] presented a novel convolutional neural network (CNN) architecture
that integrates multiple CNN models via a meta-learner. The benefits of the proposed
methodology are demonstrated through the utilization of a dataset consisting of 33,126 der-
moscopic images of 2056 individuals. Panthakkan et al. [78] integrated Xception and
ResNet50 to categorize the seven different lesions present in the HAM10000 dataset. The
sliding window method was utilized in the training and evaluation of the models. The
most sophisticated model is the concatenated X-R50, which achieves a prediction accuracy
of 97.8%.

The SCSO-ResNet50 technique was introduced by Akilandasowmya et al. [79] to
ensure accurate forecasts by identifying deep hidden features. The enhanced harmony
search (EHS) method is used to reduce the complexity of the data and maximize their
characteristics. Ensemble classifiers, including Naive Bayes, KNN, SVM, linear regression,
and random forest, are utilized for the early identification of cancer. The efficacy of the
proposed method is evaluated using two datasets: the ISIC 2019 dataset and the Kaggle
skin cancer dataset.
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Table 1. An overview of current studies on the use of several DL and ML models for skin cancer
diagnosis.

Ref. Year Models Dataset Disease Classification Accuracy

[58] 2021 CNN HAM10000 Multiclassification 91.93%
[59] 2021 DCNN HAM10000 Multiclassification 91.51%
[62] 2021 MASK RCNN HAM10000 Multiclassification 94.80%
[63] 2021 PAM-DenseNet HAM10000 Multiclassification 86.50%
[64] 2023 CAFNet-34 Seven-Point Checklist Multiclassification 76.80%

[65] 2022 RCNN
ISIC 2016
ISIC 2017

PH2
Binary Classification

95.40%
93.10%
95.60

[66] 2022 FCEDN ISIC 2016
ISIC 2017 Binary Classification 98.32%

87.23%

[68] 2022 Superpixal DL
ISIC 2016

HAM10000
PH2

Binary Classification
95.40%
91.10
85.50

[69] 2021 BES NN ISIC 2020 Binary Classification 98.37%
[72] 2023 Spiking VGG-13 ISIC 2019 Binary Classification 89.57%
[73] 2023 VGG 16 ISIC Archive Binary Classification 86.30%
[74] 2023 S2C-DeLeNet HAM10000 Multiclassification 91.03%
[79] 2024 SCSO-ResNet50 ISIC 2019 Multiclassification 93.45%

Multiple studies [58–63] have shown that many types of skin cancer, such as AKs,
BCCa, SCCa, BKs, DFa, MNi, MELa, and VASn, have comparable sizes and shapes. Medical
practitioners find it difficult to accurately diagnose melanoma and other skin lesions
based on dermoscopy photos. An automated system is therefore required to automatically
diagnose the aforementioned skin cancer types using dermoscopy photos. The main goal of
previous studies [27,46–54] was to distinguish melanoma from non-melanoma cases using
dermoscopy images. Multiple researches based on deep learning use dermoscopy images
to detect various types of skin malignancies [13–16,41–47]. The task of automatically
classifying skin cancer in dermoscopic images is difficult because of the high levels of
visual similarity and intraclass variation. Furthermore, it is extremely difficult to classify
skin cancers into different categories due to the existence of both intrinsic and extrinsic
artifacts, as well as the differentiation between skin that is normal and skin that is affected.
Consequently, this study aims to develop a framework based on DL and HC that can detect
and classify various types of skin malignancies using dermoscopy images. As a result,
researchers will be able to overcome the previously mentioned challenges.

3. Dataset Description
3.1. ISIC 2019 Skin Cancer Dataset

The renowned dataset from ISIC 2019 consists of 25,331 images comprising eight
distinct types of skin cancer: AKs, BCCa, SCCa, BKs, DFa, MNi, MELa, and VASn. This
dataset includes the images of the MSK Dataset, HAM10000 dataset, and BCN_20000
dataset, and the images of this dataset were obtained in a JPEG format [80]. In this study,
we used 450 AKs images, 650 BCCa images, 850 BK images, 250 DFa images, 850 MELa
images, 1550 MNi images, 250 SCCa images, and 250 VASn images, and Figure 1 shows the
images of skin cancer.
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Figure 1. ISIC 2019 images of different classes.

3.2. Handling Imbalanced Class Dataset

ISIC 2019 is an unequal dataset; there is a significant number of occurrences in one class
and only a few occurrences in the other classes. Instances belonging to minority groups are
incorrectly classified as a consequence of the unequal distribution of classes, making the
classifier system biased and inclined towards instances that belong to the majority [81]. In
the ISIC 2019 dermoscopy image databases, most categories of skin cancer are imbalanced,
as Table 2 shows. As a result, we use SMOTE Tomek to raise the percentage of photos
associated with minority-class diseases across all classes in the dataset. Table 3 compiles all
dermoscopy photos associated with skin cancer after the SMOTE Tomek procedure.

Table 2. Selected samples from ISIC 2019 before SMOTE.

Class Name Selected Images

AKs 450
BCCa 650

BK 850
DFa 250

MELa 850
MNi 1550
SCCa 250
VASn 250

Table 3. Image samples from ISIC 2019 after SMOTE.

Class Name Selected Images

AKs 1600
BCCa 1600

BK 1600
DFa 1600

MELa 1600
MNi 1600
SCCa 1600
VASn 1600
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4. Proposed Methodology

The proposed methodology for classifying dermoscopic images into several classes is
discussed in this section. The whole process of the suggested method is shown in Figure 2.
The following sections illustrate the several procedures involved in classifying dermoscopic
images, as seen in Figure 2.
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4.1. Pre-Processing

Hairs on a dermoscopic image can conceal the shape, texture, and form of a skin
lesion. The presence of hair significantly enhances the difficulty in acquiring features. In
this study, we provide a method for hair removal in dermoscopic images. Moreover, image
normalization and image resizing are performed at this stage.

