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Abstract: This study provides an efficient linearized difference algorithm for a diffusive Sel
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1. Introduction

The occurrence of oscillatory patterns, multiple steady-state solutions and chaotic
behaviors is a fascinating phenomenon observed across numerous chemical, biological
and physical systems [1,2]. Turing’s theory reveals the principles of the relationship
between the patterns produced by convection–diffusion systems and these phenomena [3].
As a famous example related to cellular processes in biochemical systems, the Sel

′
kov–

Schnakenberg system has attracted the attention of many scholars on the stability and the
existence of steady-state solutions [4–7].

The Sel
′
kov–Schnakenberg model, as an extension of the Sel’kov model [8] and

Schnakenberg model [9], can describes the limit cycle behavior:

A ⇌ V, B ⇌ U, 2U + V ⇌ 3U, (1)

where A and B are the chemical sources of V and U, respectively. U is the auto-catalyst,
and V is the reactant. The mathematical modeling of the process leads to the following
Sel

′
kov–Schnakenberg system [10]:{

ut = d1∆u − u + u2v + b + av, x ∈ Ω, t > 0, (2)

vt = d2∆v + λ − u2v − av, x ∈ Ω, t > 0, (3)

where u represents the concentration of the auto-catalyst, and v represents the concentration
of the reactant. Their corresponding diffusion coefficients are denoted by d1 and d2, respec-
tively. The variables x and t are time and space variables, respectively. The dimensionless
constant rate for the low activity state is given by a, and b and λ represent dimensionless
chemical sources, with a, b ≥ 0 and λ > 0.

With the homogeneous Neumann boundary conditions:

∂u
∂n

=
∂v
∂n

= 0, on ∂Ω × (0, T), (4)
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and initial conditions

u(x, 0) = ϕ(x), v(x, 0) = ψ(x), x ∈ Ω, (5)

where ∂Ω represents the boundary of domain Ω, and n denotes the outward unit normal
vector of ∂Ω.

Numerous works in the literature are devoted to the study of (2)–(5), including the
Sel′kov model and the Schnakenberg model; See [1,2,7,10–14], and the references therein.
In 2015, Zhou and Shi [14] investigate stability, instability, time-periodic orbits and spa-
tiotemporal patterns through bifurcation methods and Leray–Schauder degree theory.
In 2017, Li and Wang [12] focused on Sel′kov–Schnakenberg systems, explored steady-state
issues, and provided the criteria for the formation of spatial patterns (especially Turing
patterns) based on the results of the presence and absence of non-constant steady states.
In 2014, Uecker and Wetzel [1] analyzed the patterns of the Sel′kov–Schnakenberg system
in two dimensions by using the pde2path [15] finite element software package, numerically
calculating embedded branches, such as hexagons in stripes. In 2021, Al Noufaey [2]
used the Galerkin method to study the singularity behavior and stability of the Sel

′
kov–

Schnakenberg system. In 2023, Wang and Zhou et al. [7] studied the Turing instability
(diffusion drive) causing spatial patterns and obtained the conditions for the existence of
Turing bifurcations, then the changes in the spatiotemporal pattern that depend on the
parameters were theoretically analyzed, and a series of numerical experimental simulations
were conducted to verify the analysis results through the finite difference method. To the
best of our knowledge, there is relatively limited research on numerical algorithms for the
Sel′kov–Schnakenberg system at present.

In view of the difficulties caused by nonlinear terms in the Sel
′
kov–Schnakenberg

system, in this paper, we primarily focus on investigating a linearized finite difference
algorithm. Taking into account the characteristics of Neumann boundary conditions, we
explore the construction of a three-level linearized finite difference algorithm. Then, we
provide a rigorous theoretical analysis of the boundedness, existence and uniqueness of
the solutions for our proposed algorithm. Numerical results will demonstrate that the
algorithm has second-order accuracy in both time and space, and we explore the spatial
patterns of the system solutions.

The structure of this paper is as follows: In Section 2, we recall some fundamental
notations and lemmas. In Section 3, a three-level finite difference algorithm is constructed in
detail. The boundedness, existence and uniqueness of solutions are proved in detail for our
algorithm in Section 4. Two numerical examples are provided to verify the efficiency of the
algorithm and the theoretical analysis results in Section 5. Finally, we present conclusions
in Section 6.

