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Abstract: In this paper, exact solutions of semilinear equations having exponential growth in the
space variable x are found. Semilinear Schrödinger equation with logarithmic nonlinearity and third-
order evolution equations arising in optics with logarithmic and power-logarithmic nonlinearities
are investigated. In the parabolic case, the solution u is written as u = be−ax2

, a < 0, a, b being
real-valued functions. We are looking for the solutions u of Schrödinger-type equation of the form

u = be−a x2
2 , respectively, for the third-order PDE, u = AeiΦ, where the amplitude b and the phase

function a are complex-valued functions, A > 0, and Φ is real-valued. In our proofs, the method of
the first integral is used, not Hirota’s approach or the method of simplest equation.

Keywords: semilinear parabolic equation; semilinear Schrödinger equation; logarithmic nonlinearity;
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1. Introduction

This paper deals with exact (explicitly written) solutions of several semilinear evolu-
tion equations of mathematical physics. It concerns parabolic equations for which solutions
with exponential growth in the space variable x are found, semilinear Schrödinger equation
with logarithmic nonlinearity, and third-order evolution equations arising in optics with
power and logarithmic-power nonlinearities. The latter are generalizations of the standard
semilinear Schrödinger equation, which is of second order. We are looking for the solutions
u of Schrödinger-type equations of the form AeΦ, where A is the amplitude and Φ is the
phase function. A, B are complex-valued. That ansatz is often used in mathematical physics
and we shall mention only the classical paper [1] that stimulated in the middle of last
century different applications of the asymptotical solutions in analysis, PDE, and certainly
in physics. For the parabolic equation u = be−ax2

with a < 0, a and b are real-valued. De-
pending on the sign of some parameter λ, we can have dispersive and non-dispersive cases
for the classical Schrödinger equation. Therefore, two different cases appear. In the first one,
the phase Φ is periodic in t, while in the general case, the amplitude is only bounded but
not periodic in t. Its modulus is periodic. In the second case, the amplitude is bounded and
tends to zero as a spiral for |t| → ∞, while for fixed t, the phase is exponentially increasing
in x. The ”third order” Schrödinger-type equation possesses solutions of the type φ(ξ)eiψ,
ξ, ψ being linear functions of t, x. Under many restrictions, three types of solutions are
constructed, namely solutions for which φ(ξ) forms one-parametric family of periodic
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solutions, φ is a soliton, φ blows up at some ξ = ξ̃0, but φ(±∞) = 0 and φ blows up at
some point ξ = ξ̃0 being periodic in t.

In proving our results, we use the method of the first integral from the theory of
mechanical systems having one degree of freedom. For the sake of completeness, we shall
say several words about the method of the first integral that possesses many applications
to the theory of autonomous systems of ODE and to first-order quasilinear PDE [2,3]. The
first integral appeared for the first time in the investigations of Newton and the proof
of Kepler’s law and it relies on the construction into explicit form of the appropriate
first integral. Assume that φ(t) stands for the trajectory of some particle in the one-
dimensional space with initial position φ(t0) and initial velocity φ̇(t0). According to
Newton’s second law, φ(t0) satisfies the ODE mφ̈ = f (φ), where f (φ) is the corresponding
acting force. Denote by U(φ) = −

∫
f (φ)dφ the kinetic energy of the particle. Then the

full energy E(t) = mφ̇2

2 + U(φ) satisfies the relation Ė(t) = 0 ⇒ E(t) ≡ E0 = const.
This is the classical energy conservation law. From a mathematical point of view, the

function E(y, φ) = my2

2 + U(φ) is the first integral of Newton’s second law, i.e., the phase
trajectory φ(t) is located on surface level E ≡ E0, y = φ̇. Therefore, φ(t) satisfies the
first-order ODE with separate variables φ̇2 = 2(E0 − U(φ)), E0 ≥ U(φ(t)) and E ̸≡ U(φ).
If φ̇(t0) > 0, we have that t − t0 =

∫ φ(t)
φ(t0)

dλ√
2(E−U(λ))

. By using different reference books on

analysis as [4–6], we can express in some cases ξ =
∫ z

z0
dλ√

2(E−U(λ))
= G(z) via elementary

functions or some special functions (hyperbolic, Jacobi elliptic, Legendre elliptic function,
etc.). As G

′
(z) > 0, the smooth mapping ξ = G(z) is invertible, i.e., there exists uniquely

determined z = G−1(ξ). So φ(t) = G−1(t − t0) with z0 = φ(t0). The above-mentioned
results are usually local but it could happen that solutions global in t exist. The well-known
approach of Hirota [7] and the method of the simplest equation [8] are not used here. Several
historical notes are proposed below. The logarithmic Schrödinger equation was introduced
in [9]. Applications of that equation in quantum optics, nuclear physics, transport and
diffusion phenomena, theory of super fluidity, and Bose–Einstein condensation can be
found, respectively, in the following papers: [10–13]. Numerical experiments in [14] show
that the dynamical properties of the solutions in the logarithmic case are rather different
from that for power-like nonlinearity. The strong superposition of two or finitely many
Gaussians was studied in [15]. We rely here on [16–18] generalizing the dispersive case
from [16]. In the last 10 years, many papers appeared on the cubic-quartic Fokas–Lenells
equation with perturbation terms. The corresponding PDE of fourth order occurs in
different systems in fluid mechanics, solid state physics and condensed matter, nonlinear
optic and plasma physics. One can see [19] on the subject and the references therein.

Our aim here is to find out explicitly written solutions by using purely mathematical
tools. So there are no numerical simulations. We give here a detailed study of the dispersive

case of the logarithmic Schrödinger equation looking for solution u = b(t)e−a(t) x2
2 , a(t),

b(t) being smooth complex-valued functions. b(t) is not periodic in general but we find a
necessary and sufficient condition for its periodicity. It is interesting to mention that |b(t)|
is always periodic. Our ODE are studied under Cauchy initial conditions. The situation
is delicate if φ̈ = shφ, φ(π

2 ) = 0, φ̇(π
2 ) = 2. The approach sketched above shows that its

unique solution φ = 2lntg t
2 , t ∈ (0, π). Certainly, |φ| = ∞ at t = 0, t = π. The Troesh

boundary value problem φ̈ = λsh(λφ), φ(0) = 0, φ(0) = 1 is out of the scope of this
paper but some aspect was studied in 2014 by H. Temini and H. Kurkcu (precise numerical
solution for λ ≥ 10).

The paper is organized as follows. In Section 2, we formulate our results, in Section 3,
the proof of Theorem 1 is given, in Section 4, the detailed proof of Theorem 2 is proposed,
geometrically illustrated, and mechanically interpreted, and Section 5 contains the proof of
Theorem 3. References are given at the end of the paper. We point out that for logarithmic
nonlinearities, technically the things differ from those for power nonlinearities.
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2. Formulation of the Main Results

1. We shall begin with the following nonlinear Cauchy problem:

∣∣∣∣ ut = uxx + λulnu2, x ∈ R1, 0 ≤ t ≤ T
u|t=0 = u0(x) > 0, λ ∈ R1 \ 0.

(1)

The case of bounded real-valued solutions for parabolic equations is well-studied and
we shall assume further on that u > 0 and u0(x) = b0e−a0x2

, b0 > 0, a0 < 0. Certainly,
u = 0 is not a solution of (1). Let M2,a = {u ∈ C2(R1

+ × R1
x), |u| ≤ C(T)eax2

, a > 0,
x ∈ R1, 0 ≤ t ≤ T}. M2,a is a linear space. We shall look for a solution of (1) having
the form

u(t, x) = b(t)e−a(t)x2
, b(0) = b0, a(0) = a0, (2)

if u0 = b0e−a0x2
, b0 > 0, a0 < 0.

This is our first result.

Theorem 1. Uniqueness. Consider (1) with positive solution u such that

(i) u ≥ A1e−ebx2
, A1 > 0, b > 0, b ≤ a

(ii) 0 ≤ |ux(t, x)| ≤ A2(1 + |x|)u, A2 = A2(T) > 0, ∀x ∈ R1, 0 ≤ t ≤ T.