Hair Removal Process

The RGB dermoscopic images are converted to grayscale to complete this operation. A
black-hat (BH) transformation uses a structural characteristic with a cross shape of 15 × 15
to identify thin-stranded hairs. The BH transform is used to locate the grayscale image’s
intensity. This method computes the difference between the pre-morphological closure
photo and the post-morphological closure photo [82]. In the next step, binary thresholding
is applied to the images to exclude pixels that represent hairs as white and have values less
than 20. The hair reduces the accuracy of the classification; therefore, a hair removal mask
conceals the margins and texture of the skin lesion if the threshold value is lowered. Binary
thresholding is a portraying mask that creates a binary image composed of hair strand
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pixels. The potential pixels are painted in the pixels around them to provide the impression
that they are in a neighborhood [83]. The BH transformation results are shown in Figure 3.
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4.2. Feature Extraction

A set of feature descriptors is needed that helps the classifier distinguish between
dermoscopic images belonging to various categories. The proposed SNC_Net and B1, B2,
B3, and B4 extract features from pre-process dermoscopic images.

Several studies conclude that HC features are simple to extract, particularly from
the small size of data sets. To decide which attributes should be eliminated, experts in
the relevant field are contacted. Compared to other aspects, HC attributes are simpler to
observe and do not need any kind of training set. However, there exist instances when
it becomes challenging to distinguish between the features in complex images; in these
cases, DL methods can be used for feature extraction. These DL models are capable of
automatically extracting features from an input image, but to derive features of good quality,
they need a large and highly diverse training sample. Moreover, low-level features must
be extracted, which leads to a more thorough description of the image and facilitates skin
cancer detection and classification. The proposed method extracts features by using both
the HC and DL approaches. Because the merged feature generates a higher-quality feature
vector, it results in better classifier performance. Since a segmentation mask that removes
all background data sometimes causes a rapid decline in the classifier’s performance,
segmentation is not performed in this study. The tissue around the skin lesion has valuable
information that is lost when the tissue is removed in segmentation, which lowers the
classification accuracy [84,85].

4.2.1. Feature Extraction Using Handcrafted Method

The collection of useful HC features facilitates the process of classifying skin lesions.
These characteristics include shape, color, local, global, and textural feature elements. We
set up histograms to extract color characteristics in five distinct color spaces: grayscale,
RGB, HSV, YCrCb, and L*a*b. To differentiate the different classes of skin lesions, color
characteristics are crucial. The histograms are used to calculate features like kurtosis, mean,
skewness, and standard deviation. All color spaces (except grayscale) contain 52 color
characteristics, each with three color components. Dermoscopic images are analyzed using
the GLCM to extract global textural information [86]. The values of 0◦, 45◦, 90◦, and 135◦

are the four GLCM production orientations that add up to 52 global textural features. FAST



Mathematics 2024, 12, 1030 12 of 35

and Rotated BRIEF are the two methods that are used to extract local textural information.
Combining the FAST feature detector with the BRIEF feature descriptor integrates ORB. It
uses FAST to identify important regions of the images. We found the 64 most important key
points by employing the Harris corner method, in which each key point indicates a distinct
feature [87]. One of the most widely used methods for figuring out an image’s shape
features is the Zernike moments approach. This shape feature descriptor is particularly
helpful in extracting features from images with complicated borders. Zernike moments
are resistant to noise and represent images with fewer details. The proposed technique
describes the skin lesion using the eight orders of Zernike moments that are taken out of
each dermoscopic image [88].

4.2.2. Feature Extraction Using Inception V3

The distinct layers that make up a convolutional neural network (CNN) are the input,
pooling, convolution, fully connected, and classification layers. Inception V3 is the network
that is built by Google. It uses the Inception model to connect the layer attributes and
improve the depth [89]. When certain pixels have unique parameters and biases relative to
the preceding layers, adjustments are made to the convolutional layers. The parameters and
biases are applied to the image after it is divided into smaller sections. These parameters
and biases are referred to as filters. To generate feature maps, these filters are combined
with the identified small regions in the input image. The filters are used to determine
the specific attributes from the image that provide data to the input layer. Convolutional
operations also utilize multiple parameters and engage a single feature to analyze an entire
image through the application of a singular filter. The convolutional layer hyper-parameters
consist of its stride, number of filters, buffering, and local area size. In order to achieve the
most favorable outcomes, the hyperparameters are adjusted to match the dimensions of the
input image. Layer of Pooling (PL) reduces the geographic range, number of components,
and complexity of an image. The constant technique is used when dealing with an input
that has no parameters. A wide range of PL variants are accessible, such as stochastic,
average, and max pooling. The most prevalent variant is max pooling, which reduces the
input when n × n is applied. In situations where the input capacity is constrained, the n × n
region is utilized to its maximum potential. Translational consistency is attained when an
input image is assessed with a little change in location. The place therefore becomes smaller
and eventually vanishes. PL’s output serves as an input for the fully connected layer. The
network could operate like a convolutional neural network since every neuron is linked
to the current layer. Consequently, the convolutional layer has the greatest parameters
out of all the layers. The last layer, known as the classification layer, is linked to the fully
linked layer. Various CNN versions use distinct activation functions (AF). Compared to
tangent and sigmoid functions, non-linear activation functions provide superior results.
The purpose of these functions is to speed up the training process. The chain rule and
vector computation are used by convolutional neural networks (CNNs). Assume that I is a
scalar as ieR and j is a vector as jRh. i is a function of j and denotes the partial derivative.
Its mathematical expression is as follows:(

∂i
∂j

)
=

∂i
∂jn

(1)

In particular, (∂i
∂j) denotes the vector whose magnitude is equal to j, and the nth

the vector denoting the nth component of the number is denoted by (∂i
∂j)n. In particular,

( ∂i
∂js) = (∂i

∂j)
s
.

