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Abstract: We perform a Hamiltonian analysis of unimodular gravity in its first-order formulation,
specifically a modification of the Holst action. In order to simplify the analysis, prior studies on this
theory have introduced (for several reasons) additional elements, such as parametrization, complex
fields, or considering the Barbero–Immirzi parameter as imaginary. We show that, by using a geometric
implementation of the Dirac algorithm, a comprehensive analysis of the theory can be conducted
without relying on these additional ingredients. The resulting theory reproduces the behavior of metric
unimodular gravity.
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1. Introduction

The Hamiltonian formulation of the Lagrangian theory is a valuable description in
various scenarios, particularly at different stages of the quantization process. However,
when dealing with singular systems—those for which the fiber derivative of the Lagrangian
is not a local diffeomorphism—a more intricate analysis becomes necessary, warranting
a cautious approach. Several methods exist for obtaining the Hamiltonian description
of a system, the most well-known among them being the Dirac program [1,2], where,
after finding the primary constraints, one checks their consistency via Poisson brackets,
obtaining secondary constraints, classifying them into first or second class, and acting
accordingly. Among the many interesting features of this algorithm, one may emphasize
the following: since it is performed entirely in an ambient symplectic manifold, one has a
symplectic structure during the entire process, which enables the calculation of the Poisson
brackets. These brackets can be used to draw an analogy between the classical theory
and a hypothetical quantum theory, which is why this method has been preferred among
physicists. However, this breaks down when there are second-class constraints, for then
one is forced to introduce Dirac brackets, rendering this advantage null in that case. An
equivalent approach of a geometric nature is provided by the Gotay–Nester–Hinds (GNH)
algorithm [3–9]. The central idea is to search for a “stable submanifold” supporting a
Hamiltonian vector field whose integral curves, suitably projected, provide the solutions
to the equations of motion. This algorithm bypasses some of the problems found in the
Dirac program, such as the difficulties that may arise when defining the Poisson brackets
in certain field theories, especially those with boundaries. The price to pay is that the final
manifold obtained by this procedure is not necessarily a symplectic space, in the sense that
there may not be a well-defined symplectic form that one could relate to the commutators
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between quantum operators or to the volume form used in geometric quantization. As long
as we are only interested in the classical theory, this is not necessarily a drawback, but it
could become one when trying to construct a quantum theory. In addition to this, one
also loses the “Dirac multipliers” found in the Dirac algorithm, which, as we will see, can
provide non-trivial information on the system.

Luckily, it is not necessary to give up the advantages of either of these two methods; it
is possible to export the geometric character of the GNH approach to the context of the Dirac
method. Following [10] (see also [11,12] for applications), we will refer to this adaptation as
the geometric Dirac algorithm. By employing this approach, there is no necessity to explicitly
employ Poisson brackets. Moreover, when dealing with boundaries, this method helps
circumvent issues related to the use of formal expressions involving functional derivatives
for the symplectic form. There is a further advantage from a purely computational point
of view: the recurring calculations via the Poisson brackets are replaced by the study of
tangency requirements, which is faster and makes the user less prone to mistakes.

In this article, we will employ the geometric Dirac algorithm to study unimodular
gravity (UG) in its first-order formulation. The reasons for this are manifold. To begin with,
this theory has been widely discussed in the literature [13–21] and has been regaining
traction recently [22–28], which allows us to compare the results obtained via the geometric
Dirac algorithm with those obtained by other methods in a physically relevant system,
as opposed to a simplified model. A more pressing issue is obtaining a full, consistent
analysis of the constraints of unimodular gravity. Prior studies have introduced additional
elements, such as the condition of the Barbero–Immirzi parameter being ±i [29], complex
fields, parametrizations [30], and others, to simplify the process. Furthermore, it is very
common to introduce a gauge fixing condition, such as the time gauge, midway through the
calculation. Although the results obtained by doing this may be correct, there is something
unsettling about this choice for two reasons: first, how can one, from a purely mathematical
point of view, know which gauges can be fixed until the full study of the constraints has
finished? Even if this leads to a correct result, it would not be something obtained by the
Dirac algorithm. Secondly, even if the gauge-fixing is correct, introducing it midway through
the analysis raises the question of which results are dependent on it and which are not.