Then u is uniquely determined for appropriate 0 < a in M2,a.
Existence of solution for u0 = b0e−a0x2

. Then there are three possible cases depending on the
sign of λ, i.e.,

- if λ < 0, 0 > a0 > λ
2 ⇒ one can find

a(t) ∈ C∞(R1), 0 > a(t) >
λ

2
, a

′
> 0, a(−∞) =

λ

2
, a(+∞) = 0, 0 > a(t) ≥ a0

- if λ
2 = a0 < 0 ⇒ a(t) ≡ λ

2
- if a0 < λ

2 < 0, then a(t) ∈ C∞(t < t̄), t̄ > 0 and a blows up for t = t̄; a
′
(t) < 0 for t < t̄.

The function b(t) ∈ C∞(R1) in the first two cases.

- if λ > 0, a0 < 0 again a(t) ∈ C∞(t < ¯̄t), a
′
(t) < 0 but a blows up for t = t̄.

According to the Granwall lemma, (ii) implies that |u| ≤ A3eA4x2
for some A3, A4 > 0,

i.e., u ∈ M2,A4 . Certainly, e−ax2 ≥ e−eax2
, a > 0, ∀x ∈ R1.

Our second model example is the Schrödinger equation with logarithmic nonlinearity:

iut +
1
2

uxx = λuln|u|2, t ∈ R1, x ∈ R1, λ ∈ R1 \ 0. (3)

Evidently, u = 0 is not a solution of (3), while u = eiα satisfies it ∀α ∈ R1.
Again we shall find a solution of (3) having the form

u(t, x) = b(t)e−a(t) x2
2 , u(0, x) = b(0)e−

1
2 a(0)x2

, (4)

a(0) ̸= 0, b(0) ̸= 0, a(0) = α0 + iβ0, Rea(0) < 0. Otherwise |u0| will be bounded in x. (4) is
called the Gaussian solution of (3). Below we present some historical remarks.

(3) possesses standing wave solutions uω called Gaussons: uω(t, x) = eiωte1/2− ω
2λ eλx2

,
ω ∈ R1. uω(t, x) are not asymptotically stable for λ < 0 due to the Galilean invariance
of (3). The latter means that if u is a solution of (3), then for each p ∈ R v(t, x) = u(t, x −
pt)eipx− i

2 p2t satisfies (3).
Introduce now the Sobolev-type space W = {u ∈ H1(R) \ 0 : |u|2ln|u|2 ∈ L1(R1)}.

T. Cazenave and A. Haraux proved in [20] in 1980 that for λ < 0 and u0 ∈ W \ 0 the
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Cauchy problem for Equation (3) with initial data u0 = u|t=0 possesses a global solution
u ∈ C(R1

t : Wx \ 0) such that
||u(t)||2L2(R1

x)
= ||u0||2L2 ,

||E(u(t))||L2(R1
x)
=

1
2
||∇u(t)||2L2(R1

x)
+ λ

∫
R
|u(t, x)|2ln|u(t, x)|2dx = E(u0)

(conservation laws).
Below we formulate the logarithmic Sobolev inequality in W \ 0 [21]: For each α > 0

and f ∈ W \ 0

∫
R1

| f (x)|2log| f (x)|2dx ≤ α2

π
||∇ f ||L2(R1) + [log|| f ||2L2 − (1 + logα)]|| f ||2L2 .

There is equality in the previous estimate if and only if up to a translation x → x + q,
q ∈ R the function f (x) is a multiple of e−πx2/2α2

. Evidently, e|x|
α ̸∈ W for α ≥ 0.

This is our second result.

Theorem 2. Consider (3) with α0 < 0, β0 ̸= 0. Then a(t) ∈ C∞(R1) exists and Rea(t) < 0, a(t) is
a periodic function for λα0 < 0 ( ⇐⇒ λ > 0). In the case λα0 > 0 ( ⇐⇒ λ < 0), t → a(t) ∈ C1

is a bounded smooth closed curve located in the half plane Rea < 0 tangential to the imaginary axes at
the origin, a(±∞) = 0. The function b(t) is defined everywhere and is written explicitly.

We point out that b(t) is not periodic in general for λ > 0 and we discuss this problem
during the proof of Theorem 2, finding NSC b(t + T) = b(t), ∀t. In the investigations
for a(t)-periodic, the second Kepler law appears, i.e., r2(t)Θ

′
(t) = α0 and then the curve

t → ω(t) = r(t)eΘ(t) → C1 is either periodic or dense in the ring in C1 : r1 ≤ |a| ≤ r2,
0 < r1 = minR1 r(t), r2 = maxR1 r(t), 0 < r(t) being a periodic function.

A. H. Ardila proved in 2016 in [22] that the Gaussons are orbitally stable in W(R1
x).

2. Our next step is to study two Schrödinger-type semilinear PDEs arising in optics,
finding their special solutions that have appropriate physical interpretation. The first
one is known as the Radhakrishnan–Kundu–Lakshmanan(RKL) equation (see [23]),
namely

iut + auxx + b|u|2nu + i(βuxxx + (α|u|2nu)x) = 0, (5)

where the constants a, b, α, β are real and nonzero, n > 0 (see, for example, [19]).
The second equation has power-logarithmic nonlinearity:

iut + auxx + b|u|2nuln|u|+ i(βuxxx + α(|u|2nuln|u|)x) = 0. (6)

The solutions are also known as dispersive optical ones. Concerning (5), u(t, x)
presents the wave profile, ut describes the temporal evolution, a stands for the coefficient
of chromatic dispersion, b is the coefficient of power law of self-phase modulation, β is the
coefficient of third-order dispersion, α stands for the coefficient of self-steeping term of the
short pulses, and n is the power law parameter (see [19]).

The solutions of (5) and (6) we are looking for will have the following form:

u(t, x) = φ(ξ)eiψ(t,x), (7)

where ψ is linear phase function:

ψ(t, x) = −kx + ωt, k, ω ∈ R1,

ξ = x − Vt, V ∈ R1 and amplitude φ(ξ) > 0. As usual, ω is the frequency, k is the wave
number, and V is the velocity of the wave.
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Putting (7) into (5) and (6) and separating the real and imaginary parts of the corre-
sponding expressions, we come to the overdetermined system that should be satisfied by
the real-valued positive function φ(ξ):∣∣∣∣∣ (a + 3kβ)φ

′′ − φ(ω + ak2 + βk3) + φ2n+1(b + kα) = 0
βφ

′′′ − φ
′
(V + 2ak + 3βk2) + α(φ2n+1)

′
= 0

(8)

for Equation (5) and∣∣∣∣∣ (a + 3kβ)φ
′′ − φ(ω + ak2 + βk3) + φ2n+1lnφ(b + kα) = 0

βφ
′′′ − φ

′
(V + 2ak + 3βk2) + α(φ2n+1lnφ)x = 0

(9)

for Equation (6).
We integrate the second equations in (8) and (9), and taking the constant of integration

equal to 0, we obtain:∣∣∣∣∣ (a + 3kβ)φ
′′ − φ(ω + ak2 + βk3) + φ2n+1(b + kα) = 0

βφ
′′ − φ(V + 2ak + 3βk2) + αφ2n+1 = 0,

(10)

∣∣∣∣∣ (a + 3kβ)φ
′′ − φ(ω + ak2 + βk3) + φ2n+1lnφ(b + kα) = 0

βφ
′′ − φ(V + 2ak + 3βk2) + αφ2n+1lnφ = 0.

(11)

The first and second equations in (10) and (11) are identical iff

a + 3kβ

β
=

b + kα

α
=

ω + ak2 + βk3

V + 2ak + 3βk2 , (12)

i.e.,

k =
bβ − aα

2αβ
, V =

(ω + ak2 + βk3)α − (b + kα)(2ak + 3βk2)

b + kα
,

b + kα ̸= 0, αβ ̸= 0.
This is our Theorem 3. Certainly we assume further on that condition (12) holds.

Theorem 3. For appropriate values of the real coefficients a, b, α, β, k, ω, V, Equations (5) and (6)
possess three different types of solutions having the form (7):

- solutions for which φ forms a one parametric family of periodic functions;
- φ is soliton, φ ∈ C∞(ξ ̸= ξ̃), φ(±∞) = 0;
- φ blows up at some ξ = ξ̃ and φ is periodic unbounded function ( |φ(ξ̃ + kT)| = |φ(ξ̃)| = ∞

for each k ∈ Z, T = const > 0).