Furthermore, j is a function of k, whereas k eRw represents a singular vector. Addition-
ally, this is the fractional derivative of i stated in terms of k:(

∂i
∂js

)
xy

=
∂i

∂kx
(2)
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It is found that the fractional derivative is the d x e matrix, as in (∂i)/(∂k) at the
intermission of the x and y, respectively. Chain arguments make it obvious that z owes x
anything. Because of this, some methods map k to i, and others map j to i. The calculation
that is seen below was completed using the chain approach.(

∂i
∂ks

)
as

(
∂i

∂ks

)
=

(
∂i
∂js

) (
∂i

∂ks

)
(3)

The loss computation is employed to determine how much the actual value differs
from the expected value of the CNN i1 and the goal; k1 → e1, e2 →, . . . , k1 → e1 = i . The
loss function may be easily understood: i = ||target − ka||2. The expected output is shown
as argmaxx ka

x. Consequently, a convolutional operation may be computed as follows:

ja+1
x , xa+1, f =

d

∑
x=0

e

∑
y=0

F

∑
f=0

hxy f × ka
xa+1 + x, ya+1, f (4)

where the symbol f stands for the filter of size (d x e x f 1). The size (d1 − d + 1) x (e1 − e + 1)
is therefore preserved by the conv. layer, which is made up of f slices that represent
j(ka+1) in Rda+1 x a+1

, da+1 = da − d + 1, ea=1 = ea − e + 1 and f a+1 = f and is used to
determine the probability of all labels l e{1, . . ., l} for the training instance.

a =
m

∑
l=0

log(q(l))t(l) (5)

The cross-entropy is computed using differentiation when gradient training is applied
to deep functions and it has the simplest form, q(l) t(l), which ranges from −1 to 1. The
cross-entropy decreases when there is a chance that the probability of a right label will
reach a maximum value. When the labels in Inception version 3 lack training instances,
they are said to be mutual (v(l)); the shared label s(l|k) is hence

p′(t|k) = (1− ∈)δl,k +
∈
L

(6)

In an alternative scenario, cross-entropy is calculated as follows:

g
(

p′, q
)
=

m

∑
l=0

log(q(l))p′(l) = (1− ∈)g(r ′, q)+ ∈ g(w, q) (7)

Thus, for losses represented by g(p,q) and g(v,q), the normalization for label smoothing
and the cross-entropy loss g(p,q) are the same. Three different-sized max-pooling and
convolutional layers make up the Inception network [43]. A variety of channels traverse
the network layers subsequent to convolutional operation, and then the non-linear fusion
approach is used. The key design of the Inception network is demonstrated in Figure 4.
ImageNet serves as the pre-training dataset for Keras’s third iteration of the Inception
network. The input images are resized to 299 × 299 for Inception V3. Conversely, Inception
V3 divides integrals into the smallest convolution using a convolutional kernel technique;
3 × 3 convolutions may always be divided into 1 × 3 and 3 × 1 convolutions. Spatial
feature extraction improves the network speed and is efficient since it needs minimal
features. The sizes of the grids are 8 by 8, 17 by 17, and 35 by 35. Figure 4 depicts the basic
layout of the Inception model [90,91].
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4.3. Feature Fusion Process

Feature fusion is used in numerous machine learning and computer vision contexts,
including medical imaging [49,50]. It provides a crucial method for merging the vast
majority of feature maps. The entropy-based approach to integrating attributes is proposed.
Moreover, a single vector is created by combining the acquired features. Three vectors were
computed as follows:

FInV3×i = {InV31×1, InV31×2, InV31×k } (8)

FHC×j = {HC1×1, HC1×2, HC1×k } (9)

At this point, F represents a fused feature vector. The result is then used to calculate
an entropy for a few attributes, as shown below.

Feature Fusionvector(1×n) =
m

∑
l=0

{
InV31×i, HC1×j

}
(10)

Npe = −Mpea

k

∑
i=1

q( f ei) (11)

FeS = −Npe(max( f ei)) (12)

Here, Npe is an entropy and q is the probability of features. Eventually, the affected
photos are identified by putting the selected features into the classification network.

4.4. Classification Using CNN

CNNs are one of the most widely used techniques, which use feature vectors to
perform mathematical linear operations [92]. During training, a CNN functions in two
stages, namely the propagation phases, which are forward and backward. The filter
matrix multiplies the input and weights then a convolutional operation determines the
output. This output is used to calculate errors that occurred during the forwarding step.
The settings are adjusted to take into consideration the final prediction errors during the
backpropagation process. One way to find errors is to compare the result with the ground
truth and use the cost function [93]. In order to decrease error, the parameter’s gradient
is calculated, and thereafter, the parameters are adjusted. A CNN performs well for the
classification task when the dataset is image-based [90]. In this study, CNN is utilized to
multiclassify skin cancer into eight distinct categories.



Mathematics 2024, 12, 1030 15 of 35

4.5. Baseline Models
4.5.1. EfficientNetB0 (B1)

To achieve optimized performance, the Efficient Net architecture balances the model’s
depth, breadth, and resolution. The primary idea is to achieve an ideal balance between
the model size and accuracy. EfficientNetB0 is utilized when minimal computational
resources are required. EfficientNetB0 is widely recognized for its precise performance and
minimal computational requirements in addition to its rational layer count. It is widely
used in several computer vision applications, including image classification and object
detection [30].

4.5.2. MobileNetV2 (B2)

MobileNetV2 is a convolutional neural network architecture that has been expressly
developed for devices with limited computational resources. It is an improved version
of the original MobileNet architecture. It employs depth-wise separable convolutions,
inverted residuals, and linear constraints to enhance its efficacy. In scenarios where compu-
tational resources are limited, its performance in object detection and image classification is
exceptionally strong [31].

