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Abstract: This article analyzes the symmetry of two-dimensional stationary gas dynamics equations in
Lagrangian coordinates, including the search for equivalence transformations, the group classification
of equations, the derivation of group foliations, and the construction of conservation laws. The con-
sideration of equations in Lagrangian coordinates significantly simplifies the procedure for obtaining
conservation laws, which are derived using the Noether theorem. The final part of the work is devoted
to group foliations of the gas dynamics equations, including for the nonstationary isentropic case. The
group foliations approach is usually employed for equations that admit infinite-dimensional groups of
transformations (which is exactly the case for the gas dynamics equations in Lagrangian coordinates)
and may make it possible to simplify their further analysis. The results obtained in this regard generalize
previously known results for the two-dimensional shallow water equations in Lagrangian coordinates.
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1. Introduction

Analyses of physical phenomena in continuum mechanics can be carried out using
two different descriptions: Eulerian and Lagrangian. Usually, in hydrodynamics, the
Eulerian description is employed, where the system describes the motion of the fluid at
fixed points; the velocity, density, and other properties of the fluid particles are considered
functions of time and fixed spatial coordinates. In contrast, in the Lagrangian description,
particles are identified by the positions they occupy at some initial time. Lagrangian
variables are rarely used to solve hydrodynamic problems. The reason for this is the more
complicated appearance of continuum equations in Lagrangian form compared to their
Eulerian counterparts. However, the application of Lagrangian variables is preferable for
some types of problems [1–3].

The present paper is devoted to the analysis of the two-dimensional stationary (steady-
state) gas dynamics equations. The model of stationary flows describes a wide class of
real gas flows and therefore is systematically used to solve specific problems [4–8]. Typical
examples of such problems are the outflow of a gas jet through a small hole from an infinite
reservoir or a uniform translational motion of a body in an unbounded gas resting at
infinity in a coordinate system moving with the body.

In addition to the stationarity assumption, it is often possible to simplify the model by
considering potential or isentropic flows. For example, the Prandtl–Meyer waves [9], as
well as their generalizations [10], are widely known for supersonic potential flows. Non-
isentropic flows with separable state equations are invariant with respect to a family of the
Munk–Prim transformations involving a smooth scalar function of the space variables that
is constant along each individual streamline [11,12]. Although the inverse transformation
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might be problematic to obtain, the Munk–Prim transformations are known in the literature
as a substitution principle [13]. The presence of the Munk–Prim transformations can be
explained by the fact that the equations admit a specific infinite-dimensional group of
transformations [4].

Transformations that simplify the forms of equations, reduce their order, and allow one to
find conservation laws and exact solutions can be found by the group analysis method [14,15].
Symmetry analysis usually includes determining admitted Lie algebras of equations, their
equivalence transformations, and group classifications; studying optimal systems of subalge-
bras and deriving their exact (invariant and partially invariant) solutions; finding conservation
laws; and constructing automorphic and resolving systems (group foliations).

This article is devoted to the group analysis of stationary two-dimensional gas dynam-
ics equations in Lagrangian coordinates. In contrast to the nonstationary case, stationary
solutions in Lagrangian coordinates are determined by an overdetermined system of equa-
tions. In general, overdetermination results in a smaller number of determining equations,
which can expand the set of symmetries compared to a determined system. In particular,
for the stationary gas dynamics equations, we have obtained more arbitrary functions in
symmetries than for the nonstationary case [16]. The use of Lagrangian coordinates and the
found symmetries make it possible to apply the Noether theorem to derive conservation
laws. This is due to the fact that equations in Lagrange coordinates, unlike equations in
Euler coordinates, are of second order, and a Lagrangian can be found for them. Classifying
Lie algebras containing arbitrary functions is a difficult task. One approach to such an
analysis is group foliation [14], which is also presented in this article.

The paper is organized as follows. In the next section, the two-dimensional stationary
gas dynamics equations in Eulerian and Lagrangian coordinates are presented. In Section 3,
for the equations in Lagrangian coordinates, groups of equivalence transformations are
found, and the results of group classification with respect to the entropy as an arbitrary
element are presented. Conservation laws for stationary gas dynamics equations, derived
using the Noether theorem, are given in Section 4. Section 5 is devoted to group foliations
of the two-dimensional gas dynamics equations. Both the stationary nonisentropic case
and the case of nonstationary isentropic flows are considered. The results are summarized
in Section 6.