2. Preliminaries

In this section, we review some notations and lemmas that will be used in the remain-
der of the paper.

We will divide the domain [L, R] × [0, T]. Take positive integers m, n, divide the
domain [L, R] into m equal parts, and divide the domain [0, T] into n equal parts. The mesh
size and nodes are denoted as follows:

h = (R − L)/m, xi = ih, 0 ≤ i ≤ m.

τ = T/n, tk = kτ, 0 ≤ k ≤ n.

Denote

δxui+ 1
2
=

ui+1 − ui
h

, δ2
xui =

ui−1 − 2ui + ui+1

h2 ,

uk̄ =
uk+1 + uk

2
, ∆tuk =

uk+1 − uk−1

2τ
.
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For convenience, we introduce the inner product (·, ·):

(u, v) = h(
u0v0

2
+

m−1

∑
i=1

uivi +
umvm

2
),

then we define norms ∥ · ∥, | · |1:

∥u∥ =
√
(u, u),

|u|1 =

√
h

m

∑
i=1

(δxui− 1
2
)2.

Lemma 1 (See [16]). Let a and b be the given constants, and h > 0.
(1) If g(x) ∈ C3[c, c + h], then

g′′(c) =
2
h
[
g(c + h)− g(c)

h
− g′(c)]− h

3
g′′′(η1), c < η1 < c + h, (6)

If g(x) ∈ C4[c, c + h], then

g′′(c) =
2
h
[
g(c + h)− g(c)

h
− g′(c)]− h

3
g′′′(c)− h2

12
g(4)(η2), c < η2 < c + h. (7)

(2) If g(x) ∈ C3[c − h, c], then

g′′(c) =
2
h
[g′(c)− g(c)− g(c − h)

h
] +

h
3

g′′′(η3), c − h < η3 < c, (8)

If g(x) ∈ C4[c − h, c], then

g′′(c) =
2
h
[g′(c)− g(c)− g(c − h)

h
] +

h
3

g′′′(c)− h2

12
g(4)(η4), c − h < η4 < c. (9)

Lemma 2 (See [7]). On the premise that the positive equilibrium

E∗(u∗, v∗) = (λ + b,
λ

a + (b + λ)2 ),

of the corresponding local system is stable, for the Sel
′
kov–Schnakenberg system (2)–(5), the

following hold:

1. If λ2 − b2 ≤ a, the positive Equilibrium E∗ is asymptotically stable for all d1, d2 > 0.
2. If λ2 − b2 > a, we have the following results:

(a) When d2
d1

≤ max{1, (a+(λ+b)2)2

λ2−b2−a }, the positive equilibrium E∗ is asymptotically stable.

(b) When d2
d1

> max{1, (a+(λ+b)2)2

λ2−b2−a }, and when a > aT , the positive equilibrium E∗ is
asymptotically stable. And when a < aT , the positive equilibrium E∗ is unstable.
When a = aT with k = kc, the system undergoes Turing bifurcation, where aT , kc are
the parameters in literature [7].

3. A Three-Level Linearized Difference Algorithm

In this section, we will present the derivation process of our linearized difference algorithm.
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Considering Equations (2) and (3) at the node (xi, tk), we have
ut(xi, tk) = d1uxx(xi, tk)− u(xi, tk) + (u(xi, tk))

2v(xi, tk)

+b + av(xi, tk), 0 ≤ i ≤ m, 1 ≤ k ≤ n − 1, (10)

vt(xi, tk) = d2vxx(xi, tk) + λ − (u(xi, tk))
2v(xi, tk)

−av(xi, tk), 0 ≤ i ≤ m, 1 ≤ k ≤ n − 1. (11)

Applying numerical differentiation formulas to the above equations, it can be ob-
served that

∆tUk
i = d1δ2

xU k̄
i − U k̄

i + Uk
i Vk

i U k̄
i + b + aVk

i + Pk
i , 1 ≤ i ≤ m − 1, 1 ≤ k ≤ n − 1, (12)

∆tVk
i = d2δ2

xV k̄
i + λ − (Uk

i )
2V k̄

i − aV k̄
i + Rk

i , 1 ≤ i ≤ m − 1, 1 ≤ k ≤ n − 1. (13)

Then, there exist constants c1 and c2 such that

|Pk
i | ≤ c1(h2 + τ2), 1 ≤ i ≤ m − 1, 1 ≤ k ≤ n − 1,

|Rk
i | ≤ c2(h2 + τ2), 1 ≤ i ≤ m − 1, 1 ≤ k ≤ n − 1.