4.5.3. DenseNet-121 (B3)

DenseNet-121 is a variant of the densely connected convolutional network DenseNet.
The network’s name incorporates the number “121” to represent the number of layers. Each
preceding layer of DenseNet-121 provides a direct input to the subsequent layer, complying
with the dense connectivity pattern. This connectivity pattern improves the overall efficacy
of information transmission across the network through the utilization of features. The
efficacy of DenseNet-121 in training deep neural networks and its capacity to address the
issue of vanishing gradients are widely acknowledged [32].

4.5.4. ResNet-101 (B4)

ResNet-101 is the variant of ResNet. The number “101” in the name represents the
number of network layers. The ResNet architecture is extensively acknowledged for its
incorporation of residual blocks, which skip connections to facilitate the acquisition of
residual mappings by the network. This architectural design effectively addresses the
challenge of training exceptionally deep neural networks by incorporating an adaptive
solution for the vanishing gradient problem. ResNet-101 has been widely deployed in the
domain of computer vision to perform an extensive range of functions, including image
classification and object detection. The trade-off between the computing efficiency and
model depth makes it suitable for a broad range of applications [33].

4.6. Performance Evaluation

We analyzed the dermoscopy images to examine how well the SNC_Net performs to
classify the eight types of skin cancer. After every model was trained, the data from every
stage of the suggested method were used to create the confusion matrix-based performance
parameters. A range of metrics, including accuracy (Accu), recall (Rec), F1 score (FS),
precision (Pre), true positive rate (Tp), true negative rate (TN), false positive rate (Fp), and
false negative rate (FN), were used to assess the identification performance of the SNC_Net
models on the testing dataset. The parameters may be measured using Formulas (13)–(17).

Accu =
TP + TN

TP + FP + TN + FN
(13)

Sen =
TP

TP + FN
(14)

Pre =
TP

TP + Fp
(15)
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Rec =
TP

TP + Fp
(16)

FS =

(
P ∗ R
P + R

)
∗ 2 (17)

5. Experimental Results

In this section, we compare the most recent deep network with SNC_Net. Four
different basic deep networks are analyzed and evaluated in Table 2 using the proposed
SNC_Net. The same set of parameters are used to assess the effectiveness of each deep
neural network.

5.1. Experimental Setup

Four baseline models and the proposed SNC_Net model were among the five models
that were successfully constructed using Keras. Python was used as a programming
language; 32 gigabytes of RAM and a 12 GB NVIDIA GPU were used in a Windows 10 PC
for the experiment.

5.2. Accuracy Compared with Other Models

We compared our proposed SNC_Net with four existing baseline networks, B1, B2,
B3, and B4, using SMOTE Tomek. Furthermore, we compared the proposed SNC_Net
before implementing the SMOTE Tomek. Up-sampling is used by the system to provide
outstanding results for the recommended model. Table 4 displays the accuracy values for
the proposed SNC_Net without SMOTE, SNC_Net with SMOTE, B1, B2, B3, and B4, which
are 91.45%, 97.81%, 93.39%, 95.21%, 92.68%, and 95.80%. Figure 5 illustrates the significant
improvement that is possible with the proposed SNC_Net with SMOTE.

Table 4. Performance comparison of SNC_Net with baseline models.

Classifiers Accuracy Precision Recall F1 Score AUC

B1 93.39% 93.52% 93.15% 93.49% 99.14%
B2 95.21% 95.58% 95.23% 95.33% 99.21%
B3 92.68% 91.99% 92.55% 92.24% 98.99%
B4 95.80% 95.79% 95.44% 95.85% 99.43%
Proposed SNC_Net
(Without SMOTE Tomek) 91.45% 91.82% 91.67% 91.70% 97.51%

Proposed SNC_Net
(With SMOTE Tomek) 97.81% 98.31% 97.89% 98.10% 99.67%Mathematics 2024, 12, x FOR PEER REVIEW 17 of 35 

 

 

 
Figure 5. Accuracy comparison of the proposed SNC_Net with four baseline networks: (a) B1, (b) 
B2, (c) B3, (d) B4, (e) SNC_Net without SMOTE, and (f) SNC_Net with SMOTE. 

5.3. AUC Comparison of Recent Deep Models with Proposed SNC_Net 
Our suggested model, SNC_Net, is built on HC and DL methods and features several 

units that are very successful in classifying various types of skin cancer. We evaluated our 
proposed SNC_Net by comparing it with four baseline networks. The following AUC val-
ues were reached by the baseline networks B1, B2, B3, and B4: 99.14%, 99.21%, 98.99%, 
and 99.43%. Using the same dataset, Figure 6 shows that the AUC values of 97.51% and 
99.67% were obtained by the SNC_Net without SMOTE and SNC_Net with SMOTE. The 
SNC_Net AUC values are greater than those of the baseline models. 

Figure 5. Cont.



Mathematics 2024, 12, 1030 17 of 35

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 35 
 

 

 
Figure 5. Accuracy comparison of the proposed SNC_Net with four baseline networks: (a) B1, (b) 
B2, (c) B3, (d) B4, (e) SNC_Net without SMOTE, and (f) SNC_Net with SMOTE. 

5.3. AUC Comparison of Recent Deep Models with Proposed SNC_Net 
Our suggested model, SNC_Net, is built on HC and DL methods and features several 

units that are very successful in classifying various types of skin cancer. We evaluated our 
proposed SNC_Net by comparing it with four baseline networks. The following AUC val-
ues were reached by the baseline networks B1, B2, B3, and B4: 99.14%, 99.21%, 98.99%, 
and 99.43%. Using the same dataset, Figure 6 shows that the AUC values of 97.51% and 
99.67% were obtained by the SNC_Net without SMOTE and SNC_Net with SMOTE. The 
SNC_Net AUC values are greater than those of the baseline models. 