The restrictions on the coefficients will be imposed during the proof of Theorem 3.
The unbounded solutions are of two “qualitative” types: |cosechξ| and |secξ|, |cosecξ|. The non-
periodic solutions φ of (5) will be found in explicit form when (10) under condition (12) is
investigated. In fact, then they are |sechξ|, cosechξ, |secξ| and |cosecξ|. Otherwise (say in the
periodic case) the solutions φ up to the inverse mapping theorem are written into integral
form. The solutions φ of (10) and (11) are written into integral form, but in general, the latter
cannot be expressed via elementary or special functions (Jacobi ones, etc.).

3. Proof of Theorem 1

Consider the Cauchy problem (1) with u0(x) = b0e−a0x2
, b0 > 0, a0 < 0. To prove the

uniqueness of the classical solution u for arbitrary u0(x) ∈ M2,a and in the same class, we
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take the second solution u1 > 0 of the same equation admitting the initial condition u0.
Then put z = lnu ⇒ u = ez ⇒ zx = ux

u ,

zt = zxx + z2
x + 2λz, (13)

z|t=0 = lnu|t=0 = lnu0 = z0.
According to (i), (ii) z ≤ D(T) + ax2, z ≥ lnA1(T)− ebx2

, i.e., |z| ≤ D1(T)eax2 ⇒ z ∈
M2,a. Moreover, |zx| = | ux

u | ≤ A2(1+ |x|). In a similar way, z1 = lnu1 satisfies (13) , z1 ∈ M2,a,
|z1x| ≤ A2(1+ |x|). Define w = z1 − z. Evidently, w ∈ M2,a, |wx| ≤ 2A2(1+ |x|) and∣∣∣∣ wt = wxx + D(t, x)wx + 2λw, D(t, x) = z1 + z

w|t=0 = 0.
(14)

Certainly, |D| ≤ 2A2(1 + |x|), λ is a constant.
We apply to the linear equation with respect to w Theorem 10 from Chapter II of [24]

and conclude that w ≡ 0 ⇒ z ≡ z1 ⇒ u1 ≡ u. For parabolic equations, see also [25].
To find a solution of (1) of the form (2), we find ∂tu = (b

′ − a
′
bx)e−a(t)x2

, ∂xu =

−2axbe−ax2
, ∂2

xu = (−2ab + 4a2x2b)e−ax2
and from the Equation (1), we obtain

b
′ − a

′
bx2 = −2ab + 4a2x2b + λb(lnb2 − 2ax2),

i.e., the system of ODE ∣∣∣∣∣ a
′
= −4a2 + 2λa = 2a(λ − 2a)

b
′
= −2ab + λblnb2,

a(0) = a0, b(0) = b0; a0 < 0.
As u > 0 ⇒ b(t) > 0 everywhere in [0, T]. It is easy to see that if 0 > a0 > λ

2
there exists a solution global in t ∈ R1 of the ODE a

′
= 2a(λ − 2a) such that a

′
(t) > 0,

∃a(+∞) = 0, ∃a(−∞) = λ
2 and F(a) =

∫ da
a(λ−2a) = 2t − lnC, while F(a) = − 1

λ ln| λ−2a
a |.

Thus, − 1
λ ln| λ−2a

a |+ lnC = 2t ⇒ C| λ−2a
a |−1/λ = e2t.

Having in mind that a(0) = a0 < 0, we find C = | λ−2ac
a0

|1/λ ⇒

|
λ−2a0

a0
λ−2a

a
| = e2λt. (15)

As 0 > a(t) > λ
2 ⇒

a(t) =
λ

2 + k0e−2λt ∈ (
λ

2
, 0), (16)

where k0 = λ−2a0
a0

> 0.

In the case a0 = λ
2 ⇒ a(t) = λ

2 (uniqueness).
If λ > 2a0 ⇒ 0 > λ > 2a(t), a

′
(t) < 0 and a(t) = λ

2+k0e−2λt but k0 < 0 and a(t) blows

up for t̄ = 1
2|λ| ln

2
|k0|

> 0.

If λ > 0 ⇒ a
′
(t) < 0 and the solution a(t) blows up.

The equation ∣∣∣∣ b
′
= −2ab + 2λblnb, b(t) > 0

b(0) = b0 > 0

can be rewritten as ∣∣∣∣ d
dt lnb = −2a + 2λln b
lnb(0) = lnb0

and this is linear ODE with respect to q = lnb.
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Thus,

lnb(t) = e2λt(C2 − 2
∫ t

0
a(s)e−2λsds), C2 = lnb0 ⇒ (17)

b(t) = be2λt

0 e−2e2λt
∫ t

0
a(s)e−2λsds. (18)

Evidently (see (16)), ∫
a(s)e−2λsds = λ

∫ e−2λsds
2 + k0e−2λs =

−1
2k0

∫ d(2 + k0e−2λs)

2 + k0e−2λs = − 1
2k0

ln(2 + k0e−2λs).

So for k0 > 0,

b(t) = be2λt

0 e
− 1

k0
e2λt ln 2+k0

2+k0e−2λt . (19)

After easy computations, we conclude that

b(t) = b
2λt

0 (
2 + k0e−2λt

2 + k0
)

1
k0

e2λt
= (20)

[b0(
2 + k0e−2λt

2 + k0 )
1

k0 ]e
2λt

.

Remark 1. λ < 0, t ≥ 0, k0 > 0 in (20), i.e., e2λt →t→∞ 0 and e−2λt → +∞ for t → +∞.

If a0 = λ
2

b(t) = be2λt

0 e
1
2−

1
2 e2λt

= (
b0√

e
)e2λt

e1/2. (21)

Therefore, the solution of (1) for a0 = λ
2 < 0 takes the form

u(t, x) = (
b0√

e
)e2λt√

ee−
λ
2 x2

. (22)

4. Proof of Theorem 2

We repeat the same procedure as in the previous case. Things are more complicated, as
the functions a, b are complex-valued and the corresponding system ODE is in C2, not in R2.

Having in mind that

ut = (b
′ − a

′
b

x2

2
)e−ax2/2, ux = −xabe−ax2/2,

uxx = (−ab + a2x2b)e−ax2/2

we obtain from (3) that∣∣∣∣∣ ib
′ − ab

2 = λbln|b|2
ia

′ − a2 = 2λRe a, a(0) = a0 ̸= 0, b(0) = b0 ̸= 0, a0, b0 ∈ C1.
(23)

It is simpler to express b(t) from the first ODE. We are looking for∣∣∣∣ b(t) = b0eiΦ(t)

Φ(0) = 0,
(24)

i.e., b(0) = b0.
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Certainly, Φ(t) is a complex-valued function, t ∈ R1. Substituting (24) in the first
equation of (23), we obtain

Φ
′
+

1
2

a = −λln|b0|2 + 2λImΦ. (25)

Splitting the real and imaginary parts of (25), we come to the system of ODE in the plane R2:∣∣∣∣∣ ReΦ
′
+ 1

2 Re a = −λln|b0|2 + 2λImΦ
ImΦ

′
+ 1

2 Im a = 0, ReΦ(0) = 0, ImΦ(0) = 0.
(26)

Thus,

ImΦ(t) = −1
2

∫ t

0
Ima(s)ds ⇒ (27)

ReΦ
′
+

1
2

Re a = −λln|b0|2 − λ
∫ t

0
Ima(s)ds ⇒

ReΦ = −1
2

∫ t

0
Rea(s)ds − λtln|b0|2 − λ

∫ t

0
(
∫ γ

0
Ima(s)ds)dγ. (28)

One can rewrite
∫ t

0 (
∫ γ

0 Ima(s)ds)dγ =
∫ t

0 Ima(s)(t − s)ds applying the Fubini theorem in
the triangle {0 ≤ s ≤ γ, 0 ≤ γ ≤ t} = {0 ≤ s ≤ t, s ≤ γ ≤ t}. So

ReΦ(t) = −1
2

∫ t

0
Rea(s)ds − λtln|b0|2 − λ

∫ t

0
(t − s)Ima(s)ds. (29)

(2), (27), and (29) imply that

Φ = −1
2

∫ t

0
Rea(s)ds − λtln|b0|2 − λ

∫ t

0
(t − s)Ima(s)ds − i

2

∫ t

0
Ima(s)ds, (30)

i.e., with A(t) =
∫ t

0 a(s)ds, we have

b = b0eiΦ = b0e−iλtln|b0|2− i
2 A(t)e−iλIm

∫ t
0 (t−s)a(s)ds. (31)

In the solvability of ∣∣∣∣ ia
′ − a2 = 2λRe a

a(0) = α0 + iβ0, α0 ̸= 0, β0 ̸= 0

we follow [16]. a(0) = 0 ⇒ a(t) = 0.