The purpose of this work is to apply the geometric Dirac algorithm to unimodular
gravity with a Holst term, demonstrating that the analysis can be performed without
introducing the additional elements used in prior literature. Subsequently, we will compare
the results with those obtained in different ways, including the cases where γ = ±i, the
parametrized version, gauge-fixings, and the GNH algorithm. The structure of this paper
is as follows. After this introduction, in Section 2, we discuss the unimodular version of
the Holst action, the field equations, and its Hamiltonian formulation using the geometric
Dirac algorithm. Finally, we give our conclusions in Section 3.

2. Unimodular Holst Action

Let us consider an orientable four-dimensional manifold M diffeomorphic to R× Σ,
where Σ is a closed-orientable three-dimensional manifold. A modification of the Holst
action that describes unimodular general relativity is

S(e, ω, Λ) =
∫
M

(
PI JKLeI ∧ eJ ∧ FKL + Λ

(
vol − 1

12
ϵI JKLeI ∧ eJ ∧ eK ∧ eL

))
, (1)

where the one-forms eI (the cotetrads) are required to be non-degenerate, i.e.,

ϵI JKLeI ∧ eJ ∧ eK ∧ eL

is a volume form in M, with the Levi–Civita symbol ϵI JKL, is totally antisymmetric and
is chosen to satisfy ϵ0123 = +1. The field ωI

J is a so(1, 3)-valued connection one-form
with curvature

F I
J := dωI

J + ωI
K ∧ ωK

J .



Mathematics 2024, 12, 890 3 of 10

The internal indices I, J, . . . take the values 0, 1, 2, 3, and are raised (lowered) with the
(internal) metric ηI J = diag(ε,+1,+1,+1) with ε = −1 (we have included ε to keep track
of the spacetime signature and facilitate the extension of our results to the Euclidean case).
Finally, Λ is a scalar field, vol is a non-dynamical volume form on M, and the invariant
SO(1, 3) tensor is

PI JKL :=
1
2

(
ϵI JKL +

ε

γ
ηIKηJL −

ε

γ
ηJKηIL

)
= PKLI J . (2)

This tensor has an inverse if γ2 ̸= ε, which is the case in which we are working. The real
parameter γ is the called Barbero–Immirzi parameter.

The field equations derived from action (1) are obtained by varying with respect to
the dynamical variables ωI

J , eI , and Λ, respectively:

PI JKLeI∧ DeJ = 0 , (3a)

2PI JKLeJ ∧ FKL − Λ
3

ϵI JKLeJ ∧ eK ∧ eL = 0 , (3b)

vol − 1
12

ϵI JKLeI ∧ eJ ∧ eK ∧ eL = 0 , (3c)

where
DeI := deI + ωI

J ∧ eJ .

Using the inverse of PI JKL and the fact that the cotretrads are non-degenerated,
Equation (3a) implies

DeI = 0 .

Computing the covariant differential of (3b) using the previous result (DeI = 0), the Bianchi
identity DF I J = 0, and the non-degeneracy of the cotetrads, we obtain

dΛ = 0.

This last equation implies that Λ is constant. Furthermore, taking the covariant differential
on both sides of the equation DeI = 0, we obtain

eI ∧ F I J = 0 .

Plugging this into (3b) makes it straightforward to see that the γ-dependent terms disappear.
Then, Equation (3b) becomes the usual Einstein–Palatini equation, and Λ is identified with
the cosmological constant. Finally, Equation (3c) is the so-called unimodular condition,
which forces the volume defined by the tetrads to coincide with the non-dynamic volume
form vol that appears in the Lagrangian. A consequence of this is that the invariance under
diffeomorphism is reduced to the vol-preserving diffeomorphisms.

The Hamiltonian analysis of a particular case of (1) was carried out in reference [29],
where the authors chose γ = i (the imaginary unit), simplifying the Hamiltonian constraint
compared to the case with real values of γ. Additionally, they implemented the time
gauge from the beginning, working with a self-dual connection (and thus, dealing with
complex fields). However, as mentioned in the introduction, while this approach may yield
correct results, there is no theoretical justification for fixing the gauge at the outset. In fact,
knowledge of gauge symmetries is one of the outcomes of performing the Hamiltonian
analysis. In contrast, we do not rely on any of the aforementioned simplifications.

