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Abstract: A novel cure rate model is introduced by considering, for the number of concurrent causes,
the modified power series distribution and, for the time to event, the recently proposed power
piecewise exponential distribution. This model includes a wide variety of cure rate models, such as
binomial, Poisson, negative binomial, Haight, Borel, logarithmic, and restricted generalized Poisson.
Some characteristics of the model are examined, and the estimation of parameters is performed
using the Expectation–Maximization algorithm. A simulation study is presented to evaluate the
performance of the estimators in finite samples. Finally, an application in a real medical dataset from
a population-based study of incident cases of lobular carcinoma diagnosed in the state of São Paulo,
Brazil, illustrates the advantages of the proposed model compared to other common cure rate models
in the literature, particularly regarding the underestimation of the cure rate in other proposals and
the improved precision in estimating the cure rate of our proposal.

Keywords: power piecewise exponential distribution; cure rate model; Expectation–Maximization
algorithm; survival analysis; cancer dataset

MSC: 62N01; 62N02

1. Motivation

Cure models have had enormous growth in the medical area [1], especially associated
with cancer, because it allows us to estimate two crucial components together: on the one
hand, the probability of cure and, on the other, the survival time of susceptible patients
(that is, those who are not cured and will die due to the cancer studied). The increase in
the use of this type of model is due, in large part, to the increase in preventive medical
techniques that allow many types of cancer to be detected in the initial stages and, therefore,
allow a better prognosis for the patient.

In this context, we assume the existence of a latent random variable (r.v.), M, which
represents the number of competing causes related to the occurrence of the event of
interest. The pioneer model in this context was proposed by Berkson and Gage [2],
which assumed the Bernoulli distribution for M. Almost fifty years later, in a cancer
context, the causes were represented by carcinogenic cells and modeled according to
the Poisson distribution by Chen et al. [3]. Other important models in this context con-
sider this approach, modifying the discrete distribution, including the negative binomial
(NB) [4–9], zero-modified geometric [10], power series family [11], Conway–Maxwell–
Poisson [12], weighted Poisson [13], modified power series (MPS) [14].
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On the other hand, the piecewise exponential (PE) model proposed by Feigl and
Zelen [15], and extended by Friedman [16], is widely used for modeling clinical data,
because it has a constant risk function in each of its predefined L intervals, which can
be very useful in certain situations, as it allows the survival function to fall more (or
less) quickly at specific times that have a clear explanation from a practical point of view.
Gomez et al. [17], based on the exponential method, extended the PE to obtain the power
piecewise exponential distribution (PPE). The PPE generalizes the PE model by adding
flexibility to the hazard function, allowing for both monotonic and non-monotonic patterns
within each of the L intervals, in addition to the already known constant hazard function
pattern. De Castro and Gómez [9] employed the PPE model in a cure rate model context,
assuming the negative binomial distribution for the number of competing causes, whereas
Gómez et al. [8] discussed the classical counterpart.

In this article, we propose the use of the PPE model, extending the NB cure fraction
model discussed in [8] through the modified power series family of distributions. Thus,
the proposed model offers multiple options for modeling the time to event because the
exponential, PE, and exponentiated exponential (EE) [18] models are particular cases of the
PPE model. On the other hand, particular cases of the MPS include traditional models such
as Poisson (Po), binomial (Bin), NB, logarithmic (Lo), as well as less used discrete models
such as Borel (Bo), Haight (Ha), generalized binomial (GB), and restricted generalized
Poisson (RGP), to name a few. The manuscript is organized as follows. Section 2 is devoted
to introducing details of the PPE and MPS distributions. In Section 3, we introduce the
MPS cure rate model with baseline PPE. Section 4 discusses the estimation procedure for
the proposed model, including an Expectation–Maximization (EM)-type algorithm [19] to
obtain the maximum likelihood (ML) estimators. Section 5 presents a simulation to assess
the performance of the ML estimators in finite samples. In Section 6, we present a real data
illustration of the model for patients with lobular carcinoma. Finally, Section 7 presents the
main conclusions of the work and possible future research based on this article.

2. Background

In this Section, we provide some details of the PPE and MPS distributions, which are
relevant to introduce our proposal.