We shall find a(t) = −i ω
′

ω , ω(t) ̸= 0, i.e., a2 = − (ω
′
)2

ω2 , ia
′
= ω

′′

ω − (ω
′
)2

ω2 = ω
′′

ω + a2 =

a2 + 2λIm ω
′

ω (according to the equation).
Consequently, ∣∣∣∣∣∣

ω
′′

ω = 2λIm ω
′

ω

a(0) = α0 + iβ0 = −i ω
′
(0)

ω(0) .
(32)

Here we imitate the theory of Kepler’s law via Newton equation, i.e., we look for ω in polar
coordinates:

ω = r(t)eiΘ(t); r(t) ≥ 0, (33)

Θ(t)-real-valued polar angle. As

ω
′
= (r

′
+ irΘ

′
)eiΘ

ω
′′
= eiΘ(r

′′
+ irΘ

′′
+ 2ir

′
Θ

′ − r(Θ
′
)2)
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from (32), we obtain
r
′′ − r(Θ

′
)2 + i(rΘ

′′
+ 2r

′
Θ

′
) = 2λrΘ

′
, (34)

i.e., ∣∣∣∣∣ r
′′ − r(Θ

′
)2 = 2λrΘ

′

rΘ
′′
+ 2r

′
Θ

′
= 0 ⇒ (r2Θ

′
) = 0 ⇒

(35)

r2Θ
′
= A = const. This way, we come to the area first integral of Kepler’s law. According

to this law, the revolution of the Earth around the Sun is with constant area velocity. Then

a(t) = −i
ω

′

ω
= −i

(r
′
+ irΘ

′
)

r
= −i

r
′

r
+ Θ

′ ⇒

a(t) =
A
r2 − i

r
′

r
⇒ (36)

a(0) = α0 + iβ0 =
A

(r(0))2 − i
r
′
(0)

r(0)
, Θ

′
(0) =

A
(r(0))2

⇒ a(0) = α0 + iβ0 = −i
r
′
(0)

r(0)
+ Θ

′
(0).

To simplify things, we take

r(0) = 1 ⇒
∣∣∣∣∣ r

′
(0) = −β0

Θ
′
(0) = α0 = A

⇒ (37)

Θ
′
(0) = A = α0. Further on, β0 < 0.

Therefore,

a(t) =
α0

r2 − i
r
′

r
. (38)

Of course, Re a = α0
r2 , Θ(t) = Θ(t0) + α0

∫ t
0

ds
r2(s) .

This is the main equation in our considerations here:∣∣∣∣∣ r
′′
= r(Θ

′
)2 + 2λrΘ

′
=

α2
0

r3 + 2λ α0
r

r(0) = 1, r
′
(0) = −β0 > 0.

(39)

In a standard way, by multiplying (39) with r and integrating from 0 to t, we conclude that∣∣∣∣∣ (r
′
)2(t) = α2

0 + β2
0 −

α2
0

r2(t) + 4λα0ln r, t > 0
r(0) = 1.

(40)

Therefore, we shall concentrate on the following nonlinear ODE with separate variables:∣∣∣∣∣∣ r
′
(t) =

√
α2

0 + β2
0 −

α2
0

r2(t) + 4λα0lnr(t)

r(0) = 1.
(41)

Put U(r) = β2
0 + α2

0(1−
1
r2 )+ 4λα0ln r. U ∈ C∞(r > 0), U(1) = β2

0 > 0, U(+0) = −∞,
U(+∞) = −∞ for λα0 < 0 and U(+∞) = +∞ for λα0 > 0. Because of this, we must
consider two different cases:

(1) λα0 < 0
(2) λα0 > 0.
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Put B = 2λα0. Then

U
′
(r) =

2α2
0

r3 +
4λα0

r
=

2
r3 (α

2
0 + Br2).

In case (2), U
′
(r) > 0, i.e., U is strictly monotonically increasing and there exists a unique

point r0 > 0 such that U(r0) = 0, i.e., U(r) > 0 for r > r0, U(r0) = 0, U
′
(r0) > 0 and

U(r) < 0 for 0 < r < r0. So r0 < 1.

In case (1), U
′
(r) = 0 ⇐⇒ r = r1 =

√
α2

0
−2α0λ =

√
α2

0
−B > 0, U

′
(r) > 0 for r > r1;

U
′
(r) < 0 for r < r1, i.e., Umax = U(r1) > 0 as U(1) > 0.

The graph of U(r) is given in Figure 1.

Figure 1. Graph of the potential U(r), B < 0.

It is obvious that there exist uniquely determined points 0 < m1 < m2 and U(r) > 0
on (m1, m2), U(r) < 0 for 0 < r < m1 and r > m2, U(m1) = U(m2) = 0, U

′
(m1) > 0,

U
′
(m2) < 0, U(r) is strictly increasing for 0 < r < r1 and strictly decreasing for r > m2.

Evidently, m1 < 1 < m2.
In case (1), the unique solution of (41) is given by the formula

F(r(t)) =
∫ r(t)

1

ds√
U(s)

= t ⇒ F(r(0)) = 0 ⇒ F(1) = 0. (42)

This is the graph of

F(r) =
∫ r

1

ds√
U(s)

, m1 < r < m2, F
′
(r) > 0

for m1 < r < m2, F(1) = 0, F
′
(m1,2) = +∞ and 0 > F(m1), F(m2) > 0 are finite numbers

as the integral is convergent at the end points m1, m2 (see Figure 2).
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Figure 2. Graph of the function F(r) = t for B < 0 and its inverse function r = F−1(t).

The inverse function r = F−1(t) is defined, and smooth in [δ1, δ2], r
′
> 0 for t ∈ (δ1, δ2),

r
′
(δ1) = r

′
(δ2) = 0. We continue r(t) smoothly in the interval [δ2, 2δ2 − δ1] in an even way,

i.e., r(δ2 + t) = r(δ2 − t) for each t ∈ [0, δ2 − δ1] and then periodically on R1 with period
T = 2(δ2 − δ1) = 2

∫ m2
m1

ds√
U(s)

> 0. Then r(t) satisfies (41) for each t. Obviously, r(t) ≥ m1,

m2 ≥ r(t) ≥ m1, r(t + T) = r(t), ∀t.

Then a(t) = α0
r2(t) − i r

′
(t)

r(t) and b(t) is given by (31). a(t) is periodic with period T > 0
but we do not know anything about b(t). To find a better expression for b(t), we compute:

A(t) =
∫ t

0
a(s)ds = α0

∫ t

0

ds
r2(s)

− ilnr(t) (43)

∫ t

0
(t − s)Ima(s)ds = −

∫ t

0
(t − s)

d
ds

lnr(s)ds = (44)

−tlnr(t) +
∫ t

0
s

d
ds

lnr(s)ds = −
∫ t

0
lnr(s)ds.

Thus,

b(t) = b0e
−iλtln|b0|2−

iα0
2

∫ t
0

ds
r2(s)

−ln
√

r
eiλ

∫ t
0 lnr(s)ds = (45)

b0√
r

e−iλ(tln|b0|2+
α0
2λ

∫ t
0

ds
r2 )eiλ

∫ t
0 lnr(s)ds.

On the other hand, if f (t) is continuous periodic function with period T, its primitive
F(t) =

∫ t
0 f (s)ds is periodic with the same period if and only if

∫ T
0 f (s)ds = 0.

One can easily see that

F(t) = f1(t) +
t
T

∫ T

0
f (t)dt, (46)

where the smooth periodic function f1(t) vanishes at t = 0.
In fact, h(t) = f (t)− 1

T
∫ T

0 f (s)ds is periodic with period T as
∫ T

0 h(t)dt = 0. Therefore,

f1 =
∫ t

0 h(s)ds is periodic ⇒ f1(t) =
∫ t

0 f (s)ds − t
T
∫ T

0 f (s)ds, i.e., (46) holds.
If g(t) = eiKt, K ̸= 0, K-real, then g is periodic with period T iff KT

2π ∈ Z, Z being the
set of the integers. The phase function of (45) can be written then as

−λtln|b0|2 −
α0t
2T

∫ T

0

ds
r2(s)

+ g1(t) +
λt
T

∫ T

0
lnr(s)ds + g2(t),

g1,2(t) being real-valued periodic functions with period T.
Put µ = −λln|b0|2 − α0

2T
∫ T

0
ds

r2(s) +
λ
T
∫ T

0 lnr(s)ds, µ ∈ R1 ⇒

b(t) =
1√
r

b0eiµtei(g1+g2). (47)
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b(t) is periodic with period T if and only if µT
2π ∈ Z. In other words, it is very rare.