2. Stationary Equations of Gas Dynamics
2.1. Eulerian Coordinates

Consider the two-dimensional stationary gas dynamics equations of a polytropic gas

ρ(uux + vuy) + px = 0,

ρ(uvx + vvy) + py = 0,

uρx + vρy + ρ(ux + vy) = 0,

uSx + vSy = 0,

(1)

where x and y are Eulerian coordinates, u and v are the components of the two-dimensional
velocity vector, ρ is the density, p = Sργ is the pressure, the polytropic exponent is

γ = 1 +
R
cv

> 1,

where R is the gas constant, and cv is the dimensionless specific heat capacity at constant
volume. The function S is given by the formula [4]

S = Re(S̃−S̃0)/cv ,

where S̃ is the entropy and S̃0 is a constant.
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In general, we assume the flows are nonisentropic, i.e., the entropy S can depend on
the coordinates x and y. The standard two-dimensional shallow water equations [4,17] are
a particular case of (1) for γ = 2 and S = const.

The admitted Lie algebra of (1) consists of the following generators.

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
, X4 = y

∂

∂x
− x

∂

∂y
+ v

∂

∂u
− u

∂

∂v
,

Xg = g
(

u
∂

∂u
+ v

∂

∂v
− 2ρ

∂

∂ρ
+ 2γS

∂

∂S

)
,

where g is an arbitrary function depending on the Bernoulli integral and the entropy

g = g
(

u2 + v2

2
+

γ

γ − 1
Sργ−1, S

)
.

This result was obtained by a group of researchers under the leadership of L.V. Ovsian-
nikov as part of the work on the SUBMODELS program [18]. As is known [4], the presence
of the generator Xg in the Lie algebra admitted by (1) provides a group interpretation for
the existence of Munk–Prim transformations for these equations.

2.2. Lagrangian Coordinates

Relations between Eulerian coordinates (t, x, y) and Lagrangian coordinates (t̃, ξ̃, η̃)
can be specified up to an equivalence transformation, which is determined from the conser-
vation law of mass [19]

ρ =
ρ0

φ1ξ̃ φ2η̃ − φ1η̃ φ2ξ̃

,

where ρ0 = ρ0(ξ̃, η̃) > 0 is the function of integration.
Here, we stay focused on the simplest case of mass Lagrangian coordinates when the

equivalence transformation is chosen in such a way that ρ0 = 1 and ξ̃ and η̃ are some
specific functions of the new variables ξ and η (see details, for example, in [16]). Further,
the mass Lagrangian coordinates are simply called the Lagrangian coordinates, and the
symbol ˜ is omitted for brevity.

Thus, here, the Lagrangian coordinates are introduced as

φ1t(t, ξ, η) = u(t, φ1(t, ξ, η), φ2(t, ξ, η)), φ2t(t, ξ, η) = v(t, φ1(t, ξ, η), φ2(t, ξ, η)), (2)

ρ(t, φ1(t, ξ, η), φ2(t, ξ, η)) = J−1(t, ξ, η), S(t, φ1(t, ξ, η), φ2(t, ξ, η)) = S0(ξ, η),

where J = φ1ξ φ2η − φ1η φ2ξ .

In Lagrangian coordinates, Equation (1) are brought to the form

Jγ φ1tt + S0ξ φ2η − S0η φ2ξ + γJ−1S0
(

φ2η(φ1η φ2ξξ − φ2η φ1ξξ)
+φ2ξ(φ1ξ φ2ηη − φ1ηη φ2ξ) + 2φ2ξ φ2η φ1ξη − (φ1ξ φ2η + φ1η φ2ξ)φ2ξη

)
= 0,

(3)

Jγ φ2tt − S0ξ φ1η + S0η φ1ξ + γS0 J−1(φ1η(φ2η φ1ξξ − φ1η φ2ξξ)
+φ1ξ(φ2ξ φ1ηη − φ1ξ φ2ηη) + 2φ1ξ φ1η φ2ξη − (φ1ξ φ2η + φ1η φ2ξ)φ1ξη

)
= 0.

(4)

To derive conditions defining stationary solutions in Lagrangian coordinates, consider
the functions f e(t, x, y) and f l(t, ξ, η), which are related as follows:

f l(t, ξ, η) = f e(t, φ1(t, ξ, η), φ2(t, ξ, η)).
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Differentiating the latter with respect to t, ξ, and η, one obtains

f l
t = f e

t + f e
x φ1t + f e

y φ2t,

f l
ξ = f e

x φ1ξ + f e
y φ2ξ , f l

η = f e
x φ1η + f e

y φ2η .
(5)

The derivatives of the function f with respect to the Eulerian coordinates x and y are
expressed from the second and third equations of (5).

f e
x = J−1( f l

ξ φ2η − f l
η φ2ξ), f e

y = J−1(− f l
ξ φ1η + f l

η φ1ξ).