Taking the derivative of both sides of the system of equations with respect to x,
we have:

uxt = d1uxxx − ux + 2uuxv + u2vx + avx, x ∈ Ω, t > 0,

vxt = d2vxxx − 2uuxv − u2vx − avx, x ∈ Ω, t > 0.

Applying boundary conditions (4), we obtain

uxxx(L, t) = 0, uxxx(R, t) = 0, 0 < t ≤ T, (14)

vxxx(L, t) = 0, vxxx(R, t) = 0, 0 < t ≤ T. (15)

Applying the boundary conditions (4), (14), (15) and using the Lemma 1, we can deduce

uxx(L, t) =
2
h2 [u(x1, t)− u(x0, t)] +O(h2),

uxx(R, t) = − 2
h2 [u(xm, t)− u(xm−1, t)] +O(h2),

vxx(L, t) =
2
h2 [v(x1, t)− v(x0, t)] +O(h2),

vxx(R, t) = − 2
h2 [v(xm, t)− v(xm−1, t)] +O(h2).

Therefore,

uxx(L, tk+ 1
2
) =

1
2
[uxx(L, tk) + uxx(L, tk+1)] +O(τ2)

=
1
2
[

2
h2 (U

k
1 − Uk

0) +
2
h2 (U

k+1
1 − Uk+1

0 )] +O(τ2 + h2)

=
2
h

δxU k̄
1
2
+O(τ2 + h2), (16)

uxx(R, tk+ 1
2
) =

1
2
[uxx(R, tk) + uxx(R, tk+1)] +O(τ2)

=
1
2
[− 2

h2 (U
k
m − Uk

m−1)−
2
h2 (U

k+1
m − Uk+1

m−1)] +O(τ2 + h2)

= −2
h

δxU k̄
m− 1

2
+O(τ2 + h2). (17)
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Employing a similar methodology, the result is

vxx(L, tk+ 1
2
) =

2
h

δxV k̄
1
2
+O(τ2 + h2), (18)

vxx(R, tk+ 1
2
) = −2

h
δxV k̄

m− 1
2
+O(τ2 + h2). (19)

Substituting i = 0 into Equation (10) and combining it with Equation (16), we derive

∆tUk
0 = d1

2
h

δxU k̂
1
2
− U k̄

0 + Uk
0Vk

0 U k̄
0 + b + aVk

0 + Pk
0 , 1 ≤ k ≤ n − 1. (20)

Similarly, letting i = m in Equation (10) and combining it with Equation (17), we obtain

∆tUk
m = −d1

2
h

δxU k̂
m− 1

2
− U k̄

m + Uk
mVk

mU k̄
m + b + aVk

m + Pk
m, 1 ≤ k ≤ n − 1, (21)

where there exists a constant c3 such that

|Pk
0 | ≤ c3(h2 + τ2), 1 ≤ k ≤ n − 1,

|Pk
m| ≤ c3(h2 + τ2), 1 ≤ k ≤ n − 1.

Similar to the treatment of u, by substituting i = 0 into Equation (11) and combining it
with Equation (18), we obtain

∆tVk
0 = d2

2
h

δxV k̂
1
2
+ λ − Uk

0Vk
0 U k̄

0 − aV k̄
0 + Rk

0, 1 ≤ k ≤ n − 1. (22)

Letting i = m in Equation (11) and combining it with Equation (19), we have

∆tVk
m = −d2

2
h

δxV k̂
m− 1

2
+ λ − (Uk

m)
2V k̄

m − aV k̄
m + Rk

m, 1 ≤ k ≤ n − 1, (23)

where there exists a constant c4 such that

|Rk
0| ≤ c4(h2 + τ2), 1 ≤ k ≤ n − 1,

|Rk
m| ≤ c4(h2 + τ2), 1 ≤ k ≤ n − 1.

From Equations (2) and (5), it follows that

ut(x, 0) =d1ϕxx(x)− ϕ(x) + ϕ2(x)ψ(x) + b + aψ(x).

