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Abstract: This paper deals with p-maxian problem on cycles with an upper bound on the distances
of all facilities. We consider the case of p = 2 and show that, in the worst case, the optimal solution
contains at least one vertex of the underlying cycle, which helps to develop an efficient algorithm to
solve the constrained 2-maxian problem. Based on this property, we develop a linear time algorithm
for the constrained 2-maxian problem on a cycle. We also discuss the relations between the constrained
and unconstrained 2-maxian problems on which the underlying graphs are cycles.
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1. Introduction

Facility location theory deals with the problems of planning new optimal facilities
in a network of existing customers, playing an important role in operation research due
to its theoretical and practical contributions. The median and center location problems
are the two most important models in classical facility location theory. The aim of a
median problem is to find one or several facilities to minimize the total weighted distance
from customers to the facilities. Furthermore, the goal of the center problem is to locate
new facilities such that the maximum weighted distance from customers to the facilities
is minimized.

Since the median and center problems on general graphs are NP-hard, there is signifi-
cant interest in cases where such a problem can be solved in polynomial time. Goldman [1]
showed that the 1-median problem on trees can be solved in linear time. For the 2-median
problem on trees, Gavish and Sridhar presented [2] an O(n log n) time algorithm. Tamir [3]
studied the p-median problem on trees and showed that the problem can be solved in
O(pn2) time. Burkard and Krarup [4] designed a linear time algorithm for the pos/neg-
weighted 1-median problem on a cactus, and showed that the 2-median problem on cactus
graphs can be solved in O(n2) time. For the model of center problems, Handler [5] pre-
sented a linear time algorithm for the 1-center problem on trees. For the p-center problem on
trees, Wang and Zhang [6] presented an O(n log n) time algorithm. Lan [7] showed that the
1-center problem on a cactus graph can be solved in linear time. For the weighted 2-center
problem on cactus graphs, Moshe et al. [8] devised an O(nlog n3) time algorithm for the
continuous version and showed that the discrete version is solvable in O(nlog n2) time.

In recent years, the obnoxious facility location problem has been studied extensively,
where some facilities are to be placed as far away as possible from the customers. These
models are applied when locating undesirable facilities, for example, garbage dumps,
airports, and chemical plants, to mention a few. For a survey of obnoxious location
problems, we refer to Krarup et al. [9] and Tamir [10]. If the aim is to maximize the total
maximum weighted distances from all customers to p new facilities, the corresponding
problem is the so-called p-maxian problem. The p-maxian problem was first considered by
Burkard et al. [11], who showed that the problem could be solved in linear time. Kang and
Cheng [12] presented a linear time algorithm for the p-maxian problem on block graphs,
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where each block graph is a super class of tree graphs. Furthermore, the p-maxian problem
on interval graphs was solved in linear time by Cheng and Kang [13]. For the 2-maxian
problem on cactus graphs, Kang et al. [14] devised a quadratic time algorithm, where any
two cycles in the graph have at most one vertex in common.

In real-life situations, the maximum distances between new facilities are often limited
within a given bound. For instance, surveillance cameras of a residential district must
be located in such a way that they are close enough for full coverage and nucleic acid
collecting sites are located close enough for convenience. Considering such a limitation,
the aim of the p-maxian problem is to locate p facilities such that they are close enough for
inter-connection or cooperation. Nguyen et al. [15] were the first to consider the p-maxian
problem with a distance constraint, and they showed that the 2-maxian problem on trees
is solvable in linear time. Motivated by this paper, we consider the p-maxian problem on
cycles with bounds on the maximum distances between facilities. We organize the paper in
the following sections. Section 2 defines the p-maxian problem with distance constraints
and gives the important properties of the 2-maxian problem as well. In Section 3, we
develop a linear time algorithm for the constrained 2-maxian problem on cycles. Section 4
presents a brief conclusion to this paper.

2. Problem Definition and Properties

Let C = (V, E) be a cycle of sequence (v1, v2, . . . , vn, vn+1 = v1) of n distinct vertices
supplemented by vn+1 = v1, such that (vi, vi+1) is an edge of C, i = 1, 2, . . . , n, where all
vertices are numbered in a clockwise way. Each vertex vi ∈ V has a non-negative weight
wi and each edge e ∈ E has a non-negative length ℓ(e). The length of C is denoted by
ℓ(C) := ∑e∈E ℓ(e). A point x on C may either be a vertex or may lie on an edge of C;
the set of all points of C is denoted by X(C). For any two points x, y of X(C), the length
of the shortest path from x to y is denoted by d(x, y), and dc(x, y) denotes the length of
the path from x to y in a clockwise direction. It is easy to see that d(x, y) = dc(x, y) or
d(x, y) + dc(x, y) = ℓ(C) holds for any two points x, y of X(C).