Substituting into the first Equation (5), one obtains the derivative with respect to time
in Eulerian coordinates

f e
t = f l

t − φ1t f e
x − φ2t f e

y .

For stationary solutions, one should add to Equations (3) and (4) the constraints

ut = 0, vt = 0, ρt = 0, St = 0, (6)

where the pairs ( f e, f l) are the following:

(u, φ1t), (v, φ2t), (ρ, J−1), (S, S0).

Thus, the stationary solutions of the gas dynamics of Equation (1) in Eulerian coordi-
nates correspond to the solutions of (3) and (4) along with the equations

φ1tt + (φ2ξ φ1tη − φ2η φ1tξ)φ1t J−1 + (φ1η φ1tξ − φ1ξ φ1tη)φ2t J−1 = 0, (7)

φ2tt + (φ2ξ φ2tη − φ2η φ2tξ)φ1t J−1 + (φ1η φ2tξ − φ1ξ φ2tη)φ2t J−1 = 0, (8)(
(2φ2ξ φ2ξη − φ2η φ2ξξ)φ1η + φ1ηη φ2

2ξ − (φ1ξ φ2ηη + 2φ1ξη φ2η)φ2ξ + φ1ξξ φ2
2η + Jφ2ξη

)
φ1t

+ φ2
1η φ2t φ2ξξ +

(
(2φ1ξη φ2ξ − 2φ1ξ φ2ξη − φ1ξξ φ2η)φ2t + Jφ2tξ

)
φ1η

+
(

φ2
1ξ φ2ηη − φ1ξ φ1ηη φ2ξ + Jφ1ξη

)
φ2t − J(φ1ξ φ2tη + φ1tξ φ2η − φ1tη φ2ξ) = 0, (9)

S0η(φ1t φ2ξ − φ1ξ φ2t)− S0ξ(φ1t φ2η − φ1η φ2t) = 0, (10)

which are constraints (6) written in Lagrangian coordinates.
In order to correctly find the admitted Lie algebra and the equivalence group of

the system, the total derivatives of (10), Dt, Dξ , and Dη with respect to the Lagrangian
variables t, ξ, and η are considered as well. After differentiation, these equations are quite
cumbersome and therefore are not presented here.

3. Group Analysis of the Stationary Gas Dynamics Equations
3.1. Equivalence Transformations

The initial stage of the symmetry analysis of Equations (3), (4), and (7)–(10) is to
search for equivalence transformations that divide equations into classes [14]. The class of
Equations (3), (4), and (7)–(10) is parameterized by the arbitrary element S = S0(ξ, η).
Equivalence transformations preserve the structure of equations but allow arbitrary ele-
ments to be changed.

Finding a group of equivalence transformations for a system of equations is similar to
finding an admitted Lie algebra with the different generator prolongations formulas [14,20].
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Calculations show that the equivalence group for Equations (3), (4), and (7)–(10) corre-
sponds to the generators

Xe
1 = (γ − 1)t

∂

∂t
− 2ξ

∂

∂ξ
, Xe

2 = F1(S)
∂

∂t
, Xe

3 = (γ − 1)S
∂

∂S
− ξ

∂

∂ξ
,

Xe
4 = (γ − 1)

(
φ1

∂

∂φ1
+ φ2

∂

∂φ2

)
+ 2γξ

∂

∂ξ
,

Xe
5 = φ2

∂

∂φ1
− φ1

∂

∂φ2
, Xe

6 =
∂

∂φ1
, Xe

7 =
∂

∂φ2
,

Xe
ψ0

= ψ0ξ
∂

∂η
− ψ0η

∂

∂ξ
.

(11)

Remark 1. Equivalence transformations (11) can be obtained in two different ways. The first,
the classical approach, which treats the entropy S as an arbitrary element of Equations (3), (4),
and (7)–(10), derives equivalence transformations in the standard way: using the prolongation
formulas [14,20], constructing determining equations, and solving them.

Because the entropy is only a function of t, ξ, and η (the entropy does not depend on φ1 and
φ2), another approach is possible. Consider S(t, ξ, η), φ1(t, ξ, η), and φ2(t, ξ, η) as the set of the
dependent variables of System (3), (4), and (7)–(10) and find the admitted Lie group of System
(3), (4), and (7)–(10). This admitted Lie group allows for the entropy to be changed but leaves the
structure of the equations unchangeable. The latter means that the transformations of the found Lie
group belong to the equivalence group.

Calculations show that both approaches lead to the same result (11). It should be noted that the
second way is much simpler from a practical point of view, as it allows the use of simpler generator
prolongation formulas.