Figure 5. Accuracy comparison of the proposed SNC_Net with four baseline networks: (a) B1, (b) B2,
(c) B3, (d) B4, (e) SNC_Net without SMOTE, and (f) SNC_Net with SMOTE.

5.3. AUC Comparison of Recent Deep Models with Proposed SNC_Net

Our suggested model, SNC_Net, is built on HC and DL methods and features several
units that are very successful in classifying various types of skin cancer. We evaluated
our proposed SNC_Net by comparing it with four baseline networks. The following AUC
values were reached by the baseline networks B1, B2, B3, and B4: 99.14%, 99.21%, 98.99%,
and 99.43%. Using the same dataset, Figure 6 shows that the AUC values of 97.51% and
99.67% were obtained by the SNC_Net without SMOTE and SNC_Net with SMOTE. The
SNC_Net AUC values are greater than those of the baseline models.
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5.4. Comparison of Proposed SNC_Net with Other Networks Using Precision

We compared SNC_Net using SMOTE Tomek with B1, B2, B3, and B4 on the same
dataset. The proposed SNC_Net using the SMOTE method yielded amazing results. The
suggested SNC_Net with and without SMOTE earned precision values of 98.31% and
91.82%, respectively, whereas B1, B2, B3, and B4 achieved 93.52%, 95.58%, 91.99%, and
95.79% precision, respectively. Our research indicates that the proposed SNC_Net with
SMOTE performs better than the baseline networks, as shown in Figure 7.
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5.5. Comparison of Proposed SNC_Net with Other Networks Using Recall

The method involves dividing the overall number of true accurate positives by the total
number of accurate positive predictions. The model needed to identify positive samples
is assessed using the recall metric. Greater recall percentages indicate an abundance of
accessible positive samples. As shown in Figure 8, recall curves are utilized to compare the
proposed SNC_Net to the baseline networks. The recall percentages were 97.89%, 91.70%,
93.15%, 95.23%, 92.55%, and 95.44% for the proposed SNC_Net with and without SMOTE,
B1, B2, B3, and B4, respectively. The previously given complete explanation may be the
reason for the proposed strategy’s remarkable recall effectiveness.
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(e) SNC_Net without SMOTE, and (f) SNC_Net with SMOTE.

5.6. F1 Score Compared of Proposed SNC_Net with Recent Models

The suggested methods, SNC_Net without SMOTE and SNC_Net with SMOTE, pro-
duced F1 score values of 91.70% and 98.10%, respectively. Four baseline networks—B1, B2,
B3, and B4—have F1 scores of 93.49%, 95.33%, 92.24%, and 95.85%, as shown in Figure 9.
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Figure 9. F1 score computed between method with four baseline networks; (a) B1, (b) B2, (c) B3,
(d) B4, (e) SNC_Net without SMOTE, and (f) SNC_Net with SMOTE.

5.7. Loss Comparison of Proposed SNC_Net with Other Deep Networks

The difference between the expected and actual numbers is calculated using loss
functions. The categorical cross-entropy method was used to compute the research’s loss.
When up-sampled photos were used to build the network, the findings became much more
remarkable. The suggested SNC_Net produced loss values of 0.0512 and 0.8417 with and
without SMOTE, while B1, B2, B3, and B4 obtained loss values of 0.2516, 0.2244, 0.2056,
and 0.2124, respectively. This significant reduction in SNC_Net loss with SMOTE is seen in
Figure 10.
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(b) B2, (c) B3, (d) B4, (e) SNC_Net without SMOTE, and (f) SNC_Net with SMOTE.

5.8. ROC Comparison of Proposed SNC_Net with Other Deep Networks

ROC is used to evaluate the precision of disease diagnoses in connection to classifier
prediction. The performance of a classifier is assessed by examining the Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve; a greater AUC signifies
a more effective classifier. We evaluated the accuracy of our proposed SNC_Net on the
curve with and without SMOTE using the dataset. Using the same dataset, this curve
contrasted the suggested SNC_Net with and without SMOTE to the four deep models. The
proposed SNC_Net with and without SMOTE is illustrated in Figure 11. The ROC values
for B1, B2, B3, B4, and SNC_Net without and with SMOTE are as follows: 0.9023, 0.9341,
0.9256, 0.9413, 0.9257, and 0.9736, respectively. Figure 11 demonstrates how up-sampling
the proposed SNC_Net significantly enhances the ROC curve.
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Figure 11. ROC curve comparison of performance of baseline models with proposed method with
four baseline networks; (a) B1, (b) B2, (c) B3, (d) B4, (e) SNC_Net without SMOTE, and (f) SNC_Net
with SMOTE.

5.9. Values of AUC (ROC) Extension Compared to Other Models

An enhancement of the ROC curve is utilized, as shown in Figure 12, to depict a
comparison between the SNC_Net and four baseline networks. Following the implemen-
tation of the SMOTE technique to achieve equilibrium in the dataset, the performance of
the proposed method demonstrated a substantial enhancement in comparison to the four
models illustrated in Figure 12. The AUC values for the classes supplied by the proposed
SNC_Net—class 0 (AKs), class 1 (BCCa), class 2 (SCCa), class 3 (BKs), class 4 (DFa), class 5
(MNi), class 6 (MELa), and class 7 (VASn)—both with and without the implementation of
the SMOTE technique also demonstrated a substantial effect. The observable improvements
in AUC provide support for the effectiveness and reliability of the feature selection process
and the SMOTE technique in SNC_Net.
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5.10. Confusion Matrix Comparison of Proposed SNC_Net with Other Networks

To evaluate our proposed model using the confusion matrix, we examined it with
other networks. As seen in Figure 13, the system applied to SMOTE results in effective
growth for SNC_Net. Although the SNC_Net demonstrated accurate classification for 121
out of the 134 images presented in the AKs instances, it made errors by misidentifying
14 images. Based on the data depicted in Figure 13, 135 out of a possible 147 BCCa images
were accurately classified as BCCa, while 13 images were misclassified as other diseases in
error. The SNC_Net incorrectly classified 27 images for BKs and it accurately identified 111
out of 138 total output images as BKs. SNC_Net accurately identified 136 DFa images out
of a total of 139 images. In standard operating conditions, 129 images were categorized
as MELa, while 20 images were categorized to the wrong class. The precise detection of
100 MNi images out of a total of 130 images was accomplished by the proposed method.
A total of 123 out of 125 images were correctly identified as SCCa by SNC_Net, whereas
119 images of VASn were correctly identified, and only 2 images were wrongly classified.