On the other hand, in reference [30], a parametrized version of action (1) was investi-
gated. The idea of parametrizing a theory was mainly developed by Karel V. Kuchař [31],
aiming at exploring whether the proposal of Unruh and Wald [32], who suggested that
the time problem could be addressed in this way, holds. Unfortunately, this does not work.
This formulation introduced additional field variables, namely dynamical diffeomorphism.
The authors of [30] showed that, by considering the variation in the action with respect
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to diffeomorphisms, the unimodular condition is directly obtained. The same conclusion
was also arrived at in the Hamiltonian formulation, providing a direct pathway to the
unimodular condition. It is important to note that the authors employed the GNH method
and mentioned that it should be possible to achieve the same results using the Dirac algo-
rithm. Although parametrization simplifies the analysis in this specific case, it may not
be necessary in order to study unimodular gravity. It should be feasible to perform the
Hamiltonian analysis without involving diffeomorphisms as field variables. In the next
section, we demonstrate that this is indeed possible.

2.1. Dirac Geometric Analysis

Dirac’s geometrical analysis, as described in [10], proceeds as follows: First, a 3 + 1
decomposition of the field is performed. After that, conjugate momenta are identified for
each variable in the configuration space. However, the variables in the phase space could
not be independent, being related to each other through relations called primary constraints,
which define a submanifold M0 of the phase space. Second, using the canonical symplectic
structure, we find the Hamiltonian vector field associated with the usual Hamiltonian
function supplemented with the mentioned constraints through Dirac multipliers. Third, for
the consistency of the dynamics, this Hamiltonian vector must be tangent to the submanifold
M0 (a condition often expressed as the preservation of constraints under time evolution).
This condition could fix (some of) the Dirac multipliers and/or give rise to secondary
constraints. In the latter case, we must iterate the procedure by requiring appropriate
tangency conditions until it stops, i.e., no more constraints arise. Now, we apply these steps
to the action (1).

2.2. The Hamiltonian Setup

We begin by performing the 3 + 1 decomposition. Taking into account that our manifold
M is diffeomorphic to R× Σ, we introduce a foliation of M defined by the level surfaces
Σt of a scalar function t (and inclusion ȷt : Σt ↪→ M), together a vector field ∂t, such that
dt(∂t) = 1. Then, we expand a differential form a as a = dt ∧ a0 + a, where a0 := ι∂t a
(ι denotes the interior product) and a := a − dt ∧ a0. Also, we define a0 := ȷ∗t a0 and
a := ȷ∗t a. Applying these definitions to our field variables, we have that the configuration
space Q of our theory consists of the scalar fields e I

0 , ω I
0 J , Λ ∈ C∞(Σ), and the one-forms

eI , ωI
J ∈ Ω1(Σ). Also, the points in the tangent bundle of the configuration space of

our system are denoted as vq (where q = (eI
0, eI , ωI J

0 , ωI J , Λ) denotes a point in Q) with
components (vI

e0, vI
e , vI J

ω0, vI J
ω , vΛ) that can be interpreted as velocities, vq ∈ TqQ. We have

vI
e0 , vI J

ω0 , vΛ ∈ C∞(Σ), and vI
e , vI J

ω ∈ Ω1(Σ). In terms of these objects, the Lagrangian can be
written as

L(vq) =
∫

Σ

(
PI J

KL
(
2 eK

0 eL∧ FI J + eK∧ eL∧ (vωI J − Dω0I J)
)

(4)

+Λ(vol− 1
3

ϵI JKLeI
0eJ ∧ eK ∧ eL)

)
,

where the curvature is FI J := dωI J + ωI
K ∧ ωKJ , D is the covariant exterior derivative with

respect to the connection ω I J on Σ, and vol := vol0.
Next, we take v and w in the same fiber of TQ and compute the fiber derivative FL :

TQ → T∗Q to obtain the momenta p, with components (pe0I , peI , pω0I J, pωI J, pΛ), we obtain

p(w) = ⟨FL(v)|w⟩ = d
dt

L(q, v + tw)

∣∣∣∣
t=0

=
∫

Σ
PI JKLwI J

ω ∧ eK ∧ eL . (5)

Then, we obtain the following five primary constraints
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c0I