Certainly, |b(t)| = |b0| 1√
r(t)

is periodic as r(t + T) ≡ r(t) > 0.

Remark 2. The curve in C1 ω : t → r(t)eiΘ is rather interesting. In fact, ω is smooth, ω =

r(t)eiΘ(t), Θ(t) = Θ(0) + α0
∫ t

0
ds

r2(s) = Θ(0) + α0t
T

∫ T
0

ds
r2(s) + g3(t), g3(t + T) ≡ g3(t).

Consequently the curve ω is located in the ring {z ∈ C1 : m1 ≤ |z| ≤ m2}. It is periodic
there if α0

2π

∫ T
0

ds
r2(s) ∈ Z. If α0

∫ T
0

ds
r2(s)ds is an irrational number, then the curve ω is dense in the

same ring [2,3]. ω can have infinitely many points of self-intersection.

Case (2) is absolutely different, as then r(t) > 0 is unbounded and ω is located in an
angle: Θ− < argz < Θ+.

In case (2), we shall study (41) for r(t) > 0 but the integral t = F(r) =
∫ r

1
ds√
U(s)

exists

for r > r0, F
′
(r) > 0, r0 < 1, F

′
(r0) = ∞, F(r0) = δ0 < 0 is a real number as the integral is

convergent for r = r0.
On the other hand, U(r) ∼ 2Blnr for r → ∞, B > 0; lnr ≤ r2α for r → ∞, 0 < α < 1

implies that F(+∞) = ∞. This is the graph of F(r) (Figure 3).

Figure 3. Graph of t = F(r), B > 0 and its inverse function.

Its inverse function r = F−1(t) is such that r
′
(t) > 0 for t > δ0, r

′
(δ0) = 0, r(∞) = ∞

(see Figure 3). Again we continue r(t) in an even way with respect to t = δ, i.e., r(t + δ) =

r(δ − t), ∀t ≥ 0 ⇒ r
′
(δ) = 0; r(t) satisfies (41) for each t.

We are interested in the behavior of F(r) at +∞ (asymptote) as F(∞) = +∞. On the
other hand, for r ≥ r̃ ≫ 1 : U(r) ∼ 2Blnr,

F(r) =
∫ r

1

ds√
U

=
∫ r̃

1

ds√
U

+
∫ r

r̃

ds√
U

.

According to L’Hospital rule,

limr→∞

∫ r
r̃ ds/

√
U(s)∫ r

r̃
ds√

E+2Blnr

= limr→∞

1√
U(r)
1√

E+2Blnr

= 1,

i.e., with E > 0, E = const = α2
0 + β2

0 > 0, F(r) ∼ 1√
2B

∫ r
r̃

ds√
E1+lns , r → ∞, E1 > 0.

Obviously, after the change lns = z2, s = ez2

∫ r

r̃

ds√
E1 + lns

=
∫ √

lnr
√

lnr̃

2zez2
dz√

E1 + z2
∼ 2

∫ √
lnr

√
lnr̃

ez2
dz,

r → ∞ (L’Hospital is again applied). Our last step is to show that
∫ µ ez2

dz ∼ eµ2

2µ for µ → ∞.
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This way we conclude that

F(r) ∼ elnr
√

2B
√

lnr
=

√
1

2B
r√
lnr

, r → ∞, (48)

i.e.,

t = F(r) ∼
√

1
2B

r√
lnr

=
1

2
√

α0λ

r√
lnr

, r → ∞. (49)

(49) can be asymptotically inverted looking for r ∼ 2
√

α0λtlnβt, t → ∞, β > 0. As lnr ∼
lnt + βln(lnt) ∼ lnt, → ∞ we find β = 1/2, i.e.,

r(t) ∼ 2
√

λα0t
√

lnt, t → ∞. (50)

Due to the definition of r(t) for t ≪ 0

r(t) ∼ 2
√

λα0|t|
√

ln|t|, |t| → ∞, (51)

r
′
> 0 for r > δ, r

′
< 0 for r < δ,

r
′
(t) ∼ 2

√
λα0sgnt

√
ln|t|, |t| → +∞. (52)

From (38), (51), and (52), it follows that Rea(t) = α0
r2 ̸= 0, ∀t ⇒ a(t) ̸= 0 for each t,

a(t) ∼ 1
4λt2ln|t| −

i
t
, |t| → ∞,

i.e., |t| → ∞ ⇒ a(t) → 0.
As it concerns Θ(t) = Θ(0)+ α0

∫ t
0

ds
r2(s) we know that 1

r2(t) ∼ M const
t2ln|t| , |t| → ∞, M > 0.

The integral is convergent for t → ∞ and t → −∞ ⇒ Θ+ = Θ(+∞), Θ− = Θ(−∞)
are finite numbers and the angle 1

α0
Θ ∈ (Θ−, Θ+). This is the graph of ω = r(t)eiΘ,

mintr = r0 > 0 (see Figure 4).

Figure 4. Graph of ω = r(t)eiΘ(t).
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Our last step is to illustrate geometrically the curve t → a(t) ∈ C1. As Rea = α0
r2(t) ,

α0 < 0 ⇐⇒ λ < 0 ⇒ Rea(0) = α0 < 0 ⇒ |e−a0x2 | = e−α0x2
, i.e., |u| is rapidly increasing

in function x for fixed t. Moreover, | Ima
Rea | ∼ const|t|ln|t|, |t| → ∞, Rea(t) < 0, Rea ≥ α0

r2
0

,

r(δ0) = r0, r
′
(δ0) = 0, r(δ0) > 0 and a(±∞) = 0, a is tangential to the imaginary axes at the

origin, Ima < 0 for t ≫ 1, Ima > 0 for t ≪ −1, Ima = 0 ⇐⇒ r
′
(t) = 0 ⇐⇒ t = δ0. a(t)

is given in Figure 5.

Figure 5. Graph of a(t) = α0
r2 − i r′

r .

Formula (45) shows that |b(t)| = |b0|√
r → 0 for |t| → ∞. The phase function in t:

tln|b0|2 + α0
2λ

∫ t
0

ds
r2(s) + λ

∫ t
0 lnr(s)ds is such that

∫ +∞
0

ds
r2(s) = Θ+ > 0,

∫ −∞
0

ds
r2(s) = Θ0 < 0

and λ
∫ r

r̃ lnr(s)ds ∼ λ
∫ t

t̃ lnsds ∼ λtlnt, t → ∞.
In other words, the phase function in b(t) is superlinear for t → +∞ with growth λtlnt.

Last observation: b(t) describes a spiral in C1 tending to 0, i.e., t → b(t) ∈ C1 is a focus
in the complex plane, e−ax2

= e−Reax2−iImax2
. For each fixed t, e−Rea(t)x2

is exponentially

increasing in x. For fixed x: −Ima(t) ∼ r
′

r ∼ 1
t for |t| → ∞:

The angle of rotation is bounded, 0 > Rea(t), Rea(t) → 0, |t| → ∞.

5. Proof of Theorem 3

1. We shall study first the ODE (11) under number

φ
′′
= −Aφ2n+1lnφ + Bφ, (53)

where A = α
β , B = V+2ak+3βk2

β with A ̸= 0, B ̸= 0.
At the beginning, we observe that the smooth function h(φ) = φσlnφ, φ > 0, σ ≥ 1

has the following properties: h(0) = 0, h
′
(0) = 0 for σ > 1 and h

′
(0) = −∞ for σ = 1,
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h
′
(φ) > (<)0 for φ > (<)φσ, φσ = e−

1
σ < 1, hmin = − 1

eσ , h(1) = 0, h(φ) < 0 for 0 < φ < 1;
h(φ) > 0 for φ > 1. In a standard way, we obtain from (53) that

(φ
′
)2 = Bφ2 +

Aφ2n+2

n + 1
(

1
2n + 2

− lnφ) + 2C, C = const.