3.2. Admitted Lie Algebras

Constructing the determining equations for the system consisting of Equations (3) and (4)
with the differential constraints (7)–(10) and solving them, one derives the admitted Lie
algebras for nonisentropic and isentropic cases.

In the case of isentropic flows (S0 = const), the admitted Lie algebra is

X1 = (γ − 1)t
∂

∂t
− 2ξ

∂

∂ξ
, X2 =

∂

∂t
, X3 = (γ − 1)

(
φ1

∂

∂φ1
+ φ2

∂

∂φ2

)
+ 2γξ

∂

∂ξ
,

X4 = φ2
∂

∂φ1
− φ1

∂

∂φ2
, X5 =

∂

∂φ1
, X6 =

∂

∂φ2
,

Xψ0 = ψ0ξ
∂

∂η
− ψ0η

∂

∂ξ
,

(12)

where ψ0(ξ, η) is an arbitrary differentiable function of its arguments.
The generators X2, X5, and X6 correspond to the shift transformations along the t,

x, and y axes. The generator X4 corresponds to the rotation transformation, X1 and X3
define the inhomogeneous scaling of the space, and the generator Xψ0 corresponds to the
relabeling transformation.

In the nonisentropic case (S0 ̸= const), one obtains

X1 = φ1
∂

∂φ1
+ φ2

∂
∂φ2

+ ψ1

(
S0η

∂
∂ξ − S0ξ

∂
∂η

)
,

X2 = S−1
0η S0

∂
∂η + ψ2

(
S0η

∂
∂ξ − S0ξ

∂
∂η

)
,

X3 = φ2
∂

∂φ1
− φ1

∂
∂φ2

, X4 = ∂
∂φ1

, X5 = ∂
∂φ2

, XF1 = F1
∂
∂t ,

XF2 = F2

(
t ∂

∂t − 2γS−1
0η S0

∂
∂η + ψ3

(
S0η

∂
∂ξ − S0ξ

∂
∂η

))
,

Xψ0 = ψ0

(
S0η

∂
∂ξ − S0ξ

∂
∂η

)
,

(13)
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where Fi(S0) (i = 1, 2) are arbitrary functions and the functions ψi(ξ, η), (i = 0, 1, 2, 3)
satisfy the equations

S0ηψ0ξ − S0ξ ψ0η = 0, (γ − 1)(S0ηψ1ξ − S0ξψ1η) = 2γ,

(γ − 1)(S0ηψ2ξ − S0ξ ψ2η) = (γ − 1)
S0S0ηη

S2
0η

− γ,

S0ηψ3ξ − S0ξψ3η = 2

(
γ + 1 − γ

S0S0ηη

S2
0η

)
+ 2γ

S0F2ξ

S0ξ F2
.

The generators Xψ0 of (12) and (13) correspond to relabeling transformations. In the
recent paper [21], a group foliation [14] of the two-dimensional shallow water equations in
Lagrangian coordinates has been constructed with respect to a relabeling generator of the
form Xψ0 . As it turned out, the group foliation in this case has some specific properties. To
derive more general results, in Section 5, group foliations of the gas dynamics equations for
relabeling generators as well as for the generator X1 of (13) are considered.

4. Conservation Laws of the Stationary Gas Dynamics Equations

As is known [3,16,22], Equations (3) and (4) are the Euler–Lagrange equations for
the Lagrangian

L =
φ2

1t + φ2
2t

2
− 1

γ − 1
J1−γS,

for which one can find conservation laws by means of the Noether theorem [23,24].
Assume that the generator

X = χt ∂

∂t
+ χξ ∂

∂ξ
+ χη ∂

∂η
+ ζφ1

∂

∂φ1
+ ζ φ2

∂

∂φ2

satisfies the invariance condition

XL+ L(Dtχ
t + Dξ χξ + Dηχη) = DtBt + Dξ Bξ + Dη Bη

for some differentiable functions Bt = B1, Bξ = B2, and Bη = B3, where Dt, Dξ , and Dη are
operators of total differentiation with respect to the Lagrangian coordinates.

Then, according to the Noether theorem, the system of the corresponding Euler–
Lagrange equations possess a local conservation law of the form

DtTt + Dξ Tξ + DηTη = 0,

where the conserved quantities Tt = T1, Tξ = T2, and Tη = T3 are given by the formulas

Ti = χiL+ (ζφk − χj φk
j )

δL
δφk

i
+ ∑

s=1
Di1 · · · Dis(ζ

φk − χj φk
j )

δL
δφk

ii1···is
− Bi.