(
wI

e0

)
:=pe0I(wI

e0) = 0 , cI

(
wI

e

)
:= peI(wI

e) = 0 , C0I J

(
wI J

ω0

)
:= pω0I J(w

I J
ω0) = 0 ,

CI J

(
wI J

ω

)
:=pωI J(w

I J
ω )−

∫
Σ

PI JKLwI J
ω ∧ eK ∧ eL = 0 , c(wΛ) := pΛ[wΛ] = 0 , (6)

acting on wI
e0, wI

e , wI J
ω0, wI J

ω , wΛ, respectively.
The Hamiltonian, which is defined on the primary constraint submanifold, takes

the form

H =
∫

Σ
PI JKL

(
eI ∧ eJ ∧ DωKL

0 − 2eI
0eJ ∧ FKL

)
− Λ

(
vol− 1

3
ϵI JKLe0eI ∧ eJ ∧ eK ∧ eL

)
. (7)

To extend it to the full phase space, we add the primary constraints multiplied by some
undetermined objects (at this stage) that we refer to as “Dirac multipliers”. This provides us
with a family of extensions of the Hamiltonian beyond the primary constraint submanifold,
with all of them equal on it to (7).

Now, we look for the Hamiltonian vector field associated with the mentioned (total)
Hamiltonian, i.e., we look for the vector field X ∈ X(T∗Q) satisfying

Ω(X,Y) = dlH(Y) + ⟨u|dlΦ⟩(Y) , (8)

where Ω is the canonical symplectic form in T∗Q, Φ denotes the sum of the primary
constraints (6), acting on their corresponding Dirac multipliers (denoted by u’s), and Y is
an auxiliary vector field defined on the phase space.

In this case, the vector fields take the form

Z = ((ZI
e0, ZI

e , ZI J
ω0, ZI J

ω , ZΛ), (ZI
e0, ZI

e , ZI J
ω0, ZI J

ω , ZΛ)) .

From (8), we obtain

X I
e0 = uI

0 , X I
e = uI , X I J

ω0 = uI J
0 , X I J

ω = uI J , XΛ = uΛ ,

Xe0I [Y I
e0] = −

∫
Σ

Y I
e0

(
2PI JKLeJ ∧ FKL − Λ

3
ϵI JKLeJ ∧ eK ∧ eL

)
,

XeI [Y I
e ] =

∫
Σ

Y I
e ∧

(
2PI JKLeJ ∧

(
DωKL

0 − uKL
)
+ eJ

0

(
2PI JKLFKL − ΛϵI JKLeK ∧ eL

))
,

Xω0I J [Y
I J
ω0] = −

∫
Σ

Y I J
ω0D(PI JKLeK ∧ eL) ,

XωI J [Y
I J
ω ] =

∫
Σ

Y I J
ω ∧

(
− 2D(PI JKLe K

0 eL) + 2PIKLMω K
0J eL ∧ eM)

,

XΛ[YΛ] = −
∫

Σ
YΛ

(
vol− 1

3
ϵI JKLeI

0eJ ∧ eK ∧ eL
)

.

2.3. Tangency Conditions to the Primary Constraints

Now, we need to verify that the vector field X is tangent to the surface defined by the
primary constraints (6). This requires ensuring the satisfaction of the consistency equation, i.e.,

ιXdlC = 0,

where C represents any of the constraints (6). By computing the tangency condition for the
constraints cI and CI J , we obtain
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0 = ıXdlcI = XeI

⇒ eJ ∧ PI JKL

(
uKL − DωKL

0

)
− eJ

0

(
PI JKLFKL − Λ ∗

(
eI ∧ eJ

))
= 0 , (9a)

0 = ıXdlCI J(·) = XωI J(·)−
∫

Σ
(·)I J ∧ 2PI JKLXK

e ∧ eL

⇒ D
(

PI JKLeK
0 eL

)
+ ωK

0[I P|K|J]MNeM ∧ eN − PI JKLuK ∧ eL = 0 . (9b)

The implications are there because the tangency condition must be valid for all test func-
tions (denoted by w in Equation (6)). Equations (9a) and (9b) are equations for the Dirac
multipliers uI and uI J .

The tangency condition over the constraints c0I , C0I J , and c gives

0 = ıXdlC0I J = Xω0I J ⇒ CI J := D
(
eI ∧ eJ

)
= 0 , (10a)

0 = ıXdlc0 = XΛ ⇒ c := vol− 1
3

ϵI JKLeI
0eJ ∧ eK ∧ eL = 0 , (10b)

0 = ıXdlc0I = Xe0I ⇒ CI := eJ ∧
(

PI JKLFKL − Λ
6

eI ∧ eJ

)
= 0 . (10c)

Equations (10a)–(10c) are secondary constraints.
The procedure to follow now is the following: first, we must solve (9a) and (9b) for the

Dirac multipliers, and then study whether the tangency of the vector field to the constraint
submanifolds defined by the constraints CI , CI J , and c yields secondary constraints or
further conditions on the multipliers (this process may iteratively continue). The aim is to
conclude with either a complete set of constraints or the identification of a contradiction.