Then, we can obtain

U1
i = ϕ(xi) + τut(xi, 0) + P0

i , 0 ≤ i ≤ m, (24)

where there exists a constant c5 such that

|P0
i | ≤ c5τ2, 0 ≤ i ≤ m,

|δxP0
i+ 1

2
| ≤ c5τ2, 0 ≤ i ≤ m.

Deriving from Equations (3) and (5), we arrive

vt(x, 0) = d2ψxx(x) + λ − ϕ2(x)ψ(x)− aψ(x).

Then, we can obtain

V1
i = ψ(xi) + τvt(xi, 0) + R0

i , 0 ≤ i ≤ m, (25)
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where there exists a constant c6 such that

|R0
i | ≤ c6τ2, 0 ≤ i ≤ m,

|δxR0
i+ 1

2
| ≤ c6τ2, 0 ≤ i ≤ m.

Neglecting the infinitesimal terms in Equations (12), (13) and (20)–(25), we can estab-
lish the following three-level linearized difference algorithm for the Sel

′
kov–Schnakenberg

system (2)–(5):

∆tuk
0 = d1

2
h

δxuk̂
1
2
− uk̄

0 + uk
0vk

0uk̄
0 + b + avk

0, 1 ≤ k ≤ n − 1, (26)

∆tvk
0 = d2

2
h

δxvk̂
1
2
+ λ − (uk

0)
2vk̄

0 − avk̄
0, 1 ≤ k ≤ n − 1, (27)

∆tuk
i = d1δ2

xuk̄
i − uk̄

i + uk
i vk

i uk̄
i + b + avk

i , 1 ≤ i ≤ m − 1, 1 ≤ k ≤ n − 1, (28)

∆tvk
i = d2δ2

xvk̄
i + λ − (uk

i )
2vk̄

i − avk̄
i , 1 ≤ i ≤ m − 1, 1 ≤ k ≤ n − 1, (29)

∆tuk
m = −d1

2
h

δxuk̂
m− 1

2
− uk̄

m + uk
mvk

muk̄
m + b + avk

m, 1 ≤ k ≤ n − 1, (30)

∆tvk
m = −d2

2
h

δxvk̂
m− 1

2
+ λ − (uk

m)
2vk̄

m − avk̄
m, 1 ≤ k ≤ n − 1, (31)

u0
i = ϕ(xi), v0

i = ψ(xi), 0 ≤ i ≤ m, (32)

u1
i = ϕ(xi) + τut(xi, 0), 0 ≤ i ≤ m, (33)

v1
i = ψ(xi) + τvt(xi, 0), 0 ≤ i ≤ m. (34)

4. Theoretical Analysis

In this section, we will give a strict theoretical analysis of the boundedness, existence
and uniqueness of the solutions to our proposed algorithm, respectively.

4.1. The Boundedness of Our Algorithm Solutions

Theorem 1. Let {uk
i , vk

i |0 ≤ i ≤ m, 0 ≤ k ≤ n} be solutions of the system (26)–(34). Then, there
exist two constants c7 and c8 such that

∥vk∥ ≤ c7, ∥uk∥ ≤ c8, 0 ≤ k ≤ n. (35)

Proof. From Equations (32)–(34), there exists a constant c9 such that

∥u0∥ ≤ c9, ∥u1∥ ≤ c9, (36)

∥v0∥ ≤ c9, ∥v1∥ ≤ c9. (37)

Subsequently, Equations (26)–(31) can be collectively expressed as follows:

∆tuk
i = d1δ2

xuk̄
i − uk̄

i + uk
i vk

i uk̄
i + b + avk

i , 0 ≤ i ≤ m, 1 ≤ k ≤ n − 1, (38)

∆tvk
i = d2δ2

xvk̄
i + λ − (uk

i )
2vk̄

i − avk̄
i , 0 ≤ i ≤ m, 1 ≤ k ≤ n − 1. (39)
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Taking the inner product of vk̄
i with Equation (39), we obtain

1
4τ

(∥vk+1∥2 − ∥vk−1∥2)

= −d2|vk̄|21 + (λ, vk̄)− ((uk)2vk̄, vk̄)− a∥vk̄∥2

≤ (λ, vk̄)

≤ λ∥vk̄∥

≤ λ
∥vk+1∥+ ∥vk−1∥

2
, 1 ≤ k ≤ n − 1.

Thus,

∥vk+1∥ − ∥vk−1∥ ≤ 2τλ, 1 ≤ k ≤ n − 1.