Certainly, (φ
′
)2 ≥ 0 and φ > 0. So if we put

g(φ) = φ2(B +
A

n + 1
φ2n(

1
2n + 2

− lnφ)), φ > 0 (54)

we come to the ODE

(φ
′
)2 = 2(C +

g
2
) = 2(C − U(φ)), U(φ) = −1

2
g(φ).

Thus,
√

2(ξ − ξ0) =
∫ φ

φ0

dλ√
C − U(λ)

, U(λ) ≥ C, σ = 2n + 1. (55)

We have four different cases for g(φ): A > 0, B > 0; A > 0, B < 0; A < 0, B > 0;
A < 0, B < 0. Evidently, g(+0) = 0, g(φ) ∼ Bφ2, φ → 0, g(+∞) = −sgnA(+∞).

Moreover,
g
′
(φ) = 2φ(B − Aφ2n+1lnφ), φ > 0

g
′
(φ) > (<)0 ⇐⇒ B − Aφ2n+1lnφ > 0(< 0),

g
′
(φ) = 0 ⇐⇒ φ2n+1

1 lnφ1 = B
A for some φ1 > 0.

Assume (a) B > 0, A > 0. Then g
′
(φ) > (<)0 ⇐⇒ φ2n+1lnφ < (>) B

A , g
′
(φ) =

0 ⇐⇒ h(φ1) = B
A > 0, i.e., there exists a unique point φ1 > 1 with this property

⇒ g
′
(φ1) = 0, g

′
(φ) < 0 for φ > φ1 and g

′
(φ) > 0 for 0 < φ < φ1, gmax = g(φ1) > 0

as g(1) = B + A
2(n+1)2 > 0 (see the graph of g(φ) in Figure 6 and the graph of U(φ) in

Figure 7). φ2 is the unique point φ2 > φ1 such that g(φ2) = 0, g
′
(φ2) < 0.

Figure 6. Graph of g(φ), B > 0, A > 0.
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Figure 7. Graph of U(φ) = − 1
2 g(φ).

Take 0 > C > − 1
2 gmax and let 0 < m1 < m2 < φ2 be the unique points m1 < φ1,

m2 > φ1 with the properties U(m1,2) = C, U
′
(m1) < 0, U

′
(m2) > 0. The initial data

φ0 ∈ (m1, m2). As we know, formula (55) defines a periodic solution, φ(ξ0) = φ0 (see Proof
of Theorem 2 , Figure 2 there, etc.). If C = 0, m1 = 0, m2 = φ2, 0 < φ0 < m2 and the integral
ξ = F(φ) =

∫ φ
φ0

dλ√
g(λ)

, 0 < φ < φ2 has the following properties: F(φ0) = 0, F
′
(φ) > 0 on

(0, φ2), F(+0) = −∞, F(φ2) > 0 is some number and F
′
(φ2) = +∞. The inverse function

φ = F−1(ξ) is defined on {−∞ < ξ ≤ A}, φ > 0 there, φ
′
(ξ) > 0 , φ

′
(A) = 0 for some

A. We continue φ(ξ) in an even way with respect to A, i.e., φ(ξ + A) = φ(A − ξ), ∀ξ ≥ 0
obtaining this way a soliton solution of (11).

(b) Suppose that A < 0, B > 0, | B
A | <

1
(1+2n)e , i.e., 0 > B

A > − 1
(1+2n)e = hmin. It

follows that g
′
(φ) = 0 ⇐⇒ h(φ1) = φ2n+1

1 lnφ1 = B
A ∈ (0,− 1

(2n+1)e ), g(1) = B > 0;

g
′
(φ) > 0 ⇐⇒ hmin < B

A < h(φ), 0 < F(∞) < ∞. We take the point 1 > φ1 > e−
1

2n+1 as

there are two numbers satisfying h(φ) = B
A < 0 → one of them less that e−

1
2n+1 and the

other is φ1.
Having in mind that h

′
(φ) > 0 for φ > e−

1
2n+1 , we conclude that for φ > φ1 ⇒ h(φ) >

h(φ1) =
B
A ⇒ g

′
(φ) > 0, i.e., g is strictly monotonically increasing and g(φ) ≥ g(φ1) for

φ ≥ φ1,

g(φ1) = φ2
1(B +

A
n + 1

φ2n
1 (

1
2n + 2

− lnφ1)),

i.e., g(φ1) ≥ (<)0 if and only if 1+ 1
2(n+1)2 φ1lnφ1

≥ (< 0) 1
(n+1)φ1

. Assuming g(φ1) = 0 and

having in mind that g
′
(φ1) = 0, we can construct a solution of (53) of the type |cosechξ|,

as for φ ≥ φ1, φ0 > φ1 the integral F(φ) has the following properties: F
′
(φ) > 0, F(φ0) = 0,

F(φ1) = −∞, 0 < F(+∞) < ∞. φ(t) has a blow up for finite time, φ(t) > 0 everywhere
and φ(±∞) = 0. The latter result is rather implicit. So it is better to study the function
p(φ) = B + A

n+1 φ2n( 1
2n+2 − lnφ), φ > 0, B > 0, A < 0.

Evidently, g(φ) = φ2 p(φ), p
′
(φ) = −A

n+1 φ2n−1( 1
n+1 + 2nlnφ), p

′
(φ) > (<)0 ⇐⇒ φ >

(<)φ3 = e−
1

2(n+1)n , pmin = p(φ3) = B + A
2n(n+1) e−

1
n+1 , p(0) = B, p(+∞) = ∞, p

′
(φ3) = 0.

Thus, g(t) ≥ φ2 pmin. We are interested in the subcases of (b) p(φ3) > 0; p(φ3) =

0 ⇐⇒ B = − A
2n(n+1) e−

1
n+1 > 0 ⇒ p(φ) > 0 for φ > φ3, p(φ3) = p

′
(φ3) = 0. The integral

ξ = F(φ) =
∫ φ

φ0
dλ

λ
√

p(λ)
is investigated for φ > φ3 and the initial data φ0 > φ3. Then
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0 < F(+∞) < ∞, F
′
(φ) > 0 for φ > φ3, F(φ3) = −∞, F(φ0) = 0. The inverse function of

ξ = F(φ), φ = F−1(ξ) is positive in some interval {ξ < A}, φ(−∞) = 0, φ(A) = ∞, φ
′
> 0.

We continue in an even way with respect to A the function φ and obtain a |cosechξ|-type
solution of (53).

The third subcase is pmin < 0 and consequently there exists unique φ4 > φ3 such
that p(φ4) = 0, p(φ) > 0 for φ > φ4, p

′
(φ4) > 0. (55) will be considered on the interval

φ ≥ φ4 > 0, ξ = F(φ) =
∫ φ

φ0
dλ

λ
√

p(λ)
, φ ≥ φ4, φ0 > φ4. Obviously, F

′
(φ) > 0, F(φ4) < 0,

F
′
(φ4) = −∞, F(+∞) < ∞. The inverse function F−1 has the behavior of |cosecξ| (Figure 8).

Figure 8. Graph of the inverse function φ, pmin < 0, φ(B − ξ) = φ(B + ξ), 0 ≤ ξ ≤ A − B,
φ(ξ + T) = φ(ξ), T = (A−B)

2 .

The other two cases A < 0, B > 0 or B < 0 are omitted as they can be studied similarly
to the previous cases (a) and (b).

2. We shall study now Equation (10) under condition (12), i.e.,

φ
′′
= Bφ − Aφ2n+1, A =

α

β
, B =

V + 2ak + 3βk2

β
. (56)

In a standard way, we come to the first-order ODE

(φ
′
)2 = Bφ2 − A

n + 1
φ2n+2 + 2C = 2C + g, C = const,

where
g(φ) = φ2(B − A

n + 1
φ2n). (57)

So (φ
′
)2 = 2(C − U), U = − 1

2 g(φ).

In the special case C = 0, we conclude that

ξ − ξ0 = G(φ)− G(φ0) =
∫ φ

φ0

dλ√
g(λ)

, (58)

i.e., G(φ) is any primitive of 1√
g(φ)

, φ, φ0 > 0, g(φ) > 0.
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There are four cases for the signs of A, B in g(φ): A > 0, B > 0; A > 0, B < 0 -
impossible; A < 0, B > 0 and A < 0, B < 0.

Thus,
√

2(ξ − ξ0) =
∫ φ

φ0

dλ√
C − U(λ)

.

If B > 0, A < 0 (56) possesses a one parametric family of periodic solutions. The proof
repeats the proof of the similar results for (41), (1) and we omit it.