At this point, it is useful to compare our findings with those derived in the parametrized
version, as analyzed in [30]. We must mention that, in that study, the dynamical diffeomor-
phisms only coupled to the non-dynamical volume form. This fact has many consequences,
as we explained before, at the level of the action. At the Hamiltonian level, we observe the
following distinctions:

(d1) There are no momenta associated with the g-spacelike embeddings, X : Σ ↪→ M,
because they are not present in our Lagrangian. In the case of [30], they look like

pX(wX) =
∫

Σ
εnX(wX)ΛvolγX

where nX denotes the future directed normal vector field over X associated with the
embedding.

(d2) Our Hamiltonian incorporates the term Λvol, which does not have a counterpart in
the parametrized version.

(d3) For the action used in [30], while solving the analog equation of (8) for the Hamiltonian
vector field in the GNH formalism, the authors obtain the unimodular condition
dΛ = 0 as a consequence of the non-trivial evolution of the embedding variables X. In
our case, as we demonstrate, several subsequent steps are necessary to arrive at this.

(d4) We have the constraint (10b), which is not present in [30]. Of course, they obtain an
analogous equation, but instead of being a constraint, it is an equation of motion
involving the component Z⊥

X of the Hamiltonian field associated with the diffeomor-
phism variable:

Z⊥
X volγX =

1
3

ϵI JKLeI
t (e

J ∧ eK ∧ eL) .

This equation must then be solved. In our case, we need to verify the tangency condi-
tion of (10b).

Despite these differences, several similarities exist:
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(s1) The equations for the Dirac multipliers (9a) and (9b) appear there as equations for
some components of the Hamiltonian vector field. Explicity,

Z[I
e ∧ eJ]

= D(e[It eJ]
)− [P−1]I J

MN PMK
LP ω N

t K eL ∧ eP , (11a)

2PI JKLeJ ∧ Z KL
ω = 2PI JKL

(
eJ ∧ DωKL

t + e J
t FKL)− Λ ϵI JKLe J

t eK ∧ eL . (11b)

Then, the resolution of these equations follows the same steps.
(s2) The constraints (10a) and (10c), also appear there as secondary constraints. This has

important consequences. In particular, the tangency condition on (10a) mirrors the
(long) procedure outlined in [30]. In the following we provide a summary of the results.

Although Dirac multipliers uI J can be determined, the complete expressions are long
and not particularly illuminating, as detailed in [30]. On the other hand, Equation (9b) for
uI can only be solved if the following conditions hold

Dij :=
Dei ∧ ej + Dej ∧ ei

w
= 0 , (12)

where we have introduced the volume form w :=
1
3!

ϵijkei ∧ ej ∧ ek. The interpretation of
the above quotient is as follows: given any top form α, it is always possible to find a unique
smooth function f , such that α = fw (notice that f depends both on α and w). We denote

this function as
α

w
. The tangency condition imposed on this constraint does not provide any

further conditions. Additionally, it is possible to prove (see [30]) that the constraints (10a)
and (12) are equivalent to the condition

DeI = 0 . (13)

Using this form of the constraints, the solution for the Dirac multiplier in (9b) is given by

uI = DeI
0 − ω I

0Je
J .

Furthermore, the constraint (10c) simplifies to

ϵI JKLeJ ∧
(

FKL − 1
3

ΛeK ∧ eL
)
= 0 , (14)

which can also be written as

eI ∧ F JK + eJ ∧ FKI + eK ∧ FI J = ΛeI ∧ eJ ∧ eK . (15)

To continue with the algorithm, we need to impose the tangency condition on con-
straints (10b) and (10c). For the first, we obtain the following

0 = ıXdlc = −ϵI JKL

(
1
3

uI
0eJ ∧ eK ∧ eL + 3eI

0uJ ∧ eK ∧ eL
)

. (16)

Using the solution for the Dirac multiplier uI , we observe that

ϵI JKLeI
0uJ ∧ eK ∧ eL = 0 .