Furthermore, we employed Grad-CAM heatmaps to visually depict the results gen-
erated using our proposed model. The heatmap that is illustrated in Figure 14 serves the
purpose of graphically depicting the particular region of interest to which the model is
allocating its resources.



Mathematics 2024, 12, 1030 25 of 35

Mathematics 2024, 12, x FOR PEER REVIEW 25 of 35 
 

 

5.10. Confusion Matrix Comparison of Proposed SNC_Net with Other Networks 
To evaluate our proposed model using the confusion matrix, we examined it with 

other networks. As seen in Figure 13, the system applied to SMOTE results in effective 
growth for SNC_Net. Although the SNC_Net demonstrated accurate classification for 121 
out of the 134 images presented in the AKs instances, it made errors by misidentifying 14 
images. Based on the data depicted in Figure 13, 135 out of a possible 147 BCCa images 
were accurately classified as BCCa, while 13 images were misclassified as other diseases 
in error. The SNC_Net incorrectly classified 27 images for BKs and it accurately identified 
111 out of 138 total output images as BKs. SNC_Net accurately identified 136 DFa images 
out of a total of 139 images. In standard operating conditions, 129 images were categorized 
as MELa, while 20 images were categorized to the wrong class. The precise detection of 
100 MNi images out of a total of 130 images was accomplished by the proposed method. 
A total of 123 out of 125 images were correctly identified as SCCa by SNC_Net, whereas 
119 images of VASn were correctly identified, and only 2 images were wrongly classified. 

 
Figure 13. Cont.



Mathematics 2024, 12, 1030 26 of 35
Mathematics 2024, 12, x FOR PEER REVIEW 26 of 35 
 

 

 Figure 13. Cont.



Mathematics 2024, 12, 1030 27 of 35
Mathematics 2024, 12, x FOR PEER REVIEW 27 of 35 
 

 

 
Figure 13. Application of confusion matrix to evaluate proposed SNC_Net with other network 
methods with four baseline networks; (a) B1, (b) B2, (c) B3, (d) B4, (e) SNC_Net without SMOTE, 
and (f) SNC_Net with SMOTE. 

Furthermore, we employed Grad-CAM heatmaps to visually depict the results gen-
erated using our proposed model. The heatmap that is illustrated in Figure 14 serves the 
purpose of graphically depicting the particular region of interest to which the model is 
allocating its resources. 

Figure 13. Application of confusion matrix to evaluate proposed SNC_Net with other network
methods with four baseline networks; (a) B1, (b) B2, (c) B3, (d) B4, (e) SNC_Net without SMOTE, and
(f) SNC_Net with SMOTE.



Mathematics 2024, 12, 1030 28 of 35Mathematics 2024, 12, x FOR PEER REVIEW 28 of 35 
 

 

 
Figure 14. Grad-CAM analysis of proposed SNC_Net for skin cancer detection. 

5.11. Ablation Study 
An ablation study was performed on several parameters. In the first experimentation 

evaluation, four layers, namely Average Pooling 2D, Max Pooling 2D, Dropout, and Flat-
ten, were used. The efficiency of the proposed model was observed by changing these 
layers. The results show that the AveragePooling2D layer achieved the same performance, 
whereas when MaxPooling2D was used, the performance declined. Similarly, the perfor-
mance remained the same when the dropout layer was used. In the second experiment, 
the batch size changed. It was observed that the proposed model gives maximum perfor-
mance on a batch size of 8, whereas the performance decreases when the batch size is 
increased. In the third experiment, the optimizers were changed. The proposed model 
achieved maximum performance when the Adam optimizer was used, and its perfor-
mance decreased with the Nadam and Adagard optimizers. The best results were 
achieved by the proposed model when the learning rate was set to 0.0001. When the learn-
ing rates were increased, the performance of the model decreased. Table 5 provides a brief 
summary of the ablation study. 

Moreover, ablation studies are frequently performed for CNN-based applications in 
order to evaluate the efficacy and stability of the model. These investigations require the 
elimination or adjustment of a variety of layers and hyperparameters. The network’s per-
formance could change in a number of ways, from improving to worsening, based on the 
modifications made to the model’s components. To improve accuracy, it is common prac-
tice to conduct experiments using multiple hyper-parameters, such as an optimizer, learn-
ing rate, layers, and batch size. Altering the architectural design of the model has the po-
tential to impact its overall efficacy. The aim of this study is to investigate diverse config-
urations of the proposed model by randomly removing or modifying particular compo-
nents and attributes. Three case studies are carried out, and the outcomes are analyzed. 
The findings indicate (see Table 5) that the utilized methodology was successful within 
the scope of this investigation, as evidenced by the overall improvement in accuracy. 

  

Figure 14. Grad-CAM analysis of proposed SNC_Net for skin cancer detection.