Through recursion, it can be obtained

∥vk∥ ≤ 2τλk + ∥v0∥
≤ 2Tλ + ∥v0∥, 1 ≤ k ≤ n.

Noting inequality (37), it can be derived that

∥vk∥ ≤ c7, 0 ≤ k ≤ n. (40)

Taking the inner product of uk̄
i with Equation (38), we obtain

1
4τ

(∥uk+1∥2 − ∥uk−1∥2)

= −d1|uk̄|21 − ∥uk̄∥2 + (ukvkuk̄, uk̄) + (b, uk̄) + a(vk, uk̄)

≤ (ukvkuk̄, uk̄) + (b, uk̄) + a(vk, uk̄)

≤ ∥ukvkuk̄∥∥uk̄∥+ b∥uk̄∥+ a∥vk∥∥uk̄∥

≤ (∥ukvkuk̄∥+ b + a∥vk∥)∥uk+1∥+ ∥uk−1∥
2

, 1 ≤ k ≤ n − 1.

Combining inequality (40), we have

∥uk+1∥ − ∥uk−1∥

≤ 2τ(∥ukvkuk̄∥+ b + ac7), 1 ≤ k ≤ n − 1.

From (36) and (37), we can infer the validity of (35) for k = 0, 1.
Assuming that Equation (35) holds when k = n − 1, namely

∥vn−1∥ ≤ c7, ∥un−1∥ ≤ c8.

Let k = n − 1, and we have

∥un∥ − ∥un−2∥
≤ c2

8τ(∥un∥+ ∥un−2∥) + 2τ(b + ac7). (41)

Taking τ ≤ 1
c2

8
− 1

2 , (41) becomes

∥un∥ ≤ (1 + 4τ)∥un−2∥+ 4τ

c
(b + ac7).
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By the Gronwall inequality, it can be derived that

∥un∥ ≤ e2T(∥u0∥+ b + ac7

4
) ≤ c10e2T ,

and thus, the inequality holds when k = n.
By the induction method, we can obtain that (35) holds.

4.2. The Existence and Uniqueness of Solutions for Our Algorithm

Theorem 2. The finite difference algorithm (26)–(34) is uniquely solvable.

Proof. From Equations (32)–(34), u0, u1, v0 and v1 are uniquely determined. Assuming
uk−1, uk, vk−1 and vk are determined, then the system (26)–(31) yields a system of linear
equations for uk+1 and vk+1. Consider the homogeneous system of (26)–(31) as follows:

1
2τ

uk+1
0 = d1

1
h

δxuk+1
1
2

− 1
2

uk+1
0 +

1
2

uk
0vk

0uk+1
0 , (42)

1
2τ

vk+1
0 = d2

1
h

δxvk+1
1
2

− 1
2
(uk

0)
2vk+1

0 − 1
2

avk+1
0 , (43)

1
2τ

uk+1
i =

1
2

d1δ2
xuk+1

i − 1
2

uk+1
i +

1
2

uk
i vk

i uk+1
i , 1 ≤ i ≤ m − 1, (44)

1
2τ

vk+1
i =

1
2

d2δ2
xvk+1

i − 1
2
(uk

i )
2vk+1

i − 1
2

avk+1
i , 1 ≤ i ≤ m − 1, (45)

1
2τ

uk+1
m = −d1

1
h

δxuk+1
m− 1

2
− 1

2
uk+1

m +
1
2

uk
mvk

muk+1
m , (46)

1
2τ

vk+1
m = −d2

1
h

δxvk+1
m− 1

2
− 1

2
(uk

m)
2vk+1

m − 1
2

avk+1
m . (47)

Multiplying Equations (42), (44), and (46) by 1
2 huk+1

0 , huk+1
i and 1

2 huk+1
m respectively,

and then summing them up, we obtain

1
2τ

∥uk+1∥2

= −1
2

d1|uk+1|21 −
1
2
∥uk+1∥2 +

1
2

h(
1
2

uk
0vk

0|uk+1
0 |2 +

m−1

∑
i=1

uk
i vk

i |uk+1
i |2 + 1

2
uk

mvk
m|uk+1

m |2)

≤ 1
2

h(
1
2

uk
0vk

0|uk+1
0 |2 +

m−1

∑
i=1

uk
i vk

i |uk+1
i |2 + 1

2
uk

mvk
m|uk+1

m |2). (48)

When u and v have opposite signs, (48) becomes

1
2τ

∥uk+1∥2 ≤ 0.