Therefore, Equation (16) indicates that the parameters uI
0 are not independent. In fact, by

breaking down the Lorentz group, we can rewrite the above equation as follows

u0
0 = −

ϵijkui
0e0 ∧ ej ∧ ek

2w
. (17)

Therefore, the Dirac multipliers ui
0 are arbitrary, while u0

0 must satisfy Equation (17). It is
well-known (see for instance [30,33]) that the uI

0 parameters are related to the diffeomor-
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phism symmetry. This can also be seen directly from the Hamiltonian vector field. The
significance of (17) is that admissible diffeomorphisms are those that preserve the fixed
volume form (for the analog equation in metric variables, see [13]).

For the constraint (10c), we obtain

uJ ∧
(

PI JKLFKL − Λ
2

ϵI JKLeK ∧ eL
)
+ eJ ∧ PI JKLDuKL − uΛ

6
ϵI JKLeJ ∧ eK ∧ eL = 0 . (18)

The term involving uKL can be derived by applying the covariant derivative D to (9a).
Using the identity D

(
DωKL

0
)
= 2FK

PωPL
0 , that holds on the constraint surface, we obtain

eJ ∧ PI JKLDuKL =2eJ ∧ PI JKLFK
PωPL

0 − DeJ
0 ∧ (PI JKLFKL − Λ

2
ϵI JKLeK ∧ eL)

+
1
2

ϵI JKLeJ
0dΛ ∧ eK ∧ eL . (19)

Using this result and that uI = DeI
0 − ω I

0 JeJ in (18), we obtain an equation that depends
only on the Lagrange multiplier uΛ, given by

0 =ω J
0PeP ∧ (PI JKLFKL − Λ

2
ϵI JKLeK ∧ eL) + 2eJ ∧ PI JKLFK

PωPL
0 +

1
2

ϵI JKLeJ
0dΛ ∧ eK ∧ eL

− uΛ

6
ϵI JKLeJ ∧ eK ∧ eL . (20)

This can be significantly simplified by employing the constraint CI itself, not as defined in
Equation (10c) but written in the form in (15). If we do so, it reduces to

0 = ϵI JKL

(
eJ

0dΛ ∧ eK ∧ eL − uΛ

3
eJ ∧ eK ∧ eL

)
. (21)

Let us analyze the consequences of this equation, which is not present in [30]. Multiplying
the equation by eI

0 allows us to annihilate the first term, resulting in

0 =
uΛ

3
ϵI JKLeI

0eJ ∧ eK ∧ eL = uΛvol , (22)

where, in the last equality, we used the constraint c defined in (10b). As vol is a volume
form, we are left with uΛ = 0, implying XΛ = 0. As a consequence, Λ does not evolve.
Then, Equation (21) reduces to

0 = ϵI JKLeJ
0dΛ ∧ eK ∧ eL . (23)

Given that ei spans a basis for the one-forms in Σ, we can express e0 as e0 = µiei. By

defining Eij :=
ei ∧ ej ∧ e0

w
, we obtain µi =

ϵijkEjk

2
. Using the previous expressions, writing

dΛ = aiei and breaking the Lorentz group in (23), we obtain

I = 0 , aiei
⊥ = 0 , (24a)

I = i , e0
⊥ai + ϵijkej

⊥Elkal = 0 . (24b)

Using Eij = ϵijkµk and (24a) in (24b) we obtain

0 = ai

(
e0
⊥ − ej

0µj

)
. (25)

In [30], it was demonstrated that ϵI JKLeI
0eJ ∧ eK ∧ eL = 6

(
e0
⊥ − ei

0µi

)
w. Consequently, the

term in the brackets in (25) is non-zero due to the non-degeneracy of the tetrads. Therefore,
Equation (25) implies ai = 0, and subsequently, dΛ = 0. This last constraint, together with
XΛ = 0, asserts that Λ is a constant on M. Given its role in the equations of motion, it is
identified with the cosmological constant.
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The tangency condition over the constraint dΛ = 0 gives no further conditions.

3. Conclusions

This paper explores the application of the geometric Dirac algorithm for unimodular
gravity with a Holst term and addresses several issues that have not been treated in detail
in the literature. Through a comprehensive analysis, we demonstrate the algorithm’s ap-
plicability without the need for the additional ingredients found in the existing literature.
Wherever possible, we compare our results with previous findings, managing to reproduce
their final results despite the expected additional steps due to the absence of the simplifica-
tions provided by those additional ingredients. Notably, we uncover an extra generation of
constraints, specifically in (21), as we have explained.