Suppose that

ξ − ξ0 =
∫ φ

φ0

dλ

φ
√

B − A
n+1 λ2n

= F(φ) (59)

and A > 0, B > 0; A < 0, B > 0; A < 0, B < 0. Certainly, φ > 0, φ0 > 0.
The change λn = z in (59) gives us that

F(φ) =
1
n

∫ φn

φn
0

dz

z
√

B − A
n+1 z2

=
1
n

√
n + 1
|A|

∫ φn

φn
0

dz

z
√

B(n+1)
|A| − sgnAz2

.

We shall study the cases∣∣∣∣∣ B > 0, A > 0 with α2 = B(n+1)
A , α > 0

B < 0, A > 0 with B(n+1)
A = −α2, α > 0.

The case A < 0, B < 0 is treated in a similar way as A > 0, B > 0 and we omit the proof.
According to formulae 341.01, 281.01 from [4], we have that with µ = φn, µ0 = φn

0

F(φ) =
1
n

√
n + 1
|A|


− 1

α ln( α+
√

α2−µ2

α+
√

α2−µ2
0

µ0
µ ), 0 < µ < α, A > 0, B > 0

1
α (arccos α

µ − arccos α
µ0
), 0 < α < µ, 0 < α < µ0,

B < 0, A > 0.

Therefore, (59) implies that

µe−D(ξ−ξ0)E − α =
√

α2 − µ2, A > 0, B > 0 (60)

and 0 < D = n
√

|A|
n+1 α, E =

α+
√

α2−µ2
0

µ0
> 0.

From (60), we obtain that

φn = µ =
2αE

eD(ξ−ξ0) + E2e−D(ξ−ξ0)
, (61)

where α =
√

(n+1)|B|
|A| , E =

α+
√

α2−φ2n
0

φn
0

, D = n
√
|B|.

(61) is a soliton-type solution, of course, and can be expressed via sech(C1ξ + C2).
In the case B < 0, A > 0 we have that

D(ξ − ξ0) = arccos
α

µ
− arccos

α

µ0
, 0 < α < µ0, 0 < α < µ.

From trigonometry, it is known that for 0 < x < 1, 0 < y < 1:

arccosx − arccosy = arctg

√
1
x2 − 1 −

√
1
y2 − 1

1 +
√

1
x2 − 1

√
1
y2 − 1

. (62)
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Put R =
√

1
x2 − 1, S =

√
1
y2 − 1 ⇒ x = 1√

1+R2 , y = 1√
1+S2 . Put x = α

µ ∈ (0, 1); y = α
µ0

∈
(0, 1). So

tgD(ξ − ξ0) =
R − S

1 + RS
⇒ R =

tgD(ξ − ξ0) + S
1 − StgD(ξ − ξ0)

Thus, x = 1√
1+R2 = y|cosD(ξ − ξ0)− SsinD(ξ − ξ0)| ⇒

φn

α
=

1
x
=

1
y|cosD(ξ − ξ0)− SsinD(ξ − ξ0)|

⇐⇒ (63)

φn =
φn

0
|cosD(ξ − ξ0)− SsinD(ξ − ξ0)|

, (64)

where D = n
√
|B|, S =

√
µ2

0−α2

α =

√
φ2n

0 −α2

α , α =
√

(n+1)|B|
|A| . In other words,

φ =
φ0

|cosD(ξ − ξ0)− SsinD(ξ − ξ0)|
1
n

. (65)

The expression in the denominator can be expressed as cosec(A1ξ + B1).
Below we propose several useful identities from classical and hyperbolic trigonometries.

For each P, Q real : Pcosx + Qsinx =
√

P2 + Q2sin(x + α), (66)

where sinα =
P√

P2 + Q2
, cosα =

Q√
P2 + Q2

,

For each P > 0, Q such that P > |Q| > 0 : Pchx + Qshx =
√

P2 − Q2ch(x + α), (67)

where chα =
P√

P2 − Q2
, shα =

Q√
P2 − Q2

.

If |P| = |Q|, i.e., P = ±Q ⇒ Pchx + Qshx = P(chx ± shx) = Pe±x.
Assume that P > 0, Q > 0. Then

Pex + Qe−x = 2
√

PQch(x + α), (68)

where chα = 1
2 (
√

P
Q +

√
Q
P ), shα = 1

2 (
√

P
Q −

√
Q
P ).

Suppose that P, Q > 0. Then

Pex − Qe−x = 2
√

PQsh(x + α), (69)

where shα = P−Q
2
√

PQ = 1
2 (
√

P
Q −

√
Q
P ), chα = 1

2 (
√

P
Q +

√
Q
P ). Therefore, 1

Pex−Qe−x =
1

2
√

PQ cosech(x + α), P, Q > 0.
Conclusion: The solution (61) can be rewritten as

φn = αsech(D(ξ − ξ0) + δ), (70)

where chδ = 1
2 (

1
E + E), shδ = 1

2 (
1
E − E). Formula (64) takes the form:

φn =
φn

0

|sin(D(ξ − ξ0)− β)|
√

1 + S2
= α|cosec(D(ξ − ξ0)− β)|, (71)

where sinβ = 1√
1+S2 = α

µ0
, cosβ = S√

1+S2 =

√
µ2

0−α2

µ0
; µ0 = φn

0 , D = n
√
|B|, α =√

(n + 1) |B||A| .
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The function (71) is strictly positive and, being unbounded, is periodic with period
2π
D = 2π

n
√

|B|
.

Remark 3. Suppose that n = 1
2 in (56), i.e.,

φ
′′
= Bφ − Aφ2.

Therefore,

(φ
′
)2 = −2Aφ3

3
+ Bφ2 + C. (72)

If
n = 1 ⇒ φ

′′
= Bφ − Aφ3 ⇒ (φ

′
)2 = Bφ2 − A

2
φ4 + C. (73)

Put P3(φ) = − 2Aφ3

3 + Bφ2 + C, A > 0 and assume that P3(φ) = 0 has three simple
real roots φ1 > φ2 > φ3. Then (72) possesses the special solution φ(ξ) = φ1 + (φ2 −
φ1)sn2( 1

2

√
2A
3 (φ1 − φ3)ξ, m) and sn stands for the Jacobi elliptic function with modulus

m =
√

φ1−φ2
φ1−φ3

[17].

The cubic equation Q3(φ) = −A1 φ3 + B1 φ2 + C1 φ + D1 = 0, A1 > 0 possesses three
simple real roots if and only if Q

′
3(φ) = 0 has two simple real roots z1 < z2 such that

Q3(z1) < 0, Q3(z2) > 0. In our case (P3(φ)), the coefficients of Q3 are − 2A
3 < 0, B, 0, C

and the corresponding roots of Q
′
3 are z1 = 0, z2 = B

A . So C < 0 and B3

A2 > −3C guarantee
the existence of three simple real roots of P3(φ) = 0. Certainly, φ1 φ2 φ3 = 3C

2A < 0.
Assume that n = 1 in (56), i.e., the biquadratic polynomial

P4(φ) = − A
2

φ4 + Bφ2 + C, A > 0. (74)

According to [17], the equation possesses the solution

φ(ξ) = φ1 −
φ1 − φ4

1 + φ3−φ4
φ1−φ3

sn2(τ, m),

where τ = 1
2

√
(φ1 − φ3)(φ2 − φ4)(ξ − ξ0), m2 = (φ1−φ2)(φ3−φ4)

(φ1−φ3)(φ2−φ4)
and the simple real roots

of P4 = 0 are φ1 > φ2 > φ3 > φ4, φ4 = −φ1, φ3 = −φ2, the modulus 0 < m2 < 1,
φ(0) = φ4, φ4 ≤ φ(ξ) < φ3.

As it concerns (73), there is a table for the solutions of (73) expressed by Jacobi elliptic
functions for special values of the coefficients A, B.

Example. Consider (73) with the following coefficients depending on the parameter
0 < m < 1: A = −2m2, B = −(m2 + 1), C = 1. Then it possesses the elliptic function
solutions φ = sn(ξ, m), cd(ξ, m) = cn(ξ,m)

dn(ξ,m)
.