In a p-maxian problem on the cycle graph C, the aim is to find p points of X(C), say
X := {x1, x2, . . . , xp}, such that the following objective function is maximized:

F(X) :=
n

∑
i=1

wi · max
j=1,2,...,p

d(vi, xj), (1)

where the point set X ⊆ X(C) that maximizes (1) is called the p-maxian of C.
In this paper, we assume that the maximum distance between facilities does not exceed

a given bound U ≤ ℓ(C)
2 . Then, the p-maxian problem on C with a distance constraint of U

(constrained p-maxian problem) can be formulated as the following optimization model:

max F(X) :=
n

∑
i=1

wi · max
j=1,2,...,p

d(vi, xj) (2)

s.t. d(vi, xj) ≤ U , i = 1, 2, . . . , n; j = 1, 2, . . . , p, (3)

where the set X ⊆ X(C) that fulfills (2) and (3) is called the constrained p-maxian of C.
For the case of p = 2, the corresponding constrained 2-maxian problem on a cycle C is

to find two points {x1, x2} ⊆ X(C), which maximizes the following equation:

F(x1, x2) :=
n

∑
i=1

wi · max{d(vi, x1), d(vi, x2)},

with the distance constraint d(x1, x2) ≤ U .
For an unconstrained 2-maxian problem on a modified cycle, the so-called

vertex optimality property asserts that the problem has an optimal solution at the
vertices [14]. However, this property does not apply in our problem. For example,
for the graph in Figure 1, we find
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F(m1 = v1 , m2) = 20.5,

where m1 is a vertex, m2 is not a vertex but is the inner point of the edge (v2 , v3)
with d(m1 , m2) ≤ U = 3

2 , and {m1 , m2} is the unique solution to the constrained
2-maxian problem. In the following, we will give an important result for the
constrained 2-maxian problem on a cycle C, which characterizes the point x ∈ X(C)
that may appear in an optimal solution of the problem.

3v1 = m1Fig.1 V ertex optimality does
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a point set X ⊆ P that maximizes (1) is called a p-maxian of the cycle C.1

In this paper, we assume that the maximum distance between facilities do not exceed a given

bound U ≤ `(C)
2 . Then, the p-maxian problem on C with distance constraint of U (constrained

p-maxian problem) can be formulated as following optimization model:

maxF (X) :=

n∑

i=1

wi · max
j=1,...,p

d(i, xj) (2)

s.t. d(i, xj) ≤ U , i = 1, . . . , n; j = 1, . . . , p, (3)

a set X ⊆ P that fulfills (2) and (3) is called a constrained p-maxian of the cycle C.2

For the case p = 2, the corresponding constrained 2-maxian problem on a cycle C is to find

two points {x1, x2} ⊆ P which maximizes

F (x1, x2) :=

n∑

i=1

wi ·max{d(i, x1), d(i, x2)},

with distance constraint d(x1, x2) ≤ U .3

For an unconstrained 2-maxian problem on a modified cycle, the so-called Vertex Optimality Property

asserts that the problem has an optimal solution at vertices [7]. However, this property does

not apply in our problem. For example, for the graph in Fig.1 we find

F (m1 = v1,m2) = 20.5,

where m1 is a vertex, m2 is not a vertex but the inner point of the edge (v2, v3) with d(m1,m2) ≤4

mathcalU = 3
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3

Figure 1. Vertex optimality does not hold any more.

Theorem 1. There exists an optimal solution X∗ = {x1, x2} of the constrained 2-maxian problem
on C, such that one of the following statements holds for x1 and x2:
1. x1 ∈ V and x2 ∈ V.
2. x1 ∈ V and x2 lies on the interior of an edge with the property of d(x1, x2) = U .