2.1. PPE Distribution

The PPE model was introduced by Gómez et al. [17]. For a fixed L (representing the
breakpoints of the distribution), let T be an r.v. with PPE distribution with parameters
λ = (λ1, . . . , λL) and α and known partition a = (a1, . . . , aL−1), such that 0 = a0 < a1 <
. . . < aL−1 < aL = ∞. Note that each λℓ, ℓ = 1, . . . , L is related to each partition. We denote
T ∼ PPE(λ, α, a). The probability density function (PDF) and cumulative distribution
function (CDF) are determined by

f (t; λ, α | a) = ακlλℓ exp
(
− λl(t − aℓ−1)

)[
1 − exp

(
−

L

∑
ℓ=1

λℓ∆ℓ(t)
)]α−1

, t ∈ [aℓ−1, aℓ), l = 1, . . . , L, (1)

F(t; λ, α | a) =
[

1 − exp
(
−

L

∑
ℓ=1

λℓ∆ℓ(t)
)]α

, t > 0,

where κ1 = 1 and κℓ = exp
[
− ∑ℓ−1

i=1 λi (ai − ai−1)
]
, ℓ = 2, . . . , L. In addition, ∆ℓ is defined as

∆ℓ(t) =


0 , if t < aℓ−1,
t − aℓ−1 , if aℓ−1 ≤ t < aℓ, ℓ = 1, . . . , L.
aℓ − aℓ−1 , if t ≥ aℓ.
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Remark 1. The PPE distributions include the following particular cases.

• For α = 1, T ∼ PE(λ, a).
• For L = 1, T ∼ EE(λ, α).
• For L = 1 and α = 1, T ∼ E(λ) (the standard exponential model).

The survival function of the PPE model is given by

S(t; λ, α | a) = 1 −
[

1 − exp
(
−

L

∑
l=1

λl∆l(t)
)]α

, t > 0, (2)

and its respective hazard function is given by

h(t; λ, α | a) =
ακlλl exp

(
− λl(t − al−1)

)[
1 − exp

(
− ∑L

l=1 λl∆l(t)
)]α−1

1 −
[

1 − exp
(
− ∑L

l=1 λl∆l(t)
)]α , (3)

for t ∈ [al−1, al) and l = 1, . . . , L. Figure 1 shows the different forms adopted by the
distribution of the PPE with partition at a = 2.
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Figure 1. PDF (left) and hazard function (right) of the PPE distribution for different values of λ and
α, with a = 2 (L = 2 partitions).

2.2. Modified Power Series Family of Distributions

The MPS distribution was introduced by Noack [20]. We say that M ∼ MPS(θ), if its
probability mass function (PMF) is given by

P(M = m; θ) =
am[ϕ(θ)]m

A(ϕ(θ))
, m = 0, 1, 2 . . . , (4)

where am > 0, θ ∈ Θ ⊂ R+, ϕ(·) is a positive function, and A(ϕ(θ)) = ∑∞
m=0 am[ϕ(θ)]m. In

a cure rate models context, the probability generating function (PGF) is very important,
and for the MPS models, such a function is given by

GM(u; θ) = E(uM; θ) =
A(uϕ(θ))

A(ϕ(θ))
, |u| ≤ 1. (5)

Table 1 details some particular cases of the MPS distribution.
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Table 1. am, ϕ(·), A(ϕ(·)), Θ, and C−1(·) (the inverse function of A(ϕ(·))) for some particular cases
of the MPS model.

Distribution am ϕ(θ) A(ϕ(θ)) Θ C−1(u)

Bin(q, θ) ( q
m) θ (1 + θ)q (0, ∞) u1/q − 1

Po(θ) (m!)−1 θ exp(θ) (0, ∞) log(u)
NB(q, θ) (m+q−1

m ) θ (1 − θ)−q (0, 1) 1 − u−1/q

Lo(θ) (m + 1)−1 θ − log(1−θ)
θ

(0, 1) 1 + W(u exp(−u))
Bo(θ) (m + 1)m−1/m! θ exp(−θ) exp(θ) (0, 1) log(u)
Ha(θ) (2m+1

m+1 )/(2m + 1) θ(1 − θ) (1 − θ)−1 (0, 1) 1 − u−1

GB(q, r, θ) r(r+qm
m )/(r + qm) θ(1 − θ)q−1 (1 − θ)−(q+r−1) (0, 1) 1 − u−1/(q+r−1)

RGP(q, θ) (qm + 1)m−1/m! θ exp(−qθ) exp(θ) (0, ∞) log(u)

Note that very well-known models in the literature are particular cases of this class
of distributions.

3. The Proposed Model

In this Section, we introduce the MPS cure rate (MPScr) with baseline PPE distribution.
Henceforth, this model will be named the MPScr-PPE model.