Here, δ
δ f is the variational derivative with respect to f , and, for the sake of brevity,

φk
i1···is denotes the derivative of the function φk with respect to xi1 , ..., xis , where x1 = t,

x2 = ξ, and x3 = η.
To find conservation laws, it is necessary to consider a linear combination of all

generators of the Lie algebra admitted by the system. To simplify the linear combination, it
is convenient to introduce the functions ψ23 and ψ123, satisfying the following equations:

ψ3 = −(γ − 1)ψ2 + ψ23, ψ1 = 2(2γ − 1)(ψ23/(γ − 1)− ψ2) + ψ123,
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S0ηψ23ξ − ψ23ηS0ξ = −(γ + 1)
S0S0ηη

S2
0η

+ (γ + 2),

S0ηψ123ξ − ψ123ηS0ξ = 4
γ(2γ − 1)

γ − 1
S0S0ηη

S2
0η

− 2
4γ2 + γ − 2

γ − 1
.

Using the Noether theorem and taking into account the latter relations, one obtains
the following set of conservation laws.

(1) The conservation law of energy:

Tξ
6 = −1

2

(
φ2

1t + φ2
2t

)
− J1−γS0

γ − 1
, Tη

6 = −J−γS0(φ1t φ2η − φ2t φ1η),

Tt
6 = −J−γS0(−φ1t φ2ξ + φ2t φ1ξ);

(2) The angular momentum:

Tξ
2 = φ1t φ2 − φ2t φ1, Tη

2 = J−γS0(φ1 φ1η + φ2 φ2η), Tt
2 = −J−γS0(φ1 φ1ξ + φ2 φ2ξ);

(3) The momentum along axis x:

Tξ
3 = φ1t, Tη

3 = J−γS0 φ2η , Tt
3 = −J−γS0 φ2ξ ;

(4) The momentum along axis y:

Tξ
4 = φ2t, Tη

4 = −J−γS0 φ1η , Tt
4 = J−γS0 φ1ξ ;

The physical interpretation of the remaining three conservation laws is not that clear,
and they are listed below without specifying their names.

(5)

Tξ
1 = (2γ − 1)t

(
φ2

1t + φ2
2t +

2
γ − 1

J1−γS0

)
+ (γ − 1)(φ1 φ1t + φ2 φ2t)

+ (γ − 1)ψ123
(

φ1t(S0ξ φ1η − S0η φ1ξ) + φ2t(S0ξ φ2η − S0η φ2ξ)
)

− 4γ(2γ − 1)
S0

S0η
(φ1t φ1η + φ2t φ2η),

Tη
1 =

γ − 1
2

ψ123S0η

(
φ2

1t + φ2
2t −

2γ

γ − 1
J1−γS0

)
+ J−γS0

(
2(2γ − 1)t(φ1t φ2η − φ2t φ1η) + (γ − 1)(φ1 φ2η − φ1η φ2)

)
,

Tt
1 =

(
1 − γ

2
ψ123S0ξ + (2γ − 1)

2γS0

S0η

)
(φ2

1t + φ2
2t)

+ γJ1−γψ123S0ξ S0 − 2(2γ − 1)tJ−γS0(φ1t φ2ξ − φ2t φ1ξ)

+
J−γS0

γ − 1

(
(γ − 1)2(φ1ξ φ2 − φ1 φ2ξ)− 4

γ2 JS0

S0η
(2γ − 1)

)
;

(6)

Tξ
5 = −1

2
t(φ2

1t + φ2
2t) + ψ23(φ1t(S0ξ φ1η − S0η φ1ξ) + φ2t(S0ξ φ2η − S0η φ2ξ))

+ (γ + 1)
S0

S0η
(φ1t φ1η + φ2t φ2η)−

J1−γS0t
γ − 1

,
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Tη
5 =

1
2

ψ23S0η

(
φ2

1t + φ2
2t −

2γJ1−γS0

γ − 1

)
− J−γS0t(φ1t φ2η − φ2t φ1η),

Tt
5 = −1

2

(
ψ23S0ξ +

(γ + 1)S0
S0η

)(
φ2

1t + φ2
2t −

2γJ1−γS0
γ − 1

)
+ J−γS0t(φ1t φ2ξ − φ2t φ1ξ);

(7)

Tξ
7 = ψ0

(
φ1t(S0ξ φ1η − S0η φ1ξ) + φ2t(S0ξ φ2η − S0η φ2ξ)

)
,

Tη
7 = ψ0

1
2

S0η

(
φ2

1t + φ2
2t −

2γJ1−γS0

γ − 1

)
, Tt

7 = −1
2

ψ0S0ξ

(
φ2

1t + φ2
2t −

2γJ1−γS0

γ − 1

)
.