Then,

∥uk+1∥2 = 0,

that is

uk+1 = 0.

When u and v have the same sign, in conjunction with Theorem 1, Equation (48) becomes

1
2τ

∥uk+1∥2 ≤ c11

2
∥uk+1∥2.
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If τ < 1
c11

,

∥uk+1∥2 = 0,

then,

uk+1 = 0.

Applying similar techniques to v, we obtain

vk+1 = 0.

To sum up, the finite difference algorithm (26)–(31) is uniquely solvable with respect
to uk+1 and vk+1.

5. Numerical Results and Discussion

In this section, we use two numerical examples to verify the accuracy and efficiency of
our proposed algorithm. All our tests were carried out using MATLAB 2017b running on a
Lenovo desktop with 12 GB of RAM and 3.60 GHz CPU.

5.1. Example 1

In this example, let {Uk
i , Vk

i |0 ≤ i ≤ m, 0 ≤ k ≤ n} be the exact solutions to the
Sel

′
kov–Schnakenberg system (2)–(5), and {uk

i , vk
i |0 ≤ i ≤ m, 0 ≤ k ≤ n} be the numerical

solutions of the finite difference algorithm (26)–(34), then,

U k
i = Uk

i − uk
i ,V k

i = Vk
i − vk

i , 0 ≤ i ≤ m, 0 ≤ k ≤ n.

We denote errors Err and Err1 as follows:

Err =
√
∥U∥2 + ∥V∥2,

and
Err1 =

√
∥U∥2 + ∥V∥2 + |U |21 + |V|21.

Consider the following Sel
′
kov–Schnakenberg system:{

ut = d1∆u − u + u2v + b + av + f , (49)

vt = d2∆v + λ − u2v − av + g. (50)

where f and g are source term functions of x and t.
We choose the domain Ω = (0, 1) and take a = b = 0.01, d1 = d2 = 10, λ = 5. Select

the solutions as {
u(x, t) = (x2 − x)t2,

v(x, t) = (x2 − x)t3.

The source term functions f and g can be obtained by bringing the above information
into Equations (49) and (50).

We take M = 1/h from 4 to 1024, ∆t = 10−3 with T = 1; the numerical results
are shown in Table 1. Then, we choose T = 1, Nt = 1/τ, varying from 4 to 512 with
h = 1/10,000; the numerical results are shown in Table 2. From Tables 1 and 2, it is evident
that our proposed algorithm exhibits second-order accuracy both in space and time.
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Table 1. Errors and convergence rates in space for the proposed algorithm.

M Err Order Err1 Order

4 5.1655 × 10−1 - 5.2581 × 10−1 -
8 1.2189 × 10−1 2.08 1.2447 × 10−1 2.08

16 2.9515 × 10−2 2.05 3.0190 × 10−2 2.04
32 7.2559 × 10−3 2.02 7.4280 × 10−3 2.02
64 1.7985 × 10−3 2.01 1.8418 × 10−3 2.01
128 4.4769 × 10−4 2.01 4.5853 × 10−4 2.01
256 1.1171 × 10−4 2.00 1.1437 × 10−4 2.00
512 2.7931 × 10−5 2.00 2.8547 × 10−5 2.00

1024 7.0136 × 10−6 1.99 7.1261 × 10−6 2.00

Table 2. Errors and convergence rates in time for the proposed algorithm.

Nt Err Order Err1 Order

4 5.7535 × 10−3 - 3.0047 × 10−2 -
8 1.3799 × 10−3 2.06 7.2819 × 10−3 2.04

16 3.3867 × 10−4 2.03 1.7980 × 10−3 2.02
32 8.3680 × 10−5 2.02 4.4489 × 10−4 2.01
64 2.0720 × 10−5 2.01 1.0985 × 10−4 2.02
128 5.1796 × 10−6 2.00 2.7270 × 10−5 2.01
256 1.3224 × 10−6 1.97 6.7907 × 10−6 2.01
512 3.6489 × 10−7 1.86 1.6929 × 10−6 2.00

5.2. Example 2

In this example, we will choose two sets of parameters corresponding to two cases to
investigate the spatial patterns of solutions for the system (2)–(5).