Suppose that a patient diagnosed with some type of cancer has M carcinogenic cells.
Evidently, M is not observable; thus, for the formulation of the model, we will assume
that its PMF corresponds to the PMF of the MPS distribution. Further, we assume that Vj,
j = 1, . . . , M represents, for each M, the associated time to produce carcinogenesis. The
time of death of the patient is given by the minimum of the Vjs, as long as the patient
has at least one cancer cell. Otherwise, the patient will be considered cured. Under
this scheme, the failure time of the patient is given by T = min(V0, V1, . . . , VM), where
P(V0 = ∞) = 1 is a degenerate r.v. at zero. We assume that, conditional on M = m,
V1, . . . , Vm are independent and identically distributed such as Vj ∼ PPE(λ, α, a). With
those assumptions, the population survival function is given by

Spop(t; θ, λ, α, a) = GM(S(t; λ, α, a); θ) =
A
(

ϕ(θ)
{

1 −
[
1 − exp

(
− ∑L

l=1 λl∆l(t)
)]α})

A(ϕ(θ))
. (6)

The population PDF of the model is given by

fpop(t; θ, λ, α, a) = −
dSpop(t; θ, λ, α, a)

dt
=

A′(S(t; λ, α, a)ϕ(θ))
A(ϕ(θ))

f (t; λ, α, a)ϕ(θ),

and substituting the PDF and survival function of the PPE model provided in Equations (1)
and (2), the population PDF is given by

fpop(t; θ, λ, α, a) =
A′
(

ϕ(θ)
{

1 −
[
1 − exp

(
− ∑L

l=1 λl∆l(t)
)]α})

A(ϕ(θ))

× ακlλl exp
(
− λl(t − al−1)

)[
1 − exp

(
−

L

∑
l=1

λl∆l(t)
)]α−1

ϕ(θ), (7)

where A′(u) = ∑∞
m=1 mamum−1. A(u) is reduced in a simple function for some particular

cases of the MPS model (Bin, Po, NB, and Lo, which coincide with ϕ as the identity function).
For the other cases, A′(u) cannot be reduced. On the other hand, the cure rate of the model
is given by

p = lim
t→∞

Spop(t; θ, λ, α, a) = P(M = 0; θ) =
a0

A(ϕ(θ))
,
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which only depends on θ. Therefore, the model can be reparametrized directly in the
cure rate term in order to perform a regression on this term. Let C(θ) = A(ϕ(θ)); then,
θ = C−1(a0/p).

Considering that the population is not homogeneous, we assume the existence of a set
of r covariates measured for each observation, say x⊤i = (1, xi1, . . . , xir), i = 1, . . . , n, where
the first term is related to the intercept, and n represents the sample size. The vector x⊤i can
be introduced in the cure rate term using, for instance, the logit link function such that pi =
exp(x⊤i β)/[1+ exp(x⊤i β)], where β = (β0, β1, . . . , βr) corresponds to the vector of unknown
coefficients. Note that for all the distributions in Table 1, we obtain a0 = 1. Therefore,

θi = C−1
(

1 + exp(x⊤i β)

exp(x⊤i β)

)
. (8)

4. Estimation

In this Section, we discuss the estimation procedure for the model under a classical
approach. As the studies related to the cure rate are prospective, it is natural to assume a
right censoring scheme. The failure indicator of the i-th observation will be denoted by δi,
which will take the value of 1 when the event of interest is observed and 0 when the time
is censored, with i = 1, . . . , n. The observations are considered independent. Under this
configuration, the log-likelihood function for the MPScr-PPE model is given by

ℓ(Ψ) =
n

∑
i=1

[
δi log fpop(ti; λ, α, β | a, xi) + (1 − δi) log Spop(ti; λ, α, β | a, xi)

]
, (9)

where Ψ⊤ = (λ⊤, α, β⊤) denotes the vector of the parameters, and Spop, and fpop are given
in Equations (6) and (7), respectively. However, the maximization of Equation (9) can
be difficult, especially because, for some particular cases of the MPScr-PPE model, A′(·)
cannot be reduced to a simpler form. For this reason, in the next subsection, we will discuss
a more efficient estimation procedure with less complexity based on the EM algorithm.

EM Algorithm

The EM algorithm is a very useful tool to deal with models in the presence of la-
tent variables, facilitating the estimation process. Let M⊤ = (M1, . . . , Mn) be the vector
containing the number of concurrent causes for all the individuals (the unobserved data)
and Dobs = {t, δ, X} the observed data, where t⊤ = (t1, . . . , tn), δ⊤ = (δ1, . . . , δn) and
X = (x⊤1 , . . . , x⊤n ). Thus, Dcomp = {Dobs, M} represents the complete data. Considering
proposition 1 of Gallardo et al. [14], it follows directly that, for the MPScr-PPE model, we
obtain

Eϕ(θi)Si
[Mr

i ] =
∞

∑
mi=δi

mr
i

ami [ϕ(θi)Si]
mi

A(ϕ(θi)Si)
, i = 1, . . . , n,

with Si as the survival function of the PPE model evaluated at ti. Therefore, the PMF of the
number of concurrent causes, Mi, conditional on ti and δi, is given by

P(Mi = mi; θi, Si | ti, δi) =
ami [ϕ(θi)Si]

mi

A(ϕ(θi)Si)

(
mi

Eϕ(θi)Si
[Mr

i ]