5.11. Ablation Study

An ablation study was performed on several parameters. In the first experimentation
evaluation, four layers, namely Average Pooling 2D, Max Pooling 2D, Dropout, and Flatten,
were used. The efficiency of the proposed model was observed by changing these layers.
The results show that the AveragePooling2D layer achieved the same performance, whereas
when MaxPooling2D was used, the performance declined. Similarly, the performance
remained the same when the dropout layer was used. In the second experiment, the batch
size changed. It was observed that the proposed model gives maximum performance on a
batch size of 8, whereas the performance decreases when the batch size is increased. In the
third experiment, the optimizers were changed. The proposed model achieved maximum
performance when the Adam optimizer was used, and its performance decreased with
the Nadam and Adagard optimizers. The best results were achieved by the proposed
model when the learning rate was set to 0.0001. When the learning rates were increased, the
performance of the model decreased. Table 5 provides a brief summary of the ablation study.

Moreover, ablation studies are frequently performed for CNN-based applications
in order to evaluate the efficacy and stability of the model. These investigations require
the elimination or adjustment of a variety of layers and hyperparameters. The network’s
performance could change in a number of ways, from improving to worsening, based on the
modifications made to the model’s components. To improve accuracy, it is common practice
to conduct experiments using multiple hyper-parameters, such as an optimizer, learning
rate, layers, and batch size. Altering the architectural design of the model has the potential
to impact its overall efficacy. The aim of this study is to investigate diverse configurations
of the proposed model by randomly removing or modifying particular components and
attributes. Three case studies are carried out, and the outcomes are analyzed. The findings
indicate (see Table 5) that the utilized methodology was successful within the scope of this
investigation, as evidenced by the overall improvement in accuracy.
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Table 5. Summary of experiments for ablation study.

Exp Layer Batch Size Optimizer Learning Rate Results

1

Average
Pooling

2D

Max
Pooling

2D

Drop
out

Flat-
ten 8 16 32 Adam Adagard Nadam 0.0001 0.00001 0.000001

✓ - - - ✓ - - ✓ - - ✓ - - Same
Performance

- - ✓ - ✓ - - ✓ - - ✓ - - Same
Performance

- - - ✓ ✓ ✓ - - ✓ - - Performance
Dropped

- ✓ - - ✓ - - ✓ - - ✓ - - Performance
Dropped

2

✓ - - - - ✓ - - ✓ - - ✓ - Performance
Dropped

- ✓ - - ✓ - - ✓ - - ✓ - Performance
Dropped

- - ✓ - ✓ - - ✓ - - ✓ - Performance
Dropped

- - - ✓ ✓ - ✓ - - ✓ - Performance
Dropped

3

✓ - - - - - ✓ - - ✓ - - ✓ Performance
Dropped

- ✓ - - - - ✓ - - ✓ - - ✓ Performance
Dropped

- - ✓ - - - ✓ - - ✓ - - ✓ Performance
Dropped

- - - ✓ - - ✓ - - ✓ - - ✓ Performance
Dropped

5.12. A Comparison of the SNC_Net Model with the State of the Art

Table 6 displays the outcomes of a comparative analysis between the proposed
SNC_Net model and other methods regarded as the state of the art. The table provides
comprehensive information concerning the F1 score, recall, precision, and accuracy of each
specific method.

Table 6. Performance comparison of proposed SNC_Net model with SOTA classifiers.

Ref Year Models Diseases Accuracy Precision Recall F1 Score

[10] 2021 ANN Multiclassification 95.30% 94.63% 94.87% –
[94] 2023 VGG-13 Multiclassification 89.51% 90.68% 89.46% 90.07%
[95] 2023 Ensemble Binary 93.00% 92.00% 94.00% 93.00%
[96] 2023 DRNN Binary 94.29% 93.75% 95.74% –
[97] 2022 Ensemble Binary 95.76% 96.67% 96.99% 96.85%
[98] 2023 DSCC_Net Binary 94.17% 94.28% 93.76% 93.93%

Ours - SNC_Net (with
SMOTE Tomek) Multiclassification 97.81% 98.31% 97.89% 98.10%

5.13. Discussions

By employing images captured by dermoscopy [15–18,38–41,99,100], a wide range of
skin lesions can be identified and categorized. Through the utilization of a methodology
that facilitates an exhaustive examination of a specific location, it is possible to discern
both the illness and internal components that have been infected. Dermoscopy is the
most precise, efficient, and accurate method for distinguishing between AKs, BCCa, SCCa,
BKs, DFa, MNi, MELa, and VASn diseases [36–40]. In light of the escalating prevalence
of confirmed skin cancer cases, a computerized diagnostic approach is necessary for the
identification of AKs, BCCa, SCCa, BKs, DFa, MNi, MELa, and VASn [56]. By employing
methodologies derived from the domain of DL [92,93], dermoscopy images have the
capacity to autonomously distinguish between various lung diseases and those associated
with other ailments. As a result, we constructed the SNC_Net model, which is constructed
upon DL and demonstrates the capacity to precisely diagnose an extensive spectrum of
pulmonary disorders. By utilizing this model, radiologists are able to facilitate the initiation
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of treatment for patients suffering from various conditions, including AKs, BCCa, SCCa,
BKs, DFa, MNi, MELa, and VASn. The evaluation of the proposed SNC_Net model’s
efficacy was conducted using the ISIC 2019 benchmark dataset, which is available to the
public [70–94]. In conjunction with the outcomes of several baseline models—B1, B2, B3,
B4—the suggested SNC_Net efficacy was evaluated. The image derived from the datasets
exhibits a noticeable imbalance, which is elaborated upon in Table 2. The model’s training
efficacy is compromised due to the inequitable class distribution observed across the
images [74,95]. In order to address these challenges, we utilized the SMOTE Tomek method
to enhance the images by including individuals from underrepresented minority groups
in the databases [67]. Our proposed SNC_Net model has been adequately trained on the
eight categories of skin cancer (AKs, BCCa, SCCa, BKs, DFa, MNi, MELa, and VASn), as
depicted in Figure 6. As a result, it is capable of accurately classifying instances of infection
associated with each of these subcategories. The superior performance of our SNC_Net
model in classifying thoracic diseases compared to the other four baseline classifiers for
skin cancer diseases is evident in Table 4. With respect to the classification of dermoscopy
images into AKs, BCCa, SCCa, BKs, DFa, MNi, MELa, and VASn, the SNC_Net model,
which is proposed and utilizes the SMOTE Tomek method, achieved a precision of 97.56%.
Furthermore, the SNC_Net model achieved an accuracy of 91.82% when SMOTE Tomek
was absent. On the other hand, the B1 architecture exhibited a commendable accuracy
rate of 93.39%. The accuracy ratings of the B2 and B3 models were identical at 95.58% and
95.21%, respectively. The efficacy of the B4 in classifying skin cancer was comparatively
lower than that of all baseline models. Figure 14 also shows the GRAD-CAM assessment of
the suggested SNC_Net model for the categorization of skin cancer.