Proof. Let X∗ = {x1, x2} be an optimal solution of the constrained 2-maxian problem on
C. Suppose that X∗ is contradicting both statements 1 and 2. Obviously, there exists at
least one interior point of some edge. Assume that x1 is not a vertex and lies on the edge
(vr, vr+1), and that x2 lies on the edge (vs, vs+1) or coincides with s. Moreover, we assume
that r < s and d(x1, x2) = dc(x1, x2) ≤ U . For the point x1, we define the following sets:

V1 := {vi ∈ V|d(x1, vi) > d(x2, vi)},

V1
1 := {vi ∈ V1|d(x1, vi) = d(x1, vr+1) + dc(vr+1, vi)},

V2
1 := {vi ∈ V1|d(x1, vi) = d(x1, vr) + dc(vi, vr)}.

For the point x2, we define the sets V2, V1
2 and V2

2 similarly. Note that all facilities of
V1 and V2 are served by x1 and x2, respectively, which is denoted by V3 = V \ (V1 ∪ V2).
Note that if V3 is nonempty, then all vertices of V3 could be served by x1 as well as by x2.
Without a loss of generality, we assume that V3 = {vk1 , vk2} and k1 < k2.

For the edge er = (vr, vr+1), we consider a function f : [0, ℓ(er)] → R depending on t,
where t = 0 corresponds to vertex vr and t = ℓ(er) corresponds to vertex vr+1. Moreover,
the interior point x on the edge (vr, vr+1) with d(vr, x) corresponds to t = d(vr, x) and x is
written as vr + t. Then, the function f is defined by the following:
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f (t) = ∑
vi∈V1

wid(vi, vr + t) + ∑
vi∈V2

wid(vi, vr + t + d(x1, x2))

+ ∑
vi∈V3

wi · max{d(vi, vr + t), d(vi, vr + t + d(x1, x2))}

and we define ε1 =: min{d(vr, x1), d(vs, x2)}, ε2 =: min{d(vr+1, x1), d(vs+1, x2)}. Note
that f (t) is a linear function in the closed interval [x1 − ε1, x1 + ε2] with the following slope:

∑
vi∈(V1

1 ∪V1
2 ∪V3)

wi − ∑
vi∈(V2

1 ∪V2
2 )

wi. (4)

Supposing that slope (4) is non-negative, we then move x1 towards vertex vr+1 and
move x2 towards vertex vs+1 until x1 coincides with vr+1 by δ = min{d(x1, vr+1), d(x2, vs+1)}
(and x2) towards vr+1 (and vs+1) by δ = min{d(x1, vr+1), d(x2, vs+1)}. Thus, we obtain
X̄ = {vr+1, x2 + δ} or X̄ = {vr + δ, vs+1} and the following inequality:

F(X̄) = F(X∗) + sδ ≥ F(X∗),

which implies that there exists an optimal solution with at least one vertex. Without a loss
of generality, we assume that X∗ = {x1, x2} is a constrained 2-maxian with x1 as a vertex r.

Suppose that x2 is a interior point of the edge (vs, vs+1) and of dc(x1, x2) = U ′ < U .
For the edge es = (vs, vs+1), we define a function g : [0, ℓ(es)] → R depending on t′, similar
to the definition of the function f . Let the function g be given by the following:

g(t′) = ∑
vi∈V1

wid(vi, vr) + ∑
vi∈V2

wid(vi, vs + t′) + ∑
vi∈V3

wi · max{d(vi, vr), d(vi, vs + t′)}.

If we define ε′ = min{ℓ(es),U − dc(x1, vs)}, then g(t) is a linear function in the closed
intervals [0, x2 − vs] and [x2 − vs, ε′] with slopes as follows:

∑
vi∈V1

2

wi − ∑
vi∈V2

2

wi − wk2 (5)

and

∑
vi∈V1

2

wi − ∑
vi∈V2

2

wi + wk1 , (6)

respectively. If the value ∑vi∈V1
2

wi − ∑vi∈V2
2

wi ≤ 0, we move x2 toward the vertex s until
x2 coincides with vs. Then, we set X̄ := {x1 = vr, x2 = vs} and the following equation

F(X̄) = F(X∗) + ( ∑
vi∈V1

2

wi − ∑
vi∈V2

2

wi − wk2)(vs − x2) ≥ F(X∗)

can be concluded, where X̄ fulfills the statement 1. Otherwise, if the value ∑vi∈V1
2

wi −
∑vi∈V2

2
wi > 0, we move x2 towards the vertex vs+1. Note that x2 may either coincide with

vs+1 or may be an interior point x′2, which lies on (vs, vs+1) with dc(x1 = vr, x′2) = U . Either
case fulfills statement 1 or statement 2. This completes the proof.