)δi

,

with mi = 0, 1, 2, . . . and i = 1, . . . , n. In this way, the conditional expectation of Mi given ti
and δi becomes

E[Mi; θi, Si | ti, δi] = (1 − δi)Eϕ(θi)Si
[Mi] + δi

Eϕ(θi)Si
[M2

i ]

Eϕ(θi)Si
[Mi]

. (10)
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The complete log-likelihood function is given by

ℓc(Ψ|Dcomp) =
n

∑
i=1

[
Mi log Si + δi log hi + Mi log ϕ(θi)− log A(ϕ(θi))

]
,

where hi = fi/Si, with fi denoting the PDF of the PPE distribution evaluated at ti. Let
Ψ(k) be the estimate of Ψ at the k-th iteration of the EM algorithm, and let Q(Ψ|Ψ(k)) be the
conditional expectation of the complete log-likelihood function given the observed data
and Ψ(k). With those notations, Q(Ψ|Ψ(k)) can be rewritten as

Q(Ψ |Ψ(k)) = Q1(β |Ψ(k)) + Q2(λ, α |Ψ(k)),

where

Q1(β |Ψ(k)) =
n

∑
i=1

[
M(k)

i log ϕ(θi)− log A(ϕ(θi))
]
, (11)

Q2(λ, α |Ψ(k)) =
n

∑
i=1

[
M(k)

i log Si + δi log hi

]
, (12)

and M(k)
i = E[Mi|Dobs, Ψ(k)], which can be computed using the result in Equation (10). In

summary, the k-th step of the EM algorithm is given by

• E-step: For i = 1, . . . , n, compute

M(k)
i =



∑∞
mi=0 mi ami

[
ϕ
(
θ
(k−1)
i

)
S(k−1)

i
]mi

A
(
ϕ
(
θ
(k−1)
i

)
S(k−1)

i
) , if δi = 0

∑∞
mi=0 m2

i ami

[
ϕ
(
θ
(k−1)
i

)
S(k−1)

i
]mi

∑∞
mi=0 mi ami

[
ϕ
(
θ
(k−1)
i

)
S(k−1)

i
]mi

, if δi = 1

• M-step: Given M(k)
1 , . . . , M(k)

n , find β(k), λ(k), and α(k) that maximize Equations (11)
and (12) with respect to β, λ, and α.

The maximization of the Equations (11) and (12) can be performed using numerical
procedures. For instance, we use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
implemented in the optim of [21]. The E- and M- steps are iterated until some convergence
criterion is met. We consider that the distance between the estimates in two consecutive
steps is less than a preset ϵ. In particular, we consider the distance ||Ψ(k+1) − Ψ(k)|| as the
maximum of the absolute difference between Ψ(k+1) and Ψ(k). The asymptotic covariance
matrix of the ML estimators of Ψ, say Ψ̂, can be estimated as

V̂ar
(

Ψ̂
)
=

(
−

∂2ℓc(Ψ|Dcomp)

∂Ψ∂Ψ⊤

∣∣∣
Ψ=Ψ̂

)−1

.

This matrix can be estimated numerically. For instance, we consider the hessian
function included in the pracma [22] package of R [21] version 4.2.2.

5. Simulation Study

In this Section, we present a simulation study to assess the performance of the ML
estimators for the MPScr-PPE model obtained via the EM algorithm in finite samples.

Recovery Parameters

This study was devoted to assessing some properties of the ML estimators in finite
samples. In particular, we performed the study for the GBcr-PPE model. We considered a
scenario similar to a real data application with two covariates: (xi10, xi11, xi12, xi13) simu-
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lated from the multinomial distribution with the parameter vectors (0.28, 0.38, 0.25, 0.08)
(representing the four stages of the cancer) and xi2 simulated from the standard normal
distribution with the mean and standard deviation of 59 and 12.6, respectively (representing
the age of the patient). Therefore, the vector of the covariates for each individual is given by
x⊤i = (1, xi11, xi12, xi13, xi2), i = 1, . . . , n (note that xi10 is not included to avoid identifiability
problems). To draw samples, we consider the stochastic representation of the model. For a
fixed vector β = (β0, β11, β12, β13, β2), we compute θi as in Equation (8); then, Mi is drawn
from the corresponding GB distribution with q = 1 and r = 2. If Mi = 0, then the failure
time is defined as Yi = ∞. For Mi ≥ 1, we draw Vi1, . . . , ViMi from the PPE distribution
(with a predefined λ), and the failure time is defined as Yi = min(Vi1, Vi2, . . . , ViMi ). For
simplicity, we also consider that all the censoring times are identical to C. Therefore, the
observed times are given by Ti = min(Yi, C), with the corresponding failure indicators
δi = I(Yi ≤ C). We consider L = 3 partitions, with λ = (λ1 = 0.03, λ2 = 0.04, λ3 = 0.06)
and β = (β0 = 4, β11 = −1.4, β12 = −2.4, β13 = −3.8, β2 = −0.01). We also consider
three sample sizes: 500, 750, and 1000; three values for C: 10, 14, and 18; and three values
for α: 0.8, 1.0, and 1.2, totaling 27 cases. Tables 2 and 3 summarize the average bias (bias),
the estimated root mean square error (RMSE), and the mean of the standard errors (SE).
The results suggest that the estimators are consistent, because as the sample size increases,
the bias generally decreases, while the precision of the estimate increases. In addition, the
model works well to capture when the survival time has a PE distribution instead of PPE,
because the estimate for α = 1 has a higher accuracy with respect to the other scenarios,
where α takes larger values.