Formulas (61) and (70) can be found directly, using the fact that d
dφ Arcsechφn =

∓ n
φ
√

1−φ2n
, 0 < φ < 1. Similarly, d

dφ Arccosechφn = −n
φ
√

1+φ2n
. So ξ − ξ0 = G(φ)− G(φ0) =

∓ 1
n (Arcsechφn − Arcsechφn

0 )⇒ sech(∓n(ξ − ξ0)+ Arcsechφn
0 ) = φn, |cosech(−n(ξ − ξ0)+

Arccosechφn
0 )| = φn. The second solution blows up for ξ̄ = ξ0 +

1
n Arccosechφn

0 and
φ(±∞) = 0.
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6. Appendix on the Solvability of the Cauchy Problem for the Schrödinger Operator (3),
u|t=0 = u0(x) in the Space W \ 0, λ < 0

For the sake of completeness, we shall prove unicity of (3) under the additional
condition u ∈ C(Rt; L2(Rn

x)). Assume that u1, u2 are two solutions of (3) having the same
initial data and denote w = u2 − u1. Then

i∂tw +
1
2

∆xw = λ(u2ln|u2|2 − u1ln|u1|2) (75)

and we multiply both sides of (75) by w̄ and integrate in Rn
x . Thus,

i(∂tw, w)L2(Rn) + (∆xw, w)L2(Rn) = λ(u2ln|u2|2 − u1ln|u1|2, w)L2(Rn). (76)

Taking the imaginary part of (76), we obtain that

1
2

d
dt
||w(t)||2L2(Rn) = λ

∫
Rn

Im[(u2ln|u2|2 − u1ln|u1|2)w̄]dx = λ
∫

Rn
Idx. (77)

In fact, Imi(∂tw, w) = Re(∂tw, w) = 1
2

d
dt ||w||2L2

. Having in mind that Imz = z−z̄
2i and

|z1| ≥ |z2| > 0 implies that 0 ≤ ln|z1| − ln|z2| =
∫ |z1|
|z2|

dp
p ≤ 1

|z2|
(|z1| − |z2|) ≤ |z1−z2|

|z2|
we

conclude that for u1, u2 ∈ C1 \ 0:

I = 2Im[(u2ln|u2| − u1ln|u1|)(ū2 − ū1)] = −2Im(u2ū1ln|u2| − u1ū2ln|u1|) =

i[(u2ū1 − u1ū2)ln|u2|+ (u1ū2 − u2ū1)ln|u1|] = i(u2ū1 − u1ū2)(ln|u2| − ln|u1|) =

i(u2(ū1 − ū2) + ū2(u2 − u1))(ln|u2| − ln|u1|).

Therefore,
|I| ≤ 2|u2||u1 − u2||ln|u2| − ln|u1||. (78)

Without loss of generality, we suppose that |u1| ≥ |u2| > 0, i.e., |I| ≤ |u1 − u2|2 ⇒

d
dt
||w(t)||2L2 ≤ 4|λ||w(t)||2L2

, w(0) = 0, w ∈ C(R; L2(Rn)).

The continuous function 0 ≤ y(t) = ||w(t)||2L2 , y(0) = 0 satisfies the inequality

y
′
(t) ≤ Cy(t) ⇒ y(t) ≡ 0

(Gronwall Lemma)
Unicity is verified.
We know that xlnx is not Lipschitz near 0. On the other hand, if |w1| > 0, |w2| > 0, then

|w1log|w1| − w2log|w2|| ≤ |w1 − w2|(1 + max(|log|w1|, |log|w2|). (79)

7. Discussion and Open Problems

In optics, higher-order PDE of Schrödinger type could appear, namely

iut + Pm(Dx)u = A|u|2Rn(Dx)u + B(|u|2u)x, (80)

Pm, Rn being polynomials of ξ, 1 ≤ n < m − 2.
A simple example is the Focas–Lenells equation (FLE)

iut + iauxxx + buxxxx + |u|2(cu + idux) = i[αux + λ(|u|2u)x + µ(|ux|2)u], (81)
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where a, b, c, d, α, λ, µ are real constants. We are looking for a solution of (80) having the
form

u(x, t) = Φ(x − vt)eiψ(x,t), ξ = x − vt, (82)

Φ-real, ψ = −kx + ωt, all the coefficients being real-valued.
Taking (82) into (81) and splitting the real and imaginary parts, we obtain for Φ(ξ) a

fourth-order ODE and third-order ODE with real coefficients. We take the coefficients of
the third-order ODE to be zero and conclude that

Φiv + C3Φ
′′
+ C4Φ = C5Φ3. (83)

In general, C3C4C5 ̸= 0 and these constants are real.
One can easily guess the validity of the following two propositions.

Proposition 1. The soliton-type function

Φ =
A

chBξ
, (84)

AB ̸= 1, A, B-real, satisfies

Φ
′′
+ C1Φ = C2Φ3, C1 < 0, C2 < 0 (85)

if and only if B = ±
√
−C1, A = ±

√
2C1
C2

.

(84) does not verify (83).

Proposition 2. Equation (83) has a soliton-type solution of the form

Φ = L +
A

ch2Bξ
, AB ̸= 0 (86)

in the following two cases:

(1) L = 0, C3 < 0, C5 > 0, C4 = 4
25 C2

3 ; A = −ε2
C3
20

√
120
C5

, B = ε1

√
−C3
20 , ε 2

1 = ε2
2 = 1.

(2) L = ε3

√
C4
C5

, C4 > 0, C5 > 0, ε2
3 = 1; A = ε2B2

√
120
C5

, ε2
2 = 1, B = ε4

√
−(ε2ε3

√
30C4+C3)
20 ,

ε2ε3
√

30C4 + C3 < 0, where C3 =
√

30C4
12 (−7ε2ε3 −

√
65) < 0, ε2

4 = 1.

Equation (86) does not satisfy (85).
In a similar way, one can find a blowing up solution Φ = L + A

sh2Bξ
of (83). We can

reduce the order of (83) by two units, obtaining a non-autonomous second-order ODE for
p(Φ) = |Φ′

ξ |3/2.
The open problem is to find soliton (blowing up)-type solutions of (80). One can try to

construct soliton solutions by using the method of a priori estimates.

8. Conclusions

In this paper, we construct exact solutions of several model examples of semilinear
PDE arising in mathematical physics. At first we study the parabolic PDE with nonlinearity
λulnu2 and initial data b0e−a0x2

, a0 < 0. The corresponding Cauchy problem possesses
a unique solution for 0 ≤ t ≤ T in the class of exponentially increasing functions u,
|u| ≤ C(T)eax2

, a > 0, 0 ≤ t ≤ T. The solutions are either globally defined in t or the
phase of u = b(t)e−a(t)x2

blows up for some finite t̄. Much more complicated is the case
of the Schrödinger equation with nonlinearity λuln|u|2, u ̸= 0, λ = const ̸= 0. Here

u = b(t)e−a(t) x2
2 , b(0) ̸= 0, a(0) = α0 + iβ0, α0 < 0, β0 ̸= 0. If λ > 0, there exists smooth

periodic a(t) such that Rea(t) < 0. It is interesting to note that |b| > 0 is periodic but we
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find here a necessary and sufficient condition for periodicity of b(t) showing that b(t) is
very rarely periodic.

For the first time, we investigate the case λ < 0 and prove that the smooth curve
t → a(t) ∈ C1 is bounded and located in the half plane Rea < 0 being tangential to the
imaginary axes at the origin, a(±∞) = 0, Ima > 0 for t ≫ 1, Ima < 0 for t ≪ −1, while
b(t) : t → C1 describes a focus in C1 with center 0.

For the higher-order Schrödinger equations with power and power-logarithmic non-
linearities, we are looking for solutions of the type u = Φ(ξ)eiψ(t,x), Φ-real, ξ = x − Vt,
V ∈ R1, ψ linear real-valued in x, t. We split the corresponding real and imaginary parts and
reduce the solvability of that semilinear PDE to the solvability of appropriate second-order
autonomous ODE. By means of the method of first integral (used in mechanical processes of
one degree of freedom), we obtain directly the solutions of type solitons, kinks, blowing up,
etc. We propose here solutions of the type sech, cosech, sec, cosec, Jacobi elliptic functions
that are found directly. In the higher-order case, things are complicated. If the appropriate
autonomous semilinear ODEs are of even order by using the method of first integral and
the change p(Φ) = Φ

′
ξ , we can reduce the order by (at least) two units, obtaining, for

example, in the fourth-dimensional case, a second-order Emden–Fawler ODE.
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