By Theorem 1, we define by ex(vi) the point in C whose distance to vi ∈ V is
d(vi, ex(vi)) = U , and by op(vi) the point in C that is opposite to vi ∈ V, d(vi, ex(vi)) =

ℓ(C)
2 .

Then, we add all points ex(vi) and op(vi) with a weight of zero to C and update the edges
that are incident to those new vertices to create a modi f ied cycle. It is easy to see that there
are O(n) vertices in the modified cycle. Moreover, if U ≥ ℓ(C)

2 , the upper bound U has
no constraint on the facilities of the constrained 2-maxian problem; i.e., the constrained
2-maxian problem is equivalent to the corresponding unconstrained problem and, thus,
can be solved in linear time [16].
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3. A Linear Time Algorithm

Based on previous results, we develop a combinatorial algorithm that solves the
constrained 2-maxian problem on a modified cycle C = (V, E). Let X(C) be the set of all
points on the cycle C. In order to keep the notation simple, the cycle C is parameterized;
i.e., the point x ∈ X(C) that lies on the edge (vi, vi+1) for some i = 1, 2, . . . , n is identified
with the real number t, which is given by t = ∑i−1

k=1 ℓ(ek) + d(vi, x). For any two points
a, b ∈ X(C), denoted by X(a, b), the set of all points is traversed by moving from a towards
b in a clockwise direction. Let (V1, V2) be an ordered 2-partition of V, such that V1 and V2
are disjoint and V = V1 ∪ V2, and let V be the set of all ordered 2-partitions of V. It is easy
to see that, for any 2-partition (V1, V2) ∈ V and for any points X = {x1, x2}, we have the
following:

F(X) ⩾
2

∑
k=1

∑
vj∈Vk

wj · max{d(vj, x1), d(vj, x2)},

and thus the following

F(X) = max
(V1,V2)∈V

2

∑
k=1

∑
vj∈Vk

wj · max{d(vj, x1), d(vj, x2)}

holds.
Using the observation above, the constrained 2-maxian problem on a cycle can be

formulated in the following way:

max
x,y

F(x, y) = max
x,y

(
∑

vi∈Vx

wid(vi, x) + ∑
vi∈Vy

wid(vi, y)
)

= max
(Vx ,Vy)∈V

max
x,y

(
∑

vi∈Vx

wid(vi, x) + ∑
vi∈Vy

wid(vi, y)
)
,

where Vx and Vy are the vertex sets that are served by x and y, respectively.
Suppose that (x∗, y∗) is the optimal solution to the constrained 2-maxian problem;

then, the sets Vx∗ and Vy∗ can be constructed as follows:

Vx∗ := {vi ∈ V|d(vi, x∗) > d(vi, y∗)} ∪ {vi ∈ V|d(vi, x∗) = d(vi, y∗) and vi ∈ X(x∗, y∗)}

and

Vy∗ := {vi ∈ V|d(vi, x∗) < d(vi, y∗)} ∪ {vi ∈ V|d(vi, x∗) = d(vi, y∗) and vi ∈ X(y∗, x∗)}.

Note that the sets Vx∗ and Vy∗ have the properties of |Vx∗ | = |Vy∗ | = n
2 and vi ∈ Vx∗ ,

if and only if op(vi) ∈ Vy∗ . It is easy to see that (Vx∗ , Vy∗) is an optimal assignment of the
vertices to x∗ and y∗. Then, we define the set of all subsets of n

2 vertices that induce a path
as follows:

W := {W ⊂ V | |W| = n
2 and G[W] is a path},

where G[W] is the graph that is induced by W. It is easy to see that |W| = n and that,
if W ∈ W , Wc := V \ W is also in W . Moreover, the set of all points of G[W] for a given
set W ∈ W is denoted by X(G[W]). We define two functions f : X(G[W]) → R and
f : X(G[Wc]) → R as follows:

fW(x) := ∑
vi∈Wc

wid(vi, x)

and
fWc(y) := ∑

vi∈W
wid(vi, y).
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Using the function f , the problem reduces to

max
x,y

F(x, y) = max
W∈W

max
x∈Wc ,y∈W

(
fW(x) + fWc(y)

)
(7)

= max
W∈W

(
max
x∈Wc

fW(x) + max
y∈W

fWc(y)
)
. (8)

Equation (8) implies the following algorithmic approach. We solve the problem
maxx∈Wc fW(x) and maxy∈W fWc(y) for all W ∈ W independently to obtain the optimal
solution (x∗, y∗). If d(x∗, y∗) ≤ U , then (x∗, y∗) is the optimal solution to the constrained
2-maxian problem; otherwise, we consider (x∗, ex(x∗)) and (y∗, ex(y∗)), and obtain one
with a larger objective value as the optimal solution to the constrained 2-maxian problem.
Next, we begin to consider the functions fW(x) and fWc(y).