Table 2. Estimated bias, RMSE, and SE for the PPE-GB model with q = 1 and r = 2 under different
scenarios (C = 10 and C = 14).

n = 500 n = 750 n = 1000
Cens. α Parameter Bias RMSE SE Bias RMSE SE Bias RMSE SE

10 0.8 β0 1.526 2.103 3.269 1.404 1.607 0.803 1.375 1.466 0.523
β11 −0.259 1.398 3.065 −0.147 0.693 0.634 −0.108 0.390 0.375
β12 −0.41 1.429 3.048 −0.282 0.729 0.621 −0.253 0.450 0.364
β13 2.848 3.655 9.754 2.753 2.934 1.437 2.749 2.825 0.738
β2 0.002 0.009 0.009 0.001 0.007 0.007 0.001 0.006 0.006
α −0.136 0.178 0.115 −0.149 0.174 0.091 −0.152 0.171 0.078

λ1 0.081 0.091 0.045 0.076 0.083 0.036 0.076 0.082 0.031
λ2 0.097 0.105 0.042 0.097 0.103 0.034 0.094 0.098 0.029
λ3 0.264 0.269 0.080 0.260 0.264 0.064 0.258 0.261 0.055

1 β0 1.709 2.186 2.537 1.634 1.874 1.203 1.573 1.660 0.562
β11 −0.262 1.321 2.324 −0.202 0.835 1.031 −0.158 0.460 0.412
β12 -0.468 1.375 2.305 −0.403 0.891 1.015 −0.351 0.545 0.399
β13 2.964 3.948 13.983 2.721 3.028 2.670 2.752 2.849 0.841
β2 0.001 0.009 0.010 0.001 0.007 0.008 0.001 0.006 0.007
α −0.114 0.227 0.186 −0.130 0.192 0.148 −0.133 0.184 0.127

λ1 0.091 0.104 0.053 0.086 0.095 0.042 0.084 0.090 0.036
λ2 0.100 0.108 0.043 0.100 0.106 0.035 0.099 0.104 0.030
λ3 0.268 0.273 0.076 0.266 0.269 0.061 0.266 0.268 0.053

1.2 β0 2.226 3.217 7.454 1.945 2.431 2.326 1.797 1.920 0.733
β11 −0.623 2.380 7.245 −0.333 1.414 2.153 −0.220 0.637 0.580
β12 −0.894 2.451 7.223 −0.607 1.487 2.134 −0.471 0.744 0.565
β13 2.976 4.876 29.816 2.818 3.579 7.902 2.754 2.990 2.057
β2 0.001 0.009 0.010 0.001 0.008 0.008 0.001 0.007 0.007
α −0.039 0.353 0.299 −0.082 0.255 0.229 −0.095 0.209 0.195

λ1 0.104 0.123 0.063 0.099 0.110 0.051 0.095 0.103 0.043
λ2 0.105 0.114 0.045 0.105 0.111 0.037 0.106 0.110 0.032
λ3 0.277 0.282 0.075 0.272 0.275 0.060 0.271 0.273 0.052
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Table 2. Cont.

n = 500 n = 750 n = 1000
Cens. α Parameter Bias RMSE SE Bias RMSE SE Bias RMSE SE

14 0.8 β0 1.191 1.519 1.283 1.098 1.221 0.556 1.123 1.216 0.479
β11 −0.128 0.842 1.083 −0.074 0.387 0.391 −0.067 0.344 0.336
β12 −0.195 0.854 1.070 −0.136 0.390 0.380 −0.135 0.356 0.327
β13 2.859 3.314 4.944 2.796 2.878 0.921 2.753 2.793 0.474
β2 0.002 0.009 0.009 0.002 0.007 0.007 0.002 0.006 0.006
α −0.133 0.173 0.111 −0.141 0.165 0.090 −0.146 0.163 0.077

λ1 0.055 0.064 0.036 0.053 0.059 0.029 0.052 0.057 0.025
λ2 0.059 0.067 0.031 0.059 0.064 0.026 0.058 0.062 0.022
λ3 0.140 0.144 0.044 0.139 0.142 0.036 0.141 0.143 0.031