As a byproduct of our analysis, we identify the Dirac multipliers that are responsible
for the reduction in the group of diffeomorphisms to the group of diffeomorphisms that
preserve a fixed volume.

It is interesting to note that, as described in detail in [33], by using time-gauge fixing,
the real Ashtekar formulation for general relativity can also be readily derived from the
results presented here, incorporating, in this case, the unimodularity condition.

The techniques shown in this paper for the case of the unimodular Holst action can
be implemented in an analogous way to other first-order theories and, in particular, to the
many competing alternative gravitational theories [34], whose experimental status can be
seen in [35–37]. In particular, it can be interesting to discuss the application of the geometric
Dirac program to the study of theories with boundaries, where, as in the case of generalized
general relativity in 2 + 1 dimensions [10,38–40], they have shown improvement over
other methods.

Author Contributions: Conceptualization, B.D., E.J.S.V. and D.Z.S.; Methodology, B.D., E.J.S.V. and
D.Z.S.; Formal analysis, B.D., E.J.S.V. and D.Z.S.; Investigation, B.D., E.J.S.V. and D.Z.S.; Writing—
original draft, B.D., E.J.S.V. and D.Z.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by the grants PID2020-116567GB-C22 and CEX2019-
000904-S funded by MCIN/AEI/10.13039/501100011033. Bogar Díaz acknowledges support for the
CONACYT (México) postdoctoral research fellowship No. 371778 and the CONEX-Plus program
funded by Universidad Carlos III de Madrid and the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 801538. E.J.S.
Villaseñor is supported by the Madrid Government (Comunidad de Madrid, Spain) under the
Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23)
and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors want to thank F. Barbero and J. Margalef-Bentabol for interesting
discussions and comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dirac, P.A.M. Lectures on Quantum Mechanics; Dover Books on Physics; Dover Publications: Mineola, NY, USA, 2013.
2. Dirac, P.A.M. Generalized hamiltonian dynamics. Can. J. Math. 1950, 2, 129–148. [CrossRef]
3. Gotay, M.J.; Nester, J.M.; Hinds, G. Presymplectic manifolds and the Dirac–Bergmann theory of constraints. J. Math. Phys. 1978,

19, 2388. [CrossRef]
4. Gotay, M.J. Presymplectic Manifolds, Geometric Constraint Theory and the Dirac-Bergmann Theory of Constraints. Ph.D. Thesis,

Center for Theoretical Physics, University of Maryland, College Park, MD, USA, 1979.
5. Gotay, M.J.; Nester, J.M. Generalized constraint algorithm and special presymplectic manifolds. In Proceedings of the Geometric

Methods in Mathematical Physics. Lecture Notes in Mathematics vol 775; Kaiser, G., Marsden, J.E., Eds.; Springer: Berlin/Heidelberg,
Germany, 1980; p. 78.

6. Gotay, M.J.; Nester, J.M. Presymplectic lagrangian systems. I: The constraint algorithm and the equivalence theorem. Annales de
l’institut Henri Poincaré. Section A Physique Théorique 1979, 30, 129–142.

http://doi.org/10.4153/CJM-1950-012-1
http://dx.doi.org/10.1063/1.523597


Mathematics 2024, 12, 890 10 of 10

7. Gotay, M.J.; Nester, J.M. Presymplectic lagrangian systems. II: The second-order equation problem. Annales de l’institut Henri
Poincaré. Section A Physique Théorique 1980, 32, 1–13.

8. Barbero González, J.F.; Prieto, J.; Villaseñor, E.J.S. Hamiltonian treatment of linear field theories in the presence of boundaries:
A geometric approach. Class. Quantum Gravity 2014, 31, 045021. [CrossRef]

9. Margalef-Bentabol, J. Towards General Relativity through Parametrized Theories. Ph.D. Thesis, Universidad Carlos III de Madrid,
Getafe, Spain, 2018.

10. Barbero González, J.F.; Díaz, B.; Margalef-Bentabol, J.; Villaseñor, E.J.S. Dirac’s algorithm in the presence of boundaries: A practical
guide to a geometric approach. Class. Quantum Gravity 2019, 36, 205014. [CrossRef]

11. Barbero González, J.F.; Díaz, B.; Margalef-Bentabol, J.; Villaseñor, E.J.S. Generalizations of the Pontryagin and Husain-Kuchař
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