Lemma 1. For the given W ∈ W , the functions fW(x) and fWc(y) are concave and piece-
wise linear.

Proof. It is only proven that fW(x) is concave because the concavity of fWc(y) can be
obtained similarly. For simplicity, it is assumed that W = {1, . . . , n

2 }, Wc = { n
2 + 1, . . . , n}.

Note that d(i, x) is piecewise linear and concave for i ∈ W. Since wi ≥ 0, fW(x) is concave
and piecewise linear.

Note that a piecewise linear function f attains its maximum in a breakpoint i. Let the
breakpoints of f be i1, . . . , iq and the corresponding slopes in the interval [is, is+1] be ks.
Then, is is the maximum point of f if and only if the product of the slopes in [is−1, is] and
[is, is+1] is non-positive, i.e., ks−1ks ≤ 0.

It is easy to see that the set of breakpoints BPs of the function fW(x) is given by the
following equation:

BP = {is =

n
2 +s−1

∑
s= n

2 +1
ℓ(es)|s = 2, . . . ,

n
2
} ∪ {in = n}.

Note that the slope ks of fV′(x) in [is, is−1] can be computed as follows:

ks :=

n
2 +s

∑
j= n

2 +1
wj −

n

∑
j= n

2 +s+1
wj.

According to the discussion above, the breakpoints and the slopes can be computed
in linear time. However, in order to compute fW(x) and fWc(y) efficiently for all W ∈ W ,
an even better method can be introduced.

Note that if we have already solved fW(x) for W ∈ W , then the solution for W ′ with
|W∆W ′| = 2 has the following property, where ∆ denotes the symmetric difference of
two sets.

Lemma 2. Let W = {vi, . . . , vi +
n
2 − 1} and W ′ = {vi+1, . . . , vi +

n
2 } be two sets of W .

Suppose that arg maxx∈Wc fW(x) = is for some vs ∈ Wc and arg maxy∈W fWc(y) = vit for some
vt ∈ Wc, then arg maxx∈W ′c fW ′(x) ∈ X(vis , vi +

n
2 ) and arg maxy∈W ′ fW ′c(y) ∈ X(vit , vi).

Proof. The length of the path induced by W is denoted by ℓ(G[W]), i.e., ℓ(G[W]) =

∑e∈G[W] ℓ(e). Note that fW(x) and fW ′(x) are defined on [vi, vi + ℓ(W)] and [ℓ(ei), ℓ(W) +
ℓ(evi+

n
2
)], respectively. Both functions are piecewise linear in [ℓ(ei), ℓ(W)], and they have

the same set of breakpoints B = {vi+1 +
n
2 , . . . , vi+n}. For the interval [vi, vi+1], the slopes

of fW(x) and fW ′(x) can be computed as follows:
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ki :=
op(vi)

∑
j= n

2 +1
wj −

n

∑
j=op(vi+1)

wj (9)

and

k′i :=
op(vi)

∑
j= n

2 +2
wj −

n+1

∑
op(vi+1)

wj, (10)

respectively.
Subtracting (9) from (10), we have k′i − ki = −(w n

2 +1 + w1) ≤ 0. Using the fact that
k′i ≤ ki and that a breakpoint i is a maximum of fW ′ if and only if k′i−1k′i ≤ 0, it follows that,
if arg maxx∈W fW(x) = k, then arg maxx∈W ′ fW ′(x) ∈ X(k, n

2 + 1). For the function fWc(y),
we can use the same argument to obtain the statement.

It is easy to apply the above result to any two sets Wi = (vi, vi+1, . . . , vi+ n
2 −1) and

Wi+1 = (vi+1, vi+2, . . . , vi+ n
2
). Finally, we give Algorithm 1 to compute z∗ = maxx∈Wi fWi(x)

and x∗i = arg maxx∈Wj fWi (x) for i = 1, 2 . . . , n. Based on Lemma 2, we can easily compute
x∗i+1 in X(x∗i , n

2 + i). This result guarantees that we only have to deal with the right-sided
derivative in x∗i . The right-sided derivative in x∗i , with respect to fWi , is denoted by kWi(x∗i ).