It is important to note that, although the same Lagrangian and equations are consid-
ered here as in [16], the set of conservation laws is different, as the admitted Lie algebra for
stationary gas equations does not coincide with the Lie algebra studied in [16].

5. Group Foliations for the Two-Dimensional Gas Dynamics Equations in
Lagrangian Coordinates

Here, group foliations for two-dimensional gas dynamics equations are considered.
Group foliations [14] are carried out with respect to some generator X of an admitted Lie
algebra and allow one to split the original system of equations into two: automorphic and
resolving systems. An automorphic system is a set of dependencies between differential
invariants of an admitted Lie algebra, and a resolving system is obtained as a set of
conditions for the compatibility of the automorphic system and the original system of
equations. The automorphic system always admits the generator X, and any of its solutions
is translated into any of its other solutions by the action of the corresponding group
transformation. Therefore, for X, it is advisable to choose a generator of the most general
form possible (for example, including arbitrary functions). The set of Lie algebra generators
admitted by the resolving system is isomorphic to the Lie algebra of the original system,
with the exception of the generator X. This allows one to reduce the resolving system on
subgroups and find invariant solutions to the resolving system, which can sometimes be
easier than solving the original system of equations. If it is possible to find solutions to
the resolving system, then with the help of these solutions, one can specify the form of
the automorphic system. If one also manages to find at least a particular solution of such
an automorphic system, then this is equivalent to finding the entire set of its solutions,
since they are all connected by the action of the transformation group corresponding to the
generator X. Moreover, the construction of invariant solutions using the group foliation
approach can provide wider classes of invariant solutions than the standard approach,
as has been shown by example in [25].

The construction of automorphic and resolving systems is often quite labor-intensive
work (see, e.g., [26]). Although this is primarily a step towards obtaining invariant solutions
of the original system, in some cases, the construction of group foliations is of independent
theoretical interest. For example, in recent work [21], a group foliation has been constructed
for the two-dimensional shallow water equations in Lagrangian coordinates. As a result,
it turned out that the resolving system is isomorphic to the system of the shallow water
equations in Eulerian coordinates.

Next, we study group foliations of gas dynamics equations in some special cases. To
begin with, we focus on group foliations with respect to relabeling generators. As was
already mentioned, a similar problem was considered recently for two-dimensional shallow
water equations [21]. As one would expect, for nonstationary equations of isentropic flows,
similar results are derived, generalizing those presented in [21]. On the contrary, for non-
isentropic flows, the given entropy function S0 appears among the differential invariants of
the relabeling generator, and the group foliation structure is somewhat different.
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Then, to illustrate the application of the approach, we dwell on the construction of
a group foliation for one of the generators admitted by the stationary equations in the
nonisentropic case. As an example, we consider the generator X1 of Algebra (13). This
generator defines uniform stretches in the x–y plane combined with relabeling. Here,
the construction of the foliation allows one to reduce the consideration of a fairly wide
class of corresponding solutions to the consideration of an automorphic system. Recall
that, knowing any of its particular solutions, the entire set of its solutions can be derived
by simple uniform scalings of the dependent variables in combination with relabeling
transformations. It is also important that the ‘finite’ part of the generator X1 does not
include derivatives of the entropy function S0, which simplifies the finding of its differential
invariants and subsequent calculations. Even taking these simplifications into account,
as one sees in the sequel, the corresponding resolving system is quite difficult to analyze.

In the process of constructing foliations, the main steps of the algorithm are briefly
described. However, as a detailed discussion of the underlying theory is beyond the scope
of this treatment, interested readers are referred to [14,25,27,28].

5.1. The Relabeling Symmetry Xψ0

We start with group foliations for Equations (3) and (4) with respect to the relabel-
ing generator

Xψ0 = ψ0

(
S0η

∂

∂ξ
− S0ξ

∂

∂η

)
,

where the function ψ(ξ, η) satisfies the relation

S0ηψ0ξ − S0ξ ψ0η = 0.

5.1.1. Isentropic Flows, Nonstationary Case

First, assume S0 = const. To find a universal invariant, one consequently applies the
generator and its first prolongation to some function F of 11 variables

(t, ξ, η, φ1, φ2, φ1t, φ1ξ , φ1η , φ2t, φ2ξ , φ2η)

and splits the result with respect to ψ0 and its derivatives. The resulting system of equations is

Fξ = 0, Fη = 0,

φ1η Fφ1ξ
+ φ2η Fφ2ξ

= 0, φ1ξ Fφ1η
+ φ2ξ Fφ2η = 0,

φ1ξ Fφ1ξ
+ φ2ξ Fφ2ξ

− φ1η Fφ1η
− φ2η Fφ2η = 0.