1 β0 1.366 1.791 1.889 1.269 1.391 0.583 1.238 1.327 0.501
β11 −0.194 1.110 1.688 −0.098 0.439 0.417 −0.076 0.360 0.355
β12 −0.309 1.117 1.672 −0.207 0.466 0.405 −0.178 0.386 0.345
β13 2.888 3.605 8.757 2.792 2.888 0.959 2.776 2.824 0.505
β2 0.002 0.008 0.009 0.001 0.007 0.007 0.002 0.006 0.006
α −0.107 0.222 0.179 −0.133 0.190 0.140 −0.127 0.174 0.122

λ1 0.064 0.077 0.042 0.061 0.068 0.034 0.062 0.067 0.030
λ2 0.063 0.071 0.032 0.062 0.067 0.026 0.062 0.065 0.023
λ3 0.146 0.149 0.042 0.144 0.146 0.034 0.144 0.146 0.029

1.2 β0 1.688 2.495 4.575 1.413 1.547 0.618 1.406 1.504 0.531
β11 −0.420 1.847 4.375 −0.146 0.498 0.449 −0.131 0.438 0.384
β12 −0.563 1.877 4.358 −0.286 0.545 0.436 −0.274 0.485 0.373
β13 2.731 3.766 12.322 2.767 2.954 1.973 2.700 2.790 0.745
β2 0.001 0.009 0.009 0.001 0.007 0.007 0.001 0.006 0.006
α −0.014 0.336 0.290 −0.047 0.254 0.226 −0.072 0.206 0.189

λ1 0.081 0.097 0.053 0.076 0.086 0.043 0.072 0.080 0.036
λ2 0.068 0.076 0.035 0.068 0.073 0.028 0.068 0.071 0.024
λ3 0.154 0.156 0.041 0.153 0.155 0.033 0.152 0.153 0.029

Table 3. Estimated bias, RMSE, and SE for the PPE-GB model with q = 1 and r = 2 under different
scenarios (C = 18).

n = 500 n = 750 n = 1000
Cens. α Parameter Bias RMSE SE Bias RMSE SE Bias RMSE SE

18 0.8 β0 1.024 1.313 1.168 0.968 1.083 0.525 0.971 1.067 0.454
β11 −0.089 0.704 0.972 −0.021 0.363 0.363 −0.031 0.324 0.315
β12 −0.118 0.701 0.96 −0.046 0.341 0.354 −0.056 0.324 0.307
β13 2.753 2.931 1.679 2.803 2.848 0.519 2.760 2.796 0.444
β2 0.002 0.008 0.008 0.002 0.006 0.007 0.002 0.006 0.006
α −0.136 0.176 0.109 −0.143 0.166 0.088 −0.146 0.162 0.076

λ1 0.042 0.052 0.031 0.040 0.047 0.025 0.040 0.045 0.022
λ2 0.042 0.049 0.027 0.041 0.046 0.021 0.041 0.044 0.019
λ3 0.092 0.095 0.031 0.092 0.094 0.025 0.091 0.092 0.022

1 β0 1.108 1.366 0.975 1.086 1.312 0.727 1.042 1.132 0.468
β11 −0.096 0.680 0.776 −0.078 0.648 0.564 −0.026 0.328 0.325
β12 −0.147 0.674 0.763 −0.131 0.650 0.554 −0.080 0.327 0.316
β13 2.791 3.011 1.857 2.763 2.863 0.728 2.771 2.808 0.461
β2 0.002 0.008 0.008 0.002 0.007 0.007 0.002 0.006 0.006
α −0.111 0.206 0.174 −0.125 0.186 0.138 −0.127 0.173 0.119

λ1 0.051 0.062 0.037 0.049 0.056 0.030 0.048 0.054 0.026
λ2 0.045 0.052 0.027 0.046 0.050 0.022 0.046 0.049 0.019
λ3 0.097 0.099 0.030 0.095 0.096 0.024 0.095 0.097 0.021

1.2 β0 1.278 1.760 1.98 1.157 1.276 0.564 1.151 1.244 0.485
β11 −0.154 1.136 1.777 −0.065 0.415 0.398 −0.082 0.360 0.343
β12 −0.231 1.146 1.763 −0.139 0.423 0.386 −0.147 0.376 0.333
β13 2.778 3.181 3.230 2.775 2.834 0.567 2.728 2.772 0.480
β2 0.001 0.008 0.009 0.002 0.007 0.007 0.002 0.006 0.006
α −0.021 0.330 0.279 −0.054 0.220 0.215 −0.068 0.200 0.183

λ1 0.066 0.081 0.047 0.062 0.070 0.037 0.060 0.067 0.032
λ2 0.051 0.058 0.030 0.049 0.054 0.024 0.048 0.052 0.020
λ3 0.100 0.103 0.029 0.099 0.100 0.023 0.100 0.101 0.020
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6. Application

The data set includes information from 2562 patients diagnosed with lobular carcinoma
(a breast cancer), treated in the mastology area, with a diagnosis date between 2009 and
2016, with follow-up conducted until 2018. The data set was obtained from the Oncocenter
Foundation of São Paulo, Brazil (Fundação Oncocentro de São Paulo (FOSP) in Portuguese),
which is responsible for coordinating the Hospital Cancer Registry of the State of São Paulo
(http://fosp.saude.sp.gov.br, accessed on 31 December 2023). This pathology is a type of
breast cancer that occurs in the lobes, the glands that produce milk.