Abunadi et al. [10] utilized deep learning and two-dimensional superpixels. An initial
contrast enhancement was applied to the dermoscopy photos. The hybrid characteristics
that were obtained via LBP, GLCM, and DWT served as the foundation for the proposed
system. Following their integration into a feature vector, these features were categorized
via the use of FFNN and ANN classifiers. On the ISIC 2018 dataset and the PH2 dataset,
the FFNN approach achieved diagnostic accuracy values of 95.24 percent and 97.91 percent,
respectively. Second, the AlexNet and ResNet-50 models were used in the transfer learning
strategy to diagnose skin disorders. In terms of patient diagnosis, the ResNet-50 model
showed an accuracy rate of 90% on the ISIC 2018 dataset and a 95.8% accuracy rate on the
PH2 dataset. Qasim et al. [94] used deep spiking neural networks along with the surrogate
gradient descent method to perform binary classification on the images collected from the
ISIC 2019 dataset. The spiking VGG-13 model achieved an accuracy of 89.57%. Tembhurne
al. [95] presented a novel approach that integrates machine learning and deep learning
techniques to address the difficulty associated with detecting skin cancer. The machine
learning model assesses features produced by employing techniques like the LBP and HCT.
In contrast, the deep learning model utilizes state-of-the-art neural networks to extract
properties from images. In the event of a problem arising during image categorization,
it is necessary to address it by extracting features. By incorporating both ML and DL
features, the suggested approach achieved an improved accuracy rate of 93%. The model
was evaluated through benchmarking using the publicly ISIC archive dataset. In order to
categorize skin lesions, a deepRNN transformed via wavelet operations was used. The
proposed method effectively refines images of skin lesions by separating more minute
details and eliminating extraneous features through the utilization of wavelet processing,
aggregation, and normalization. The proposed model achieved 95.71 percent accuracy
on the ISIC 2017 dataset and achieved 95.84% accuracy on the HAM10000 dataset [96].
Shorfuzzaman et al. [97] presented a stacked ensemble architecture based on explainable
CNNs, which is intended to facilitate the early detection of melanoma skin cancer. The final
predictions are generated by a meta-learner, which is a new model that incorporates each
of the predictions from the sub-models. An open-access dataset comprising images of both
benign and malignant melanoma is employed for the purpose of evaluating the model.
As indicated by the evaluation results, our ensemble model demonstrates applicability
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on account of its remarkable sensitivity (96.67%), accuracy (95.76%), and area under the
curve (0.957).

SNC_Net consistently provided the greatest results when it came to a number of
evaluation parameters, including accuracy, precision, recall, and F1 score. Table 6 illustrates
how the enhanced feature extraction technique and creative pre-processing techniques
enhance the performance of the SNC_Net. Our model outperforms earlier approaches, not
because it has a more intricate learning model but rather because the feature extraction
and final classification are carried out more skillfully. Combining DL and HC data during
training allowed the models to acquire deep knowledge about the relationships between
input features and output labels. Key features are extracted from dermoscopy images using
the HC and DL techniques by the SNC_Net, which then combines them into a feature
vector that the CNN employs for classification.

6. Limitations of Existing Research

The evaluation of the SNC_Net was performed on the ISIC 2019 dataset, which is a
high-class imbalance dataset. We employed SMOTE TOMEK to increase the number of
images to balance the dataset. However, a more extensive dataset is needed to provide more
accurate results when evaluating the suggested model. There are frequent inconsistencies
that occur in the publicly available datasets. To ensure a thorough evaluation of the
capabilities of the proposed method, it is necessary to utilize a dataset derived from the
real world.

7. Conclusions

In the present study, the SNC_Net model is presented which classify eight distinct
kinds of skin lesions (AKs, BCCa, SCCa, BKs, DFa, MNi, MELa, and VASn). Currently,
skin cancer is becoming more common and harming individuals all over the world. A
significant number of lives have been lost as a consequence of poor facilities, inaccuracies,
and slowness in testing methods, as well as the absence of early identification for skin
cancer. Due to the significant number of skin cancer instances, a quick and effective testing
approach is needed. The SNC_Net model is proposed with the goal of classifying eight
different kinds of skin cancers. The CNN is used to categorize illnesses, whereas HC
and inception v3 (DL approach) are used to extract significant features from dermoscopy
images. The SMOTE Tomek approach is used for sample generation that accomplish the
sample balance for each class and resolve the issues related to unbalanced datasets. Grad-
CAM offers a heat map of class activation to show how the suggested approach works
graphically. The following performance metrics were attained by the suggested SNC_Net:
97.81%% accuracy, 98.31% precision, 97.89% recall, and a 98.10% F1 score. Therefore,
it can be concluded that SNC_Net has the potential to serve as a valuable resource for
medical professionals. This study’s inability to apply the suggested SNC_Net model to
camera-captured pictures is one of its limitations. To increase the accuracy of skin cancer
classification, we need to include federated learning.
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