Theorem 2. Algorithm 1 computes z∗i = maxx∈Wi fWi (x) and x∗i = arg maxx∈Wi fWi (x) for
i = 1, 2, . . . , n in linear time.

Algorithm 1: Algorithm for computing z∗i = maxx∈Wi fWi (x) and x∗i =
arg maxx∈Wi fWi (x) for i = 1, 2, . . . , n

Input: A cycle C = (V, E) with V = {1, 2, . . . , n}.
Output: z∗i = maxx∈Wi fWi (x) and x∗i = arg maxx∈Wi fWi (x) for i = 1, 2, . . . , n.

1 W1 = {v1, v2, . . . , v n
2
}

2 Compute z∗1 = maxx∈W1 fW1(x) and x∗1 = arg maxx∈W1 fW1(x)
3 Compute kW1(x∗1) by using (9)
4 for i from 2 to n do
5 if x∗i−1 = vi−1 then
6 x∗i = x∗i−1 + 1
7 fWi−1(x∗i ) = fWi−1(x∗i−1) + ℓ(ex∗i−1

)kWi−1(x∗i−1)

8 kWi−1(x∗i ) = kWi−1(x∗i−1)− wi−1 − w n
2 +i−1

9 else
10 x∗i = x∗i−1
11 end
12 end
13 Wi = Wi−1 \ {vi − 1} ∪ {v n

2 +i−1}
14 fWi (x∗i ) = fWi−1(x∗i )− wi−1ℓ(ei−1) + w n

2 +i−1ℓ(e n
2 +i−1)

15 kWi (x∗i ) = kWi−1(x∗i )− wi−1 − w n
2 +i−1

16 while kWi (x∗i ) > 0 and x∗i ̸= v n
2 +i−1 do

17 x∗i = x∗i + 1
18 fWi (x∗i ) = fWi (x∗i − 1) + ℓ(ex∗i −1)kWi (x∗i − 1)
19 kWi (x∗i ) = kWi (x∗i − 1)− wi−1 − w n

2 +i−1

20 end
21 z∗i = fWi (x∗i )
22 end
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In the preprocessing step (lines 1–3), the problem max x ∈ W1 fW1(x) is solved, and the
right-sided derivative in x∗1 is obtained. In the for-loop, the problem maxx∈Wj fWi (x) is
solved, where we assume that x∗i−1, z∗i−1 and kWi−1(x∗j−1) are already computed. Lines 5–12
consider two different cases: x∗i−1 = i − 1 and x∗i1 ̸= i − 1. Lines 14–15 compute the values
fWi (x∗i ) and kWi (x∗i ) for the problem on Wi. Lines 16–20 judge whether x∗i is optimal; if it is
not, x∗i will be updated until we obtain an optimal solution. Thus, Algorithm 1 is correct.

Note that the preprocessing step can be completed in linear time. Moreover, since the
computation in each for-loop can be completed in constant time, the total computation
can be completed in O(n) time. Therefore, Algorithm 1 runs in linear time. Once x∗i and
y∗i for i = 1, 2, . . . , n are obtained, we test d(x∗i , y∗i ) ≤ U . If it does not hold, (x∗i , y∗i ) could
be replaced with (x∗i , ex(x∗i )) or (ex(y∗i ), y∗i ) according to the statements in the previous
section. Note that these computations can be completed in constant time. Summarizing,
we accomplish the main result of this paper.

Theorem 3. The constrained 2-maxian problem on a cycle can be solved in linear time.

4. Conclusions

This paper addressed the p-maxian problem on cycle graphs with constraints, where
the distance between facilities is not greater than a given bound U . We considered the case
of p = 2 and showed that any optimal solution contains at least one vertex of the cycle
graph. Based on this property, we developed a combinatorial algorithm that solves the
problem in linear time. It should be emphasized that the underlying graph of our model is
a cycle, which is different from the graph of [15]. It is interesting to study whether there
exist polynomial time algorithms for the case of p ≥ 3 on cycle graphs and the constrained
p-maxian problem on cactus graphs, block graphs, etc.
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