For convenience, we can define the average concentration ūn and v̄n


ūn =

1
m

m

∑
i

un
i ,

v̄n =
1
m

m

∑
i

vn
i .

(Case 1)
Taking the parameters as follows:

λ = 1, b = 1, a = 1, d1 = 0.1, d2 = 0.2,

it is easy to verify that this aligns with Lemma 2 (1).
Selecting two difference initial value conditions{

u0(x) = 1 + sin(x),

v0(x) = 1 + cos(x).
(51)


u0(x) = 2, x = 25,

u0(x) = 0, x ̸= 25,

v0(x) = 2, x = 75,

v0(x) = 0, x ̸= 75.

(52)

We choose the spatial domain Ω = [0, 100], the time step τ = 0.005, and the spatial
step size h = 0.5. Considering two different initial values, we can obtain the snapshots of
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the concentration at Nt = 0, 100, 10,000 and 50,000, respectively, as shown in Figure 1a–h.
From Figure 1d,h, we can clearly see that our proposed algorithm is stable and the concen-
tration value of each point is the same.
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Figure 1. Concentration snapshots at different times, (a–d) under the conditions (51), (e–h) under the
conditions (52), respectively, in case 1.

To investigate the equilibrium points, we calculate the average concentrations ū, v̄,
u∗, and v∗. We present the concentration evolution diagrams, the average concentration
(Figure 2a,c) and the concentration at point x = 50 (Figure 2b,d), under two initial value
conditions. From Figure 2a,c, we can see that the average concentration quickly reaches
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the equilibrium point (u∗, v∗). At point x = 50, the concentration changes drastically after
the beginning.

Finally, for a clearer presentation of the concentration variations, we provide numerical
solutions in Figure 3a–d at all time steps under two different initial conditions.
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Figure 2. Concentration evolution: (a) average concentration, (b) concentration at x = 50 under
condition (51); (c) average concentration, (d) concentration at x = 50 under condition (52), in case 1.
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(c) uh (d) vh

Figure 3. Numerical solutions: (a,b) under the conditions (51); (c,d) under the conditions (52),
in case 1.
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(Case 2)
We consider the following parameters:

λ = 1.3, b = 0.01, a = 0.01, d1 = 1.5, d2 = 25.

It can be verified that this conforms to the conditions stated in Lemma 2 (2a).
We choose the spatial domain Ω = [0, 100] and the time step τ = 0.005, and the

space step is chosen as h = 0.5. Considering two different initial values, we can obtain the
snapshots of the concentration at Nt = 0, 100, 10, 000 and 100, 000, respectively, as shown
in Figure 4a–h. From Figure 4d–h, we can clearly see that our proposed algorithm is stable.
Under the initial conditions (51), the solutions tend to reach an equilibrium state more
rapidly. The solutions exhibit periodicity in the spatial domain.
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Figure 4. Concentration snapshots at different times, (a–d) under the conditions (51) , (e–h) under the
conditions (52), respectively, in case 2.
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Similar to case 1, we calculate the average concentrations ū, v̄, u∗, and v∗. We present
concentration evolution diagrams, the average concentration (Figure 5a,c) and the concen-
tration at point x = 50 (Figure 5b,d), under two initial value conditions. From Figure 5a,c,
it is evident that the solution eventually reaches the equilibrium point (u∗, v∗). From
Figure 5b,d, it can be observed that the time taken for the solutions to reach the equilibrium
point is relatively longer compared to case 1.

Finally, for a clearer presentation of concentration variations, we provide numerical
solutions in Figure 6a–d at all time steps under two different initial conditions.
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Figure 5. Concentration evolution: (a) average concentration, (b) concentration at x = 50 under
condition (51); (c) average concentration, (d) concentration at x = 50 under condition (52), in case 2.
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Figure 6. Numerical solutions: (a,b) under the conditions (51); (c,d) under the conditions (52), in case 2.
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6. Conclusions

An efficient linearized difference algorithm is developed to solve a diffusive Sel
′
kov–

Schnakenberg system. We provide a detailed construction process of the algorithm. Proofs
for the boundedness of the algorithm solutions, the existence of the algorithm solution
and its uniqueness are all provided. Numerical examples validate the efficiency of the
algorithm and are consistent with the theoretical analysis results. In the future, we will
extend the algorithm to complex nonlinear problems in two and three dimensions and
investigate the stability and convergence of the algorithm.
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