Death due to cancer was defined as the event of interest, and the time was measured
from the date of diagnosis until the patient’s death (in years, mean: 5.01, standard devi-
ation (SD): 3.05, median: 4.50, range: 0.0027–13.62). A total of 461 (18%) events occurred
during the follow-up period. The median follow-up time was 12.7 years. The observed
independent variables were as follows: age at diagnosis (mean: 58.98, SD: 12.64, median:
59, range: 20–94) and the clinical stage (I: 721 (28.14%), II: 976 (38.1%), III: 651 (25.41%),
and IV: 214 (8.35%)), with clinical stage IV representing the most advanced stage. Figure 2
shows the estimated survival curves obtained by the Kaplan–Meier (KM) estimator for
the breast cancer dataset. According to the estimated overall survival (Figure 2a), the
survival function appears to trend towards a plateau close to 0.5, suggesting the presence
of long-term survivors in the population. Additionally, younger patients (≤ 55 years old)
and those in early clinical stages exhibit higher survival rates (Figure 2b,c).
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(c) Estimated survival curve by clinical stage

Figure 2. Estimated survival curve obtained by the Kaplan–Meier estimator.

http://fosp.saude.sp.gov.br


Mathematics 2024, 12, 883 10 of 14

We fitted 59 particular cases of the MPScr-PPE model, considering homogeneous
partitions based on the quantiles ranging L from 1 to 30. The models considered were Po,
Lo, Bo, Ha, NB (with q = 1 to q = 10), Bin (q = 1 to q = 10), RGP (q = 1 to q = 10), and
GB (q = 1 to q = 5 and r = 1 to r = 5), including the most popular cure rate models in the
literature mentioned in the Introduction. Figure 3 shows the Akaike information criteria
(AIC) [23] for all combinations of the available covariates, considering the five models with
a better performance (Po, Lo, NB with q = 1, NB with q = 2, and GB with q = 1 and r = 2).
The best scenario was L = 25, with a similar trend in all the proposed adjusted models.
For comparative purposes, we also considered the same models with the baseline Weibull
(WEI) distribution for the concurrent causes; here, the lowest AIC was 23 points higher
than our proposal.
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Figure 3. AIC for L = 1 to L = 30 partitions. The right panel is a zoomed in image of the outlined
part of the graph.

Table 4 presents the log-likelihood function, AIC, and Bayesian information criterion
(BIC) [24] for the members of the GBcr-PPE and GBcr-WEI models. Note that in both cases,
the GBcr model provides a better result.

Table 4. AIC and BIC criteria for PPE-MPScr and Wei-MPScr.

Distribution PPE Weibull

Cure Rate Model Loglike AIC BIC Loglike AIC BIC

Pocr −1720.2 3502.4 3526.7 −1752.3 3518.7 3591.0
Locr −1725.6 3513.2 3537.6 −1766.1 3546.2 3618.6
NBcr q = 1 −1713.7 3489.4 3513.7 −1751.6 3517.3 3589.6
NBcr q = 2 −1714.5 3490.9 3515.2 −1749.5 3512.9 3585.3
GBcr q = 1, r = 2 −1713.4 3488.8 3513.1 −1748.5 3511.0 3583.3

Note: Values in bold indicate the lowest values for each criterion. AIC: Akaike information criterion; BIC: Bayesian
information criterion; Pocr: Poisson cure rate; Locr: logarithmic cure rate; NBcr: negative binomial cure rate; GBcr:
generalized binomial cure rate.

The parameter estimation under the GBcr-PPE model with q = 1 and r = 2 shows
that α̂ = 1.0549 with a standard deviation of 0.2343. This suggests that the PE model
should be preferred instead of the PPE model for this particular problem. To verify this,
we also performed the likelihood ratio test for the hypothesis H0 : α = 1 versus H1 :
α ̸= 1, providing the observed statistic TRV = 2 (loglikePPE − loglikePE) = 2 (−1713.390 +
1713.414) = 0.024. Under H0, this statistic follows a chi-square distribution with one degree
of freedom, providing a p value of 0.0009. Therefore, with a level of significance of 5%, it is
concluded that there is not enough information to establish a difference between the PE and
PPE distributions. Table 5 shows the parameter estimation with the respective standard



Mathematics 2024, 12, 883 11 of 14

error of the PE-GBcr model with q = 1 and r = 2. Note that the estimates for the regression
coefficients are concordant for both models in the sense that both have the same sign.