From the latter system, one can derive the universal invariant

F(t, x, y, xt, yt, J),

which depends on six invariant arguments.
To construct an automorphic system, one must define the relationships between three

(according to the number of independent variables) zero-order invariants and the remaining
first-order differential invariants, as follows.

J−1 = W(t, x, y), xt = U(t, x, y), yt = V(t, x, y).

The resolving system is derived as compatibility conditions of the automorphic system
and Equations (3) and (4) and has the following form:

Ut + UUx + VUy + γS0Wγ−2Wx = 0,

Vt + UVx + VVy + γS0Wγ−2Wy = 0,



Mathematics 2024, 12, 879 10 of 13

Wt + (UW)x + (VW)y = 0.

This generalizes the result obtained in [21].

5.1.2. Nonisentropic Flows (S0 ̸= const), Stationary Case

Here, we consider the nonisentropic case along with the constraints (7)–(10).
In the case that S0 ̸= const, the universal invariant is found from the system

S0ξ Fη − S0η Fξ = 0,

(S0η φ1ξ − S0ξ φ1η)S0ξ Fφ1ξ
+ (S0η φ1ξ − S0ξ φ1η)S0η Fφ1η

+(Fφ2ξ
S0ξ + Fφ2η S0η)(S0η φ2ξ − S0ξ φ2η) = 0,

(S0ηη φ2ξ − S0ξη φ2η)Fφ2η + (S0ηη φ1ξ − S0ξη φ1η)Fφ1η
+ (S0ξη φ2ξ − S0ξξ φ2η)Fφ2ξ

+(S0ξη φ1ξ − S0ξξ φ1η)Fφ1ξ
= 0.

There are nine independent differential invariants, and the universal invariant de-
pending on them is of the form

F(t, S0, x, y, xt, yt, J, J1, J2),

where

J1 = J−1(S0ξ φ2η − S0η φ2ξ) = S0x, J2 = J−1(S0η φ1ξ − S0ξ φ1η) = S0y.

Thus, the automorphic system is

J−1 = W(t, x, y), xt = U(t, x, y), yt = V(t, x, y),

S0 = Z(t, x, y), J1 = A(t, x, y), J2 = B(t, x, y).

The resolving system is derived in the similar way as in the previous case:

Ut = 0, Vt = 0, Zx − A = 0, Ay = Bx,

Zt + UA + BV = 0, Wt + (UW)x + (VW)y = 0,

U(At + UAx + VAy) + V(Bt + UBx + VBy) + A(UUx + VUy) + B(UVx + VVy) = 0.

5.2. Symmetry X1, Nonisentropic Case

Consider a group foliation of Equations (3), (4), and (7)–(10) with respect to the
generator

X1 = φ1
∂

∂φ1
+ φ2

∂

∂φ2
+ ψ1

(
S0η

∂

∂ξ
− S0ξ

∂

∂η

)
,

where
(γ − 1)(S0ηψ1ξ − S0ξψ1η) = 2γ.

One can apply the generator and its first prolongation to a function of 11 arguments
and split the resulting equations with respect to ψ1 and its derivatives. This leads to the
system for the universal invariant F.

φ1Fφ1 + φ2Fφ2 = 0, S0η Fξ − S0ξ Fη = 0,

(2S0ξγφ1η − φ1ξ(γ + 1)S0η)Fφ1ξ
+ (2γφ2ηS0ξ − φ2ξ(γ + 1)S0η)Fφ2ξ

+

+ S0η(φ1tFφ1t + φ2tFφ2t + φ1η Fφ1η
+ φ2η Fφ2η )(γ − 1) = 0,
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S0ξ(S0ξ φ1η − S0η φ1ξ)Fφ1ξ
+ S0η(S0ξ φ1η − S0η φ1ξ)Fφ1η

− (S0ξ Fφ2ξ
+ S0η Fφ2η )(S0η φ2ξ − S0ξ φ2η) = 0,

(S0ξξ φ1η − S0ξη φ1ξ)Fφ1ξ
+ (S0ξη φ1η − S0ηη φ1ξ)Fφ1η

+ (S0ξξ φ2η − S0ξη φ2ξ)Fφ2ξ
+

+ (S0ξη φ2η − S0ηη φ2ξ)Fφ2η = 0.