Table 5. Estimates and standard errors (in parenthesis) for the PE-GBcr and WEI-GBcr models with
q = 1 and r = 2 for the lobular carcinoma data.

GBcr-PE q = 1 and r = 2

β̂0 = 4.2648(0.4299) λ̂1 = 0.0302(0.0113) λ̂10 = 0.0401(0.0155) λ̂19 = 0.0362(0.0153)
β̂11 = −1.4223(0.2481) λ̂2 = 0.0185(0.0070) λ̂11 = 0.0515(0.0196) λ̂20 = 0.0957(0.0400)
β̂12 = −2.4360(0.2434) λ̂3 = 0.0147(0.0054) λ̂12 = 0.0436(0.0169) λ̂21 = 0.0770(0.0330)
β̂13 = −3.8478(0.2545) λ̂4 = 0.0294(0.0110) λ̂13 = 0.0396(0.0156) λ̂22 = 0.0446(0.0197)
β̂2 = −0.0142(0.0035) λ̂5 = 0.0313(0.0118) λ̂14 = 0.0487(0.0193) λ̂23 = 0.0579(0.0263)

λ̂6 = 0.0269(0.0102) λ̂15 = 0.0489(0.0192) λ̂24 = 0.0793(0.0379)
λ̂7 = 0.0202(0.0078) λ̂16 = 0.0494(0.0197) λ̂25 = 0.2693(0.1463)
λ̂8 = 0.0392(0.0147) λ̂17 = 0.0776(0.0313)
λ̂9 = 0.0206(0.0079) λ̂18 = 0.0890(0.0363)

GBcr-WEI q = 1 and r = 2

β̂0 = 3.6481(0.5062) α̂ = −4.3117(0.3998)
β̂11 = −1.3520(0.2417) ν̂ = 1.3298(0.0554)
β̂12 = −2.3024(0.2405)
β̂13 = −3.6081(0.2621)
β̂2 = −0.0129(0.0034)

Figure 4 shows the QQ-plot for the quantile residuals (left panel) and KM estimator for
the Cox–Snell residuals [25] (right panel). On the other hand, we also applied some common
normality tests to check the validity of the quantile residuals, such as the Kolmogorov–
Smirnov (KS, [26]), Shapiro–Wilk (SW, [27]), Anderson–Darling (AD, [28]), and Cramer–
Von-Mises (CVM, [29]). The p values for such tests suggest that the quantile residuals
have a standard normal distribution. Finally, the KM estimator for the Cox–Snell residuals
suggest that it is reasonable that such residuals have a standard exponential distribution.
For this reason, both residuals suggest that the GBcr model provides satisfactory results for
this data set.
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Figure 4. Quantile–quantile (QQ) plot with envelope for quantile residuals (and the corresponding p
value for different normality tests) and the KM estimator for the Cox–Snell residuals for the GBcr-PE
model for the lobular carcinoma data.

Finally, in order to illustrate the advantage of using the GBcr-PE instead of the GBcr-
WEI model, we computed the estimated cure rate and the corresponding 95% confidence
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interval (CI) for both models, which are presented in Figure 5. Note that the GBcr-WEI
model underestimates the cure rate in relation to the GBcr-PE model. Furthermore, in some
cases (such as Figure 5a), the GBcr-PE provides a more accurate 95% CI.
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Figure 5. Estimated cure rate and the corresponding 95% confidence intervals for the MPScr-PE and
MPScr-WEI models.

7. Conclusions and Future Work

A new cure rate model was introduced based on the power piecewise exponential
distribution. The parameter estimation was performed using the EM algorithm, which
produces a very simplified estimation procedure. Properties of the ML estimators were
validated through a simulation study, which revealed that, as the sample size increases,
the bias and standard error (SE) decrease. The components of the vector λ (related to
the PPE distribution) highlighted slower convergence of the estimator compared to other
parameters, indicating the need for a larger sample size to reach acceptable properties.
The model proficiently identifies when survival times align with a PE distribution rather
than a PPE distribution. Finally, in a real data application related to breast cancer, the
GBcr-PPE model performed better than the common models in this context. Specifically,
we determined that, for this kind of cancer, the punctual estimation for the cure rate based
on our proposal varies between 99% for the most favorable case (younger patients in stage
I) and 35% (older patients in stage IV), which was always underestimated by a concurrent
model. Future research along these lines could consider a Bayesian approach to perform
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the parameter estimation and the inclusion of random effects in the cure rate terms of
the model.
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