One thus obtains the solution

F = F
(

t, S0,
φ2

φ1
,

φ1t
φ1

,
φ2t

φ1
, Jφ

2
γ−1
1 , J1, J2

)
,

where

J1 = J−1(S0ξ φ2η − S0η φ2ξ)φ1 = φ1S0x, J2 = J−1(S0η φ1ξ − S0ξ φ1η)φ2 = φ2S0y.

Thus, the automorphic system is

Jφ1
2

γ−1 − W(t, S0, q) = 0,

φ1t − φ1U(t, S0, q) = 0, φ2t − φ1V(t, S0, q) = 0,

J1 = A(t, S0, q), J2 = B(t, S0, q),

where q = φ2/φ1.
In contrast to the previous cases, the resolving system turns out to be quite cumber-

some and consists of 10 equations:

qUA + BV = 0,

At = 0, Bt = 0, Vt = 0, Wt = 0,

WB − γS0(BWS0 + qWq)− q((qU − V)Vq − UV)Wγ = 0,

(qU − V)WAq + (A + B)WVq + A((qU − V)Wq + 2UW) +
2AUW
γ − 1

= 0,

(Ut + (V − qU)Uq + U2)Wγ + γS0(qWq − AWS0) + (A + κ1S0)W = 0,

A
(

q(qU − V)(WUq − UWq)− W
(

qUt + UV + κ1qU2
))

+ (qU − V)VWBq = 0,

q
{
(qU − V)(VBq + q(AU)q + AU(1 − BS0 )) + U(A + B)((Vq + AS0 )qU + qAUS0 + BVS0 )

}
AWq

−
{

q((qU − V)VB2
q − (A + B)BV2

q )− qU
(
(A + B)(qAUS0 + BVS0 ) + κ2qAU

)
Aq

+
(

q((2qU − V)A + qBU)Vq + q2(qU − V)UAq

−
(
(qU − V)(qUAS0 + VBS0 − q2Uq)− qU(qU + κ3V)

))
ABq

−
(
(A + B)(q2(AU)q + qABUS0 + B2VS0 ) + (A − κ3B)qUA

)
Vq

+A
[
q
(
Uq(A + B)AS0 − A((qU − V)BS0 + κ2qU)

)
Uq

+qU(A − κ1B)UAS0 + (κ1qU + V)AUBS0 − κ2(qBUS0 A + B2VS0 + qAU)U
]}

W = 0,

where, for brevity, we have denoted

κ1 =
γ + 1
γ − 1

, κ2 = κ1 + 1 =
2γ

γ − 1
, κ3 = −κ1 − 2 =

1 − 3γ

γ − 1
.

Here, one assumes that φ1 φ2W ̸≡ 0.
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Our analysis shows that these 10 equations are functionally independent. Notice also that
the first equation of the resolving system (namely, qUA+ BV = 0) corresponds to the condition
De

t(S) = 0, where De
t is the total derivative with respect to time in Eulerian coordinates.

6. Conclusions

Symmetries, conservation laws, and group foliations of the two-dimensional stationary
gas dynamics equations in mass Lagrangian coordinates were considered in this paper.
The system of equations in Lagrangian coordinates was supplemented with conditions
(in Eulerian coordinates) for the independence of density, velocity, and entropy from time.
As a result of the group classification of the equations, two cases were distinguished:
the isentropic and nonisentropic cases. The classification showed that the admitted Lie
algebras for the stationary case differ from the Lie algebras obtained recently in [16] for
nonstationary equations. Due to this, using the Noether theorem, one can obtain new
conservation laws specific to the stationary equations.

The last section was devoted to the group foliations of the gas dynamics equations
with respect to relabeling the generators Xψ0 and the generator X1, which correspond
to a combination of relabeling transformations and uniform stretching in the x–y plane.
The resulting foliations generalize and complement previously known results for the
two-dimensional shallow water equations in Lagrangian coordinates [21]. Recall that
group foliation allows one to move from the original system of equations to two systems:
automorphic and resolving systems. An automorphic system relates differential invariants,
whereas a resolving system is obtained as a set of compatibility conditions for the original
and automorphic systems. Often, the automorphic and resolving systems have a simpler
form than the original system, which is suitable further analysis.

Calculations showed, similarly to [21], that for isentropic flows, the resolving system
for nonstationary gas dynamics equations in mass Lagrangian coordinates with respect to
the relabeling generator are isomorphic to the system of gas dynamics equations in Eulerian
coordinates. For nonisentropic flows, such isomorphism no longer takes place, and the
resolving system has a more complex form. The resolving system for the generator X1
turned out to be of an even more complex structure. A compatibility analysis of the
derived resolving systems and the search for invariant solutions based on the certain
group foliations are beyond the scope of the present study and may become a subject for